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Abstract In this work, we have explored the articulatory features (AFs) for improving
the performance of the phone recognition systems (PRSs) using TIMIT and Bengali
speech corpora. AFs for manner, place, roundness, frontness, and height groups are
derived from the spectral features using feedforward neural networks. MFCCs are
used as spectral features. HMMs and DNNs are explored for developing the PRSs.
The combination of MFCCs and AFs is used to develop tandem PRSs. Five tandem
systems based on manner, place, roundness, frontness, and height AFs are developed.
We have also developed a phone-posterior-based tandem system using the phone
posteriors derived from theMFCCs through feedforward neural networks. The tandem
systems are then combined to develop hybrid systems using weighted combination
scheme. A systematic analysis of phone-level accuracies contributed by individual
AF groups, consonant AF groups, and vowel AF groups is carried out separately. The
combination of all the AF-based tandemPRSs and phone-posterior-based tandemPRS
has shown highest phone recognition accuracy for both Bengali and TIMIT datasets.
DNNs have outperformed HMMs in all the cases. The best performing systems have
shown recognition accuracy of 55.8% and 74.7% for Bengali and TIMIT datasets,
respectively.
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1 Introduction

Phone recognition generally involves building phonemodels using pattern recognition
techniques such as Hidden Markov Models (HMMs), FeedForward Neural Networks
(FFNNs), SupportVectorMachines (SVMs) andDeepNeuralNetworks (DNNs).Gen-
erally, the standard spectral features such as Linear Prediction Cepstral Coefficients
(LPCCs) or Mel-Frequency Cepstral Coefficients (MFCCs) are used for developing
phone recognition models. Spectral features mainly represent the gross shape of the
vocal tract system in terms of dominant resonant frequencies during production of a
sound unit. But, the production of a sound unit depends on both the gross shape of
the vocal tract as well as the positioning and movements of various articulators. The
positioning and movements of articulators during the production of a sound unit can
be represented using articulatory features (AFs). The performance of the phone recog-
nition systems (PRSs) can be significantly improved with the use of AFs along with
the spectral features [5,11,22,26]. Motivated by this, in this study, we have explored
the combination of the spectral features and the AFs with an intent to improve the
performance of PRSs.

Speech is produced by the exhalation of air from the lungs leading to the vibration
of the vocal folds followed by passing of air through the vocal tract and then radiating
out through the nostrils or lips. The articulators such as lips, teeth, tongue, alveolar
ridge, hard palate, velum and glottis are involved in the speech production. The AFs
change from one sound unit to another. AFs can be broadly classified into five groups
namely (i) place (ii) manner (iii) roundness (iv) frontness and (v) height. The sound
units in International Phonetic Alphabet (IPA) chart are arranged based on AFs [46].
The place and manner AF groups capture the characteristics of consonants, while the
roundness, frontness and height AF groups capture the characteristics of vowels. The
physical positioning andmovements of various articulators can be represented either as
continuous values or as discrete values. The continuous-valuedmeasurements are used
in [10,49,52], while the discrete-valued measurements are used in [5,11,22]. In this
work, the AFs are represented using discrete values. For example, the discrete values
for roundness AF group are rounded and unrounded [21]. The significance of having
fiveAF groups to capture variousAFs is as follows: Place of articulation represents
the point of contact between active and passive articulators in the vocal tract, at which
obstruction occurs during the production of a consonant. The lower lip and tongue
are the typical active articulators, and the remaining articulators represent the passive
articulators. For example, the active lower lip comes in contact with passive upper lip
to produce a bilabial sound unit. There are eleven different place of articulations. The
air coming out from lungs is obstructed in the vocal tract to produce a sound unit.
Different sound units are produced by obstructing airstream in different ways with
varying degrees of constriction.Manner of articulation represents theway inwhich
the air escapes from the vocal tract to produce a consonant. For example, the plosive
sounds are produced by complete blockage of air followed by a sudden release of air.
There are eight different manners of articulation. Roundedness indicates whether the
lips are rounded or not during the production of a vowel. Frontness indicates the
horizontal position of the tongue during the articulation of a vowel relative to the front
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of the mouth. Height denotes the vertical position of the tongue during the production
of a vowel relative to the aperture of the jaw [13].

Generally, the PRSs are developed usingHMMs, FFNNs, SVMs andDNNs.HMMs
are the generative models, and they can be used to model the sequence of vocal tract
shapes contributed to the production of a sound unit, with local spectral variability
modeled using the mixtures of Gaussian densities [38]. The FFNNs are the discrimi-
native classifiers, and they have good discriminative power to distinguish between the
correct output class and the rival ones [25]. In the context of phone recognition, dis-
crimination between the vocal tract shapes offered by various sound units is exploited
by the FFNNs. DNNs have many hidden layers, which can model more complex non-
linear relationships [17]. The use of DNNs has lead to dramatic improvement in the
performance of speech recognition systems in the recent years. In this work, we have
used HMMs and DNNs for developing PRSs and the FFNNs for deriving tandem fea-
tures. The main focus of this study is to improve the performance of the PRSs using
the AFs. The AFs act as additional clues, which aid in discriminating between various
sound units. The AFs provide supplementary information, which can be used along
with the spectral features to improve the performance of the PRSs.

The rest of the work is organized as follows: Sect. 2 provides the literature sur-
vey. Section 3 describes the speech corpora used in this study. Section 4 discusses
different types of feature extraction techniques used in this work. Section 5 describes
the development of the baseline and tandem PRSs. Section 6 provides details of the
development of hybrid PRSs using the weighted combination scheme. Section 7 dis-
cusses about the comparison of the proposed PRSs with other related works. Section
8 provides the summary and conclusion of the paper.

2 Literature Survey

The area of speech recognition has been one of the most active areas of research for
the last six decades. The most common approaches of developing speech recognition
systems use HMMs [23], FFNNs [9], hybrid systems using combination of HMMs
and FFNNs [4], and DNNs [15,17,31]. From the existing literature, it is observed that
there are some studies exploring the AFs to improve the phone recognition accuracy.

Few works related to development of speech recognition systems using discrete-
valued AFs are as follows: In 2009, Siniscalchi et al. have developed automatic speech
recognition systems using acoustic-phonetic information. The acoustic-phonetic infor-
mation is derived using the lattice rescoring approach.Abank of speech event detectors
are used to score the place and manner of articulation events. Three speech recog-
nition tasks namely continuous phone recognition, connected digit recognition and
large vocabulary continuous speech recognition are carried out using the lattice scor-
ing approach. The lattice rescoring framework has achieved better results in all three
cases [43]. In 2007, Cetin et al. have used the AFs to develop a tandem speech recogni-
tion system. The AFs are derived by training multilayer perceptrons using the spectral
features. Fisher and the SVitchboard speech corpora are used for evaluating the predic-
tion accuracy ofAFs. The derivedAFevidences alongwith perceptual linear prediction
features are used for improving the word error rate [5,11]. In 2002, Kirchhoff et al.
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have usedAFs to develop robust speech recognition systems. Twodifferent recognition
tasks namely continuous digit recognition in case of telephone speech and conversa-
tional speech recognition are carried out. It is shown thatAF-based systems are capable
of achieving superior performance at high noise levels, and the combination of acous-
tic features and AFs consistently leads to a significant reduction in the word error rate
across all acoustic conditions [22].

Some of the works exploring the continuous-valued AFs to improve the perfor-
mance of speech recognisers are listed below. In 2007, Frankel et al. have used the
linear dynamic models to improve the performance of HMM-based speech recognis-
ers. The internal variables of the hidden states are captured through linear dynamic
models. These internal variables reflect the properties of slowly and continuously
moving articulators along highly constrained trajectories. It is shown that the use of
linear dynamic models has resulted in significant improvement in the performance
[10,12]. In 2011, Ghosh et al. have estimated the articulatory features using subject-
independent acoustic-to-articulatory inversion. It is found that the inclusion of the
articulatory information improves classification accuracy. The improvement is more
significant if the speaking style of the exemplar matches with that of the talker. AFs are
specified in terms of five vocal tract constriction variable trajectories called tract vari-
ables (TVs), namely lip aperture, lip protrusion, jaw opening, tongue tip constriction
degree, and tongue body constriction degree [14]. In 2013, Mitra et al. have estimated
the TVs from the speech signal using artificial neural networks. Eight TVs related to
constriction of lip, tongue tip, tongue body, velum, and glottis are captured. It is found
that the combination ofMFCCs and TVs yields higher recognition accuracy [26]. TVs
are explored for robust speech recognition in [27] and [28].

In most of the above works, the AFs are mostly used as tandem features to improve
the recognition accuracy of PRSs. Hence, we have explored the weighted combina-
tion scheme for combining the AFs from various AF groups. The hybrid PRSs are
developed using the weighted combination of various AFs. In this work, we have car-
ried out a systematic analysis of the phone-level accuracies contributed by each AF
group. The analysis is carried out by developing separate hybrid PRSs based on con-
sonant AFs and vowel AFs. The consonant-based hybrid PRSs are developed using
the place and manner AFs, whereas the vowel-based hybrid PRSs are developed
using the roundness, f rontness and height AFs. The existing studies have mostly
explored either the combination of spectral features and the phone posteriors, or the
combination of spectral features and the AFs, separately to improve the performance
of the PRSs. But, in this work, we have proposed the combination of these two systems,
to further enhance the performance of the PRSs. From the literature, it is observed
that there are no works exploring the AFs to improve the performance of PRSs in the
context of Indian languages. Hence, we have explored the AFs in the context of an
Indian language Bengali. The use of DNNs to develop AF-based PRSs is not much
explored in the literature. Hence, we have explored DNNs in addition to HMMs to
develop AF-based PRSs. Since the AFs provide supplementary information for phone
recognition, the combination of spectral and the articulatory features leads to signifi-
cant improvement in the performance of the PRSs and the same is widely reported in
the literature [5,11,26–29]. The objective of our study is to examine the role of AFs
in improving the performance of PRSs.
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3 Speech Corpora

For developing and analyzing the performance of the proposed phone recognition sys-
tems, speech corpora of Bengali and English languages are considered. The Phonetic
and Prosodically Rich Transcribed (PPRT) speech corpus developed at IIT Kharagpur
is used for Bengali language, and for English language well-known TIMIT database is
chosen. The details of PPRT Bengali speech corpus and TIMIT English speech corpus
are discussed in the following subsections.

3.1 Bengali Speech Corpus

The PPRT Bengali speech corpus developed at IIT Kharagpur is used in this study
[44]. The speech corpus contains the speech data collected in three different modes
namely read mode, extempore mode and conversational mode. Speech wave files are
sampled at 16 kHz, and each sample is encoded using 16 bits. The speech data in all
three modes of speech are transcribed using the IPA chart. The IPA chart provides
one symbol for each distinctive sound. IPA contains unique symbols for denoting 59
consonants, 35 vowels, 31 diacritics and 19 additional signs. The variations in the
consonants and vowels are represented using diacritics. The additional signs indicate
suprasegmental qualities such as length, tone, stress, and intonation. Although there
are about 160 symbols in IPA chart, a particular language can be represented by using
far fewer symbols [46]. In our case, we were able to represent the speech utterances in
Bengali language with 64 IPA symbols plus one hyphen used for indicating silence.
We have organized the speech data in the form of sentences to conduct experiments.
The duration of the speech data used in this study is about 1.16 h of read speech
spoken by 13 female speakers and 8 male speakers. The data used for training and
testing were from different speakers. For training, around 80% of the data was used
and remaining 20% of the data was used for testing. 10% of training data is used
as development set. Each speaker in the training set had equal contribution toward
development set. The development set is used to determine the learning rates and to
decide on when to terminate training. We have considered overlapped development
set for HMMs, and non-overlapping held-out development set for FFNNs and DNNs.
In case of overlapped development set, the development set is used for both training
and cross-validation.

3.2 TIMIT Speech Corpus

TIMIT speech corpus is a read speech corpus designed for its use in acoustic-phonetic
studies. TIMIT is widely used in the development and evaluation of automatic speech
recognition systems. TIMIT corpus contains 16 bit, 16 kHz speech wave files along
with the time-aligned orthographic, phonetic and word transcriptions for each utter-
ance. The corpus was jointly designed by Massachusetts Institute of Technology, SRI
International and Texas Instruments. The transcriptions in TIMIT are hand verified
[18]. The training set and core test set, as suggested in the TIMIT documentation,
are used for training and testing, respectively. The training set contained data from
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462 speakers. Each speaker has spoken 10 short sentences of about 3–5 s. The com-
plete train set contained 4620 sentences. The core test set involves 24 speakers with 8
sentences from each speaker. Thus, the complete core test set contained 192 sentences.

4 Feature Extraction

In this section, the feature extraction techniques to derive spectral and articulatory
features are discussed. In this work, MFCC features are used for representing the
spectral features. The AFs are derived from the spectral features using FFNNs. The
details of extraction ofMFCCs and the AFs are discussed in the following subsections.

4.1 Mel-Frequency Cepstral Coefficients

The MFCC features mainly capture the vocal tract information. The following proce-
dure is used for extracting the MFCCs from the speech signal. The speech signal is
divided into frames with a duration of 25 ms [38]. A frame shift of 10 ms is employed
for locating the adjacent frames. The frames are Hamming windowed to reduce the
edge effect, while taking the Discrete Fourier Transform on the signal. For each frame,
cepstral coefficients are computed using a Mel filter bank with 26 Mel filters. The
speech is parameterized into 13 MFCCs including 0th cepstral coefficient as well as
their first- and second-order derivatives resulting to a total of 39 components.

4.2 Extraction of Articulatory Features

In this study, we have considered five AF groups, namely: place, manner, frontness,
roundness and height. The prediction of the AFs from the spectral features using
FFNNs is discussed in detail in the following subsections.

4.2.1 Articulatory Features

TheAFs provide the crisp representation of each sound unit, in terms of the positioning
and movement of various articulators involved in the production of a specific sound
unit. The AFs vary from one sound unit to another sound unit. Spectral features
such as MFCCs capture only the gross shape of the vocal tract, but not the finer
variations in the shape of the vocal tract. The co-articulation effect between the adjacent
phonetic units is captured by the AFs [8,26,34,37]. The AFs provide additional clues
for discriminating among the various sound units.

There aremainly threeways to derive AFs: (i) acoustic-articulatory transformations
using inversemapping, (ii) direct physicalmeasurements, and (iii) classification scores
for pseudo-articulatory features [22]. In the first approach, the articulatory movements
are estimated from the speech acoustics through inverse mapping of speech. The
process of inverse mapping refers to the inverse of the natural transformation from
articulatory movements to speech acoustics [7,47]. In [6], the frication and voicing
features are detected using zero-frequency filtered signal. Since there are inverse fil-
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Table 1 Articulatory feature specification for Bengali and TIMIT datasets

AF group (Cardinality) Features

Bengali

Place (9) bilabial, labiodental, alveolar, retroflex, palatal, velar, glottal, vowel, silence

Manner (6) plosive, fricative, approximant, nasal, vowel, silence

Roundness (4) rounded, unrounded, nil, silence

Frontness (5) front, mid, back, nil, silence

Height (6) high, low, mid-high, mid-low, nil, silence

TIMIT

Place (8) bilabial, labiodental, alveolar, palatal, velar, glottal, vowel, silence

Manner (6) plosive, fricative, approximant, nasal, vowel, silence

Roundness (5) rounded, unrounded, diphthong, nil, silence

Frontness (6) front, mid, back, diphthong, nil, silence

Height (7) high, low, mid-high, mid-low, diphthong, nil, silence

tering methods for detecting only some of the AFs and not for all the AFs, the use of
inverse mapping technique will be difficult in case of continuous speech recognition
applications.

Second approach deals with capturing the motions of articulators through direct
physical measurement techniques such as X-ray filming (cineradiography), mag-
netic resonance imaging [32,33], electromagnetic articulography [24,45], and elec-
tropalatography [3]. Use of these techniques requires costly setup and involves the
risk of health hazards such as exposure to radiations. Moreover, the speech corpora
with physical measurements of articulatory motions are not available for Indian lan-
guages. The works based on physical measurement techniques are reported in [1,14]
and [29]. In the third approach, AFs are derived from the acoustic signal using statis-
tical classifiers. The spectral features from the acoustic signal are given as input, and
the classification scores are obtained at the output of the classifier. The classification
scores thus obtained indicate pseudo-articulatory features. Among three approaches,
third approach is more feasible and popularly used [5,11,22,39]. Hence, in this work,
we have explored the third approach.

Although most of the existing works use spectral features such as MFCCs or PLPs
to derive the AFs, but there are few works exploring Mel-log filter bank features to
estimate AFs. In [30], Mizera et al. have shown that the use of Mel-log filter bank
features for estimating the AFs has better results than MFCCs or PLPs. They have
computed theMel-log filter bank features using 23 bands of log mel-scaled filter bank
in the range 64–8000 Hz.

We have captured the discrete information about the positioning and movement of
articulators with respect to five AF groups. Each AF group along with their possible
AF values is shown in Table 1. Table 1 shows the specification of AFs for Bengali
and TIMIT datasets. First column indicates the AF group and the cardinality. The
cardinality indicates the number of features in an AF group. Second column lists the
possible feature values for each AF group.
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The possible feature values of manner AF group are same for both Ben-
gali and TIMIT datasets, while the possible feature values for remaining AF
groups are different for Bengali and TIMIT datasets. The difference in the fea-
ture specification of place AF group is due to retro f lex feature value. In IPA
chart, the phoneme /r/ (based on its production characteristics) is represented by
five different symbols {/r/, /R/, /ô/, /ó/, /õ/} [46]. Among five symbols, {/r/, /R/,
/ô/} are approximants, and {/ó/, /õ/} are retroflexes. In TIMIT transcription /r/ is rep-
resented using {/er/, /r/} symbols. There is no way to determine whether a /r/ is an
approximant or a retroflex using TIMIT transcription. Hence, all the phones {/er/, /r/}
of TIMIT aremapped to approximant but not retroflex. Hence, therewill be no separate
class for retroflexes in TIMIT. We have derived this mapping based in the previous
works reported in [6] and [39], which use TIMIT dataset. The studies reported in [5]
and [11] also map the phones {/er/, /r/} to approximant but not to retroflex. SVitch-
board and telephone speech corpora are used in [11] and [5], respectively. In case of
Bengali, the transcription is derived using IPA chart. Hence, we have the flexibility to
determine whether a phone /r/ is an approximant or a retroflex using IPA transcription.
In addition to retroflex /r/, other retroflex symbols such as /T/ and /D/ are found in
abundance in Bengali transcription. Hence, it is possible to have a separate class for
retroflex in Bengali. This results in having a retroflex feature value for placeAF group
of Bengali.

The difference in the feature specification of roundness, f rontness and height
AFgroups is due to diphthong feature value. In IPA transcription, diphthongs are tran-
scribed as their component vowels (i.e., starting and ending vowel) [2]. Since Bengali
uses the IPA transcription, there was no separate representation indicating diphthongs
explicitly in Bengali transcription. Hence, there was no separate representation (i.e.,
separate feature value) for indicating diphthongs explicitly in Bengali transcription. In
case of TIMIT dataset, diphthongs are transcribed using separate phonetic symbols.
Since the production characteristics (i.e., frontness, roundness, and height) of two
different vowels of a diphthong are not same, we cannot represent the diphthong using
the feature values considered for roundness, f rontness and height AFs.

4.2.2 Prediction of Articulatory Features

In this work, the frame-level AFs for each AF group are predicted from the spectral
features usingAF-predictors. SeparateAF-predictors are developed for eachAFgroup.
We have explored both HMMs and FFNNs for developing the AF-predictors. Figure 1
shows the block diagram for the prediction of manner AFs. HMM and FFNN-based
AF-predictors [5,11] are developed for the manner AF group using MFCCs. The
predicted feature values represent the manner AFs.

Figure 2 illustrates the prediction of manner AFs for ten frames using the posteri-
ogram representation. In order to get better visualization of posteriogram distribution
across all the feature values, we have plotted the posteriogram using non-consecutive
frames. The darker bands in the posteriogram indicate higher posterior probability,
while the lighter bands indicate lower posterior probability. The labels on the X -axis
of posteriogram indicate the feature values of manner AF group. MFCCs extracted
from each frame are fed to manner AF-predictor to derive the posteriogram distribu-
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Fig. 1 Block diagram of manner articulatory features predictor

Manner
AF-Predictor

Fricative         Nasal             Plosive             Silence    Approximant     Vowel

Fig. 2 Illustration of prediction of manner articulatory features for ten frames using posteriogram repre-
sentation

tion for that specific frame. The sum of all the posterior probabilities obtained for a
frame will be equal to 1. The posteriogram distribution represents the manner AFs.

Similarly, the AF-predictors are developed for the remaining four AF groups, as
shown in Fig. 3. TheAFs for a particularAFgroup are predicted using theAF-predictor
of that specific group.

4.2.2.1 Mapping Phone Labels to AF Labels The AF-predictors are developed by
training HMMs and FFNNs. For training HMMs and FFNNs, we require the speech
data which is transcribed at AF-level. The AF-level transcription indicates the tran-
scription derived using theAF labels. Since the transcription is available at phone level,
we derive the transcription at AF-level by mapping the phone labels in the phone-level
transcription to AF labels. The AF label of an AF group represents a possible AF value
for that specific AF group. The possible AF labels for each AF group are shown in
Table 1. The mapping of each phone label into a set of AF labels of various AF groups
for Bengali and TIMIT datasets is shown in Tables 2 and 3, respectively. First column
in Table 2 lists the unique IPA symbols used in Bengali transcription, while the first
column in Table 3 lists the unique phones used in TIMIT transcription. Second to sixth
columns show the corresponding place, manner, roundness, frontness and height AF
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Fig. 3 Block diagram for the prediction of articulatory features

values, respectively, for each phone. The mapping for Bengali dataset is derived using
the IPA chart [46], whereas the mapping for the TIMIT dataset is derived with the aid
of TIMIT to IPA mapping as shown in [42].

4.2.2.2 Development of AF-Predictors Using HMMs HMM-based AF-predictors are
developed using a set of context-independent HMMs. A 4-state left-to-right HMM
model with a 64 mixture continuous-density diagonal-covariance Gaussian mixture
model per state is used to model each sound unit. The embedded reestimation using
Baum–Welch training is followed by the Viterbi decoding of the test utterances. The
development set is used to tune the system parameters such as number of iterations,
word-insertion penalty, and grammar scale factor. The open-source HTK toolkit is
used for building HMM models [50].

4.2.2.3 Development of AF-Predictors Using FFNNs The procedure for developing
FFNN-based systems is described in this section. Initially, the frame-level AF labels
are assigned for each speech utterance in the training set. For capturing the hidden
relations between MFCC features and the AF values of each sound unit, the MFCC
feature vectors are fed to input layer and the information about the AF label is given
at the output layer during training of the neural network. Three-layered FFNN with
sigmoid nonlinearity at the hidden layer, and softmax nonlinearity at the output layer
is used. During training, multiple passes are made through the entire set of the training
data. Each pass is called an epoch. Initially, we start with a learning rate of 0.008.
After each epoch, the performance of the FFNNs is measured with the development
set. The training process will be stopped after the epoch at which the increment in the
performance improvement is less than 0.5% with development set. The advantage of
development set-based adaptive training scheme is that it provides some protection
against over-training. The result of training a FFNN is a set of weights. The softmax
nonlinearity activation function is used at output layer to constrain posterior proba-
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Table 2 Mapping of phone labels to AF groups in Bengali dataset

Phones Articulatory feature groups

Place Manner Roundness Frontness Height

a vowel vowel unrounded front low

o vowel vowel rounded back mid-high

5 3 vowel vowel unrounded mid mid-low

i I vowel vowel unrounded front high

A vowel vowel unrounded back low

@ vowel vowel unrounded mid mid-high

6 vowel vowel rounded back low

u U vowel vowel rounded back high

e vowel vowel unrounded front mid-high

O vowel vowel rounded back mid-low

æ E vowel vowel unrounded front mid-low

k kh g gh velar plosive nil nil nil

ÙÙh ÃÃh palatal plosive nil nil nil

ú úh ã ãh retroflex plosive nil nil nil

t th d dh alveolar plosive nil nil nil

p ph b bh bilabial plosive nil nil nil

m bilabial nasal nil nil nil

ï retroflex nasal nil nil nil

N velar nasal nil nil nil

n alveolar nasal nil nil nil

s S Z alveolar fricative nil nil nil

f v labiodental fricative nil nil nil

h glottal fricative nil nil nil

j palatal approximant nil nil nil

R ô r l alveolar approximant nil nil nil

í retroflex approximant nil nil nil

V labiodental approximant nil nil nil

sil silence silence silence silence silence

bilities to lie between zero and one and sum to one. The weights associated with the
edges between the nodes can then be used as an acoustic model to convert the features
of an unseen test utterance into the posterior probabilities of each class [35]. The pos-
terior probabilities are used for representing the AFs of a sound unit. The open-source
quicknet software is used for training the FFNNs [48].

We have used a memoryless FFNN classifier, which means the outputs depend only
on the inputs at that moment. Since the interpretation of the speech sound is highly
context-dependent, there is a need to capture the contextual information. The temporal
context can be captured by feeding certain frames on either side of the current frame
along with the current frame to the input layer. Most of the existing works have used a
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Table 3 Mapping of phone labels to AF groups in TIMIT dataset

Phones Articulatory feature groups

Place Manner Roundness Frontness Height

aa vowel vowel unrounded back low

ae vowel vowel unrounded front low

ah vowel vowel unrounded back mid-low

ax ax-h axr vowel vowel unrounded mid mid-high

ay vowel vowel unrounded front diphthong

eh vowel vowel unrounded front mid-low

er vowel vowel unrounded mid mid-low

ey vowel vowel unrounded front diphthong

ih ix iy vowel vowel unrounded front high

uh ux uw vowel vowel rounded back high

ow vowel vowel rounded back diphthong

ao vowel vowel rounded back mid-low

oy aw vowel vowel diphthong diphthong diphthong

k kcl g gcl velar plosive nil nil nil

t tcl d dcl dx alveolar plosive nil nil nil

p pcl b bcl bilabial plosive nil nil nil

q glottal plosive nil nil nil

th dh s sh alveolar fricative nil nil nil

ch jh z zh palatal fricative nil nil nil

f v labiodental fricative nil nil nil

hh hv glottal fricative nil nil nil

l el r alveolar approximant nil nil nil

w labiodental approximant nil nil nil

y palatal approximant nil nil nil

m em bilabial nasal nil nil nil

n nx en alveolar nasal nil nil nil

ng eng velar nasal nil nil nil

epi pau h# silence silence silence silence silence

temporal context of nine frames [5,11,19]. But, when we experimented with various
context sizes, it is found that the context of three frames performs better compared
to all other contexts. This might be due to the lower amount of training data used in
this study compared to the amount of training data used in [5,11,19]. It is found that
[5,11] use close to 2000 h of training data, and [19] uses 16 h of training data. Hence,
we have used a context of three frames in this study. The temporal context of 3 frames
is captured by feeding one frame on either side of the current frame along with the
current frame to the input layer. This results in a temporal context of 3 frames with a
duration of 45 ms. The number of nodes in input layer (NNIL) is determined by using
Eq. 1.
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Table 4 Number of epochs
carried out during training of
FFNN-based AF-predictors for
Bengali and TIMIT datasets

AF group Number of epochs used for training

Bengali TIMIT

Place 10 7

Manner 8 7

Roundness 8 6

Frontness 7 6

Height 9 6

NNIL = No. of frames in temporal context × No. of MFCCs per frame (1)

According to Eq. 1, the number of nodes in input layer will be 117, i.e., 3×39 = 117.
The hidden layers with different number of hidden units are tried out. Among all those
hidden layers, the hidden layer with 585 hidden units is chosen as a trade-off between
computation time required for training the FFNNs and performance of the FFNNs.
The size of output layer for each AF group is equal to the cardinality of that AF group
as shown in Table 1. Table 4 shows the number of epochs carried out during training
of FFNNs for various AF groups of the Bengali and TIMIT datasets. First column
indicates the AF group. Second and third columns show the number of epochs carried
out for Bengali and TIMIT datasets, respectively.

4.2.3 Performance Evaluation of AF-Predictors

The accuracy of the AF-predictors is determined by comparing the decoded AF labels
with the reference AF labels by performing an optimal string matching using dynamic
programming [50]. Once the optimal alignment is found, the number of substitution
errors (S), deletion errors (D) and insertion errors (I) is determined. The recognition
accuracy in percentage is calculated using Eq. 2. The terms recognition accuracy and
phone recognition accuracy are used interchangeably. The recognition accuracy of the
AF-predictors is termed as prediction accuracy.

Recognition Accuracy = N-D-S-I

N
× 100% (2)

where N is the total number of labels in the reference transcriptions.
Classification accuracy of a class label is defined as the ratio of number of correctly

classified samples of the class label to the total number of samples of that class label.
Equation 3 gives the formula for computing the classification accuracy.

Classification Accuracy = Number of samples correctly classified

Total number of sample cases
× 100%

(3)

Table 5 shows the accuracy of prediction of AFs for different AF groups of Bengali
and TIMIT datasets. First column indicates the AF group. Second and third columns
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Table 5 Prediction accuracy of
AF-predictors of different AF
groups

AF group Prediction accuracy (%)

Bengali TIMIT

HMMs FFNNs HMMs FFNNs

Place 55.04 70.35 60.59 67.88

Manner 67.51 74.40 68.47 75.06

Roundness 68.16 78.58 63.13 64.31

Frontness 67.64 74.01 63.00 62.53

Height 62.57 67.75 61.11 60.29

show the prediction accuracies for Bengali dataset, while the fourth and fifth columns
tabulate the prediction accuracies for TIMIT dataset. The results are shown separately
for HMM-based and FFNN-based systems. It can be observed that the prediction
accuracies of all the AF groups are higher in case of FFNNs compared to HMMs for
Bengali dataset, while the prediction accuracies of most of the AF groups are higher
in case of FFNNs compared to HMMs for the TIMIT dataset. Though the prediction
accuracies of frontness and height AF groups of TIMIT dataset are higher with HMMs
compared to FFNNs, the difference in their prediction accuracies is not significant.
Since FFNNs have higher prediction accuracies for all AF groups of Bengali dataset
and for majority of AF groups in TIMIT dataset, we have used the FFNNs for pre-
dicting the AFs of various AF groups. Since the FFNNs provide a discriminative way
of estimating posterior probabilities [20], it is more advantageous to use FFNNs for
developing AF-predictors than HMMs. The combination of the discriminative knowl-
edge captured by the AF-predictors and the sequential knowledge captured by the
HMMs (during the development of PRSs) will lead to a kind of hybrid FFNN/HMM
system, which has higher potential for improving the recognition accuracies.
The following observations are made during the prediction of different AF groups.

Place Labiodentals have poor classification accuracy. Labiodentals are misclassi-
fied into bilabials. Retroflexes are misclassified into alveolars. All the groups have
significant misclassifications into alveolars. Alveolars and velars have more deletion
errors.

Manner Plosives have very poor classification accuracy, due to their misclassifica-
tions into nasals. Plosives are also misclassified into silence, due to unvoiced plosives
such as p,t,k classified as silence. Vowels have highest classification accuracy.

Roundness Unrounded to rounded misclassification is more prominent. Conso-
nants are mainly misclassified into vowels and have more deletion errors.

Frontness Mid has least classification accuracy, due to its misclassification into
back. Consonants are mainly misclassified into vowels and have more deletion errors.

HeightMid-high has least classification accuracy. High tomid-high andmid-low to
mid-high misclassifications are prominent. Consonants are mainly misclassified into
mid-low.

We have also computed the framewise accuracies of FFNN-based AF-predictors
as shown in [5,11,39]. The framewise accuracies of FFNN-based AF-predictors are
shown in Table 6. The results are computed for both training and development sets.
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Table 6 The framewise
accuracies of each FFNN-based
AF-predictors on training and
development datasets

AF group Bengali TIMIT

Train Development Train Development

Place 83.97 83.33 83.55 82.77

Manner 87.91 87.00 87.45 86.72

Roundness 90.06 88.69 86.82 85.84

Frontness 88.90 88.21 85.35 84.03

Height 83.45 82.04 81.59 80.20

5 Development of Baseline and Tandem Phone Recognition Systems

Thepurpose of developing aPRS is to convert the speech signal into a sequence of basic
sound units, namely phones. In this study, we have developed Bengali and English
PRSs using HMMs and DNNs.Most frequently occurring phones in the IPA transcrip-
tion are considered for building Bengali PRS. The number of phones considered for
developing Bengali PRSs is 35. The 61 phones of TIMIT dataset are downsized to 48
phones by using the approach shown in [23]. TIMIT PRSs are trained using 48 phones
and tested using 39 phones as described in [23]. The PRSs are developed without using
any language related information, i.e., no language model is used. HMM-based PRSs
are developed using the procedure mention in Sect. 4.2.2.2.

The procedure for developing PRSs using DNNs is as follows: DNNswith 3 hidden
layers having tanh nonlinearity at hidden layers and softmax activation at the output
layer are used. DNNs are trained using greedy layer-by-layer supervised training.
Initial learning rate was chosen to be 0.015 and was decreased exponentially for the
first 15 epochs. A constant learning rate of 0.002was used for the last 5 epochs.Mixing
up was carried out in the halfway between the completion of addition of all the hidden
layers and the end of training. Preconditioned affine components are used to maintain
the stability of the training. The final model is obtained by combining the models from
last 10 iterations into a single model. Each input to DNNs uses a temporal context of
9 frames (4 frames on either side).

The size of the input layer depends on the dimension of features used for training
the DNNs. The language model weighting factor and acoustic scaling factor used for
decoding the lattice are optimally determined using the development set to maximize
the recognition accuracy. DNNs training used in this study is similar to the one dis-
cussed in Sect. 2.2 of [51], except that our setup had a single CPU. DNNs are built
using the open-source speech recognition toolkit Kaldi [36].

The baseline PRSs are developed using MFCCs as features. We have developed
AF-based tandem PRSs using the combination of MFCCs and the predicted AFs as
features. The AFs for each AF group are predicted from the spectral features using
the FFNNs, as per the procedure mentioned in Sect. 4.2.2.3. In tandem approach, the
FFNNs are first trained to perform the classification at frame level, and then the frame-
level posterior probability estimates of the FFNNs are used as features for developing
PRSs. The predicted AFs of a particular AF group are augmented with the MFCCs
to develop AF-based tandem PRS for that AF group [16]. Separate tandem PRSs are
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developed using the AFs predicted from each AF group. This leads to development of
five different AF-based tandem PRSs. Figure 4 shows the block diagram of manner
AF-based tandem PRS. The manner AF-predictor is used for predicting the manner
AFs, as shown in Fig. 1. The combination of predictedmanner AFs andMFCCs is used
as features to develop HMM/DNN-based tandem PRS in the second-stage. Similarly,
five different tandemPRSs are developed using the predictedAFs from eachAF group.

Figure 5 illustrates the manner AF-based tandem PRS for ten frames using posteri-
ogram representation. The MFCCs are augmented with the posteriogram distribution
of the manner AFs obtained in first stage (shown in Fig. 2). The combination of the
MFCCs and the manner AFs is then fed to the manner AF-based tandem PRS for
decoding the phones in the input speech utterance.

The phone recognition accuracy is determined as per the procedure mentioned in
Sect. 4.2.3. Table 7 shows the phone recognition accuracies of the baseline and the
tandem PRSs for Bengali and TIMIT datasets. First column shows different types
of features used in the development of PRSs. Second and third columns indicate
the recognition accuracies of Bengali PRSs, while the last two columns show the
performance of TIMIT PRSs. It can be observed that all tandem PRSs have higher
recognition accuracies compared to their respective baseline PRSs. The combination
of MFCCs and the Height AFs has shown highest recognition accuracy for the
Bengali dataset, while the combination of MFCCs and the Manner (or Roundness)
AFs has shown the highest recognition accuracy for the TIMIT dataset. It is observed
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Table 7 Phone recognition accuracy of baseline and AF-based tandem PRSs

Features Recognition accuracy (%)

Bengali TIMIT

HMMs DNNs HMMs DNNs

MFCCs 45.48 50.20 58.45 69.10

MFCCs + place AFs 48.89 51.40 60.93 70.00

MFCCs + manner AFs 47.74 50.60 61.43 69.70

MFCCs + roundness AFs 47.28 51.30 60.75 70.00

MFCCs + frontness AFs 46.59 50.60 61.11 69.80

MFCCs + height AFs 48.60 51.80 61.58 69.60

that the classification accuracy of the aspirated plosives is decreased in all the five AF-
based tandem PRSs, whereas the classification accuracy of most of the unaspirated
plosives, fricatives and approximants is increased in all the AF-based tandem PRSs
compared to baseline system. The classification accuracy of silence has improved in
all the AF-based tanden PRSs compared to the baseline system.

The analysis of each AF-based tandem PRS is as follows:
Place AF-based tandem PRS The classification accuracy of the nasals and aspi-

rated plosives is decreased, while the classification accuracy of all other subgroups is
improved. Approximants and nasals have shown the highest and the lowest improve-
ments, respectively.

Manner AF-based tandem PRS The classification accuracy of labiodentals is
decreased, while the classification accuracy of all other subgroups is improved. Vowel
and glottal subgroups have shown the highest improvement compared to the baseline
PRSs.

Roundness AF-based tandem PRS The classification accuracy of both rounded
and unrounded vowels is improved. The improvement in the classification accuracy
of rounded vowels is much higher compared to that of the unrounded vowels.

Frontness AF-based tandem PRS The classification accuracy of all the vowels is
improved. The back vowels have shown the highest improvement, and the mid vowels
have shown least improvement in their classification accuracies.

Height AF-based tandem PRS The classification accuracy of all the vowels is
improved. The mid-low subgroup has shown the least improvement, and the mid-high
subgroup has shown the highest improvement in its classification accuracy.

6 Hybrid Phone Recognition Systems Using Articulatory Features

Hybrid PRSs are developed by the combining AF-based tandem PRSs using the
weighted combination scheme. The performance of the hybrid PRSs is compared
with the phone-posterior-based tandem PRSs. The following subsections describe the
details of the development and the performance evaluation of the AF-based hybrid
PRSs.
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6.1 Development of Hybrid Phone Recognition Systems Using Articulatory
Features

The hybrid PRSs are developed by combining the AF-based tandem PRSs using
weighted combination scheme. The following combinations of AF-based tandem
PRSs are used in development of hybrid PRSs : (i) place and manner (ii) roundness,
frontness, and height (iii) place, manner, roundness, frontness, and height (i.e., all-AF-
based tandem PRSs). As the place and manner AFs mainly capture the characteristics
of consonants, the hybrid PRSs developed using place and manner AF-based tandem
PRSs are called Consonant-AF-based hybrid PRSs. The hybrid PRSs developed using
roundness, frontness and height AF-based tandem PRSs are called Vowel-AF-based
hybrid PRSs, as the roundness, frontness and height AFs mainly capture the charac-
teristics of the vowels. The hybrid PRSs developed using the combination of all the
five AF-based tandem PRSs are called All-AF-based hybrid PRSs.

Figure 6 shows the block diagram of development of hybrid PRSs. MFCCs are
combined with the predicted AFs of each AF group to develop tandem PRSs for
each AF group. The Vowel-AF-based, Consonant-AF-based and All-AF-based hybrid
PRSs are developed by combining the scores from the tandem PRSs using weighted
combination approach. The details of the weighted combination scheme are discussed
in Sect. 6.2.

The phone-posterior-based tandem PRSs are developed to compare the perfor-
mance of the AF-based hybrid PRSs with the phone-posterior-based tandem PRSs. To
develop phone-posterior based tandem PRSs, the FFNNs are first trained to perform
the classification at frame level, and then the frame-level phone posterior estimates of
the FFNNs are used as features for developing PRSs. The FFNNs are trained as per
the procedure mentioned in Sect. 4.2.2. The MFCCs are fed at the input layer, and
information about the phone label is fed at the output layer. We have used a temporal
context of 3 frames, which results in a input layer of 117 units. The hidden layer with
585 hidden units is used. The size of output layer is equal to the number of phones
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Height AFs

AF = Articulatory Feature
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considered for training FFNNs. The number of epochs carried out for TIMIT and Ben-
gali is 8 and 13, respectively. The MFCCs are augmented with the phone posteriors
derived from the FFNNs to develop phone-posterior-based tandem PRSs using HMMs
or DNNs.

6.2 Fusion of Posterior Probabilities Using Weighted Combination Scheme

The posterior probabilities from different AF groups are combined using weighted
combination scheme [41]. Inweighted combination scheme, the posterior probabilities
from different PRSs are combined at frame level. We have explored sum rule, product
rule, min rule, and max rule for fusion of posterior probabilities frommultiple streams
[22]. It is found that the performance using sum rule is better than all others. Hence,
we have considered sum rule for fusion of posterior probabilities in our study. The
combined posterior probability P(j) of each frame with N phone classes, in the test
utterance is given by Eq. 4.

For each frame, P( j) =
k∑

i=1

wi ∗ pi ( j),

where, j varies from 1 to N .

N = Total number of phone classes.

j = indicates specific phone class.

k = Number of PRSs considered f or combining.

i = indicates specific PRS. (4)

The value of a weighting factor wi (where i stands for i th PRS) is determined by
varying from 0 to 1 with a step size of 0.1. This leads to eleven possible values for a
weighting factor. They are as follows: {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
Each PRS is associated with a weighting factor. If there are n PRSs to be combined
then there will be n weighting factors. The collection of all the n weighting factors
is called a weighting factors set. The phone recognition accuracy is determined for
all the possible set of weighting factors using development set. The set of empirically
determined best performing weights on the development set are considered as the
optimal weighting factors set.

Table 8 shows the optimal weighting factors for different hybrid PRSs obtained
using development set. First column lists different types of hybrid PRSs. Second to
sixth columns indicate the weighting factors used for Bengali dataset, while the last
five columns indicate the weighting factors used for TIMIT dataset. The hyphen (–)
symbol in Table 8 indicates that the particularweighting factor is not applicable for cor-
responding hybrid PRS. The weighting factors w1, w2, w3, w4 and w5 correspond to
place, manner, roundness, frontness and height AF-based tandem PRSs, respectively.
Among all the combinations of weighting factors considered, the weighting factors
listed in Table 8 have shown the highest recognition accuracies on the development set.
We have also combined the phone-posterior-based tandem PRS and the All-AF-based
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Table 8 Optimal weighting factors used for developing hybrid PRSs determined using development set

HPRS Bengali TIMIT

w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

Consonant-AF-based 0.6 0.4 – – – 0.5 0.5 – – –

Vowel-AF-based – – 0.4 0.4 0.2 – – 0.4 0.2 0.4

All-AF-based 0.3 0.1 0.2 0.2 0.2 0.3 0.2 0.1 0.2 0.2

PP-and-all-AF-based 0.2 0.8 – – – 0.3 0.7 – – –

Table 9 Phone recognition accuracy (%) of phone-posterior-based andAF-based hybrid phone recognition
systems using Bengali and TIMIT datasets

PRSs Recognition accuracy (%)

Bengali TIMIT

HMMs DNNs HMMs DNNs

Phone-posterior-based tandem PRS 48.97 51.3 62.59 69.7

Consonant-AF-based hybrid PRS 49.37 54.2 61.82 74.2

Vowel-AF-based hybrid PRS 50.96 54.9 63.03 73.8

All-AF-based hybrid PRS 52.17 55.2 63.44 74.4

PP-and-all-AF-based hybrid PRS 52.54 55.8 64.76 74.7

hybrid PRS to develop PP-and-All-AF-based hybrid PRS. In case of PP-and-All-AF-
based hybrid PRS, w1 corresponds to the weighting factor of phone-posterior-based
tandem PRS, while w2 corresponds to the weighting factor of All-AF-based hybrid
PRS.

6.3 Performance Evaluation of Hybrid Phone Recognition Systems

The phone recognition accuracies of the phone-posterior-based and AF-based hybrid
PRSs are determined as per the procedure mentioned in Sect. 4.2.3. Table 9 shows
the phone recognition accuracies of the phone-posterior-based and AF-based hybrid
PRSs. First column lists different types of hybridPRSs. Second and third columns show
the recognition accuracies obtained on Bengali dataset, while the last two columns
tabulate the recognition accuracies obtained on TIMIT dataset. It can be observed that
the performance of hybrid PRSs is higher than any of the AF-based tandem PRSs
(see Tables 6, 8). The improvement in the recognition accuracies of the hybrid PRSs
is consistent, i.e., the recognition accuracy of All-AF-based Hybrid PRSs is higher
than both Consonant-AF-based and Vowel-AF-based hybrid PRSs. The All-AF-based
hybrid PRSs have higher recognition accuracy compared to phone-posterior-based
tandem PRSs. The PP-and-All-AF-based hybrid PRSs developed using DNNs have
shown best recognition accuracy on both Bengali and TIMIT datasets. The recognition
accuracyof best performing systems is 55.8 and74.7%forBengali andTIMITdatasets,
respectively.
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In all hybrid PRSs, most of the vowels and unaspirated plosives have shown
improvement in their classification accuracies, while most of the semivowels, nasals,
fricatives and aspirated plosives have shown reduction in their classification accura-
cies. The reduction in the classification accuracy of the aspirated plosives is mostly
due to their misclassification into corresponding unsapirated plosives. The classifica-
tion accuracies of the vowels are higher in Vowel-AF-based hybrid PRSs compared to
Consonant-AF-based hybrid PRSs, while the classification accuracies of the conso-
nants are higher in theConsonant-AF-basedhybridPRSs compared toVowelAF-based
hybrid PRSs. Silence has shown improvement in all hybrid PRSs. All-AF-based hybrid
PRSs have the classification accuracy of vowels between the classification accuracy of
Vowel-AF-based and Consonant-AF-based hybrid PRSs. All-AF-based hybrid PRSs
have higher classification accuracy of consonants compared to the Vowel-AF-based
and Consonant-AF-based hybrid PRSs. This is mainly due to the improvement in
the classification accuracy of the unaspirated plosives. The classification accuracy
of semivowels is same in both Consonant-AF-based and All-AF-based hybrid PRSs.
PP-and-All-AF-based hybrid PRSs have shown the highest recognition accuracy in
all the subgroups. The improvement in the recognition accuracy of consonants is
much higher in PP-and-All-AF-based hybrid PRSs compared to improvements of all
other subgroups. The recognition accuracy of the semivowels in PP-and-All-AF-based
hybrid PRS is almost same as that of the baseline PRS.

7 Discussion

In this section, we discuss the performance of the proposed PRSs developed using AFs
and compare the results with other state-of-the-art AF-based PRSs. In this work, the
proposed PRSs are evaluated using Bengali and TIMIT speech databases. The Bengali
speech database was developed recently at IIT Kharagpur [44], and hence we are
unable to provide the comparative results of state-of-the-art methods on this database.
Even though there exists several works on using AFs to improve the performance
of English PRSs, but there are certain difficulties involved in the comparison of the
results. Few of these difficulties are listed: (i) Different studies have used different
speech corpora with different amount of data (ii) The phones used in development of
PRSs are not uniform across all theworks, (iii) The use of language related information
(i.e., language model) is not consistent across all the works. In the midst of all these
difficulties, we have compared the performance of the proposed PRSs with few related
works and tried to analyze the results. In order to have consistency in comparison across
different works, we have listed all the results in terms of the recognition accuracies.
We have expressed all the word error rates and the phone error rates in terms of phone
recognition accuracies.

In 2001, Kirchhoff et al. have used AFs for conversational speech recognition.
They have considered six AF groups—voicing, place, manner, frontness, roundness.
The combination of MFCCs and AFs has shown a best recognition accuracy of 72%
[22]. Compared to the above work, the performance of the proposed DNN-based PRS
(74.7% see Table 9) is much better.
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In 2007, Frankel et al. have used AFs for recognition of telephone speech from
Fisher and Switchboard corpora. Set of Multilayer Perceptrons (MLPs) are used for
predicting the AFs for place, degree (or manner), fricative, nasality, rounding, glottal
state, vowel, height, and frontness groups. The combination of Perceptual Linear
PredictionCoefficients (PLPCs) andAFshave shown thebest recognition accuracies of
40.3 and 37.7% for Fisher and Switchboard corpora, respectively [11]. As an extension
of [11], Cetin et al. have shown that use of factored observationmodelwill significantly
improve the recognition accuracies of AF-based tandem PRSs. The best results have
shown a recognition accuracy of 40.9% (monophone) on Fisher corpora [5]. Although
the results of the current work cannot be compared with [11] and [5], due to the
difference in the speech corpora used, we feel that the use proposedDNN-based hybrid
PRSs on Fisher and Switchboard corpora might give better or at least comparable
results with that of [11] and [5].

In 2009, Siniscalchi et al. have used the AFs to improve the performance of the
HMM-based phone recognizer. A bank of speech event detectors are used to determine
the AFs, through a lattice rescoringmethod. The standard training and testing sets with
a set of 45 phones are used. The best obtained result for the context-independent phone
recognizer with no LM has a recognition accuracy of 64.84% [43]. For comparing the
results of above-mentioned system in [43], we have evaluated the proposed DNN-
based PRS with 45 phones, and the recognition accuracy is observed to be 70.20%,
which is better compared to above-mentioned system [43].

In 2011, Rasipuram et al. have used theAFs to improve the performance of the PRSs
using TIMIT dataset [40]. The AFs are estimated by training two stages of the MLPs.
First stage takes PLPCs coefficients as the input and produces AFs as the output. The
AFs obtained from the first stage are enhanced by training a secondMLP in the second-
stage. These enhanced AFs along with phone posteriors are used as features to train
PRS. The inter-feature dependencies between different AF groups are captured using
multitask learning approach. The best recognition accuracy reported in [40] is 74.0%,
which is less than the performance of the proposed DNN-based hybrid PRS (74.70%).

In 2011, Ghosh et al. have used TVs to improve the phone recognition accuracy.
They have considered five broad phone classes, namely vowel, fricative, stops, nasal,
and silence for recognition. The best obtained frame-level phone recognition accuracy
on development set is 81.28%. The results of current work cannot be directly compared
with that of [14], due to the difference in the number of phones and amount of data used.
The current work uses 48 phones (for training), while the number of phones considered
in [14] is 5 phones. The amount of electromagnetic articulography data considered in
[14] is very limited, compared to the TIMIT dataset considered in this study. However,
the five phones considered in [14] are quite analogous to themanner AF-predictor con-
sidered in thiswork. FromTable 6, the frame-level prediction accuracy of FFNN-based
manner AF-predictor using development set is 86.72%, which is better than 81.28%.

In 2014, Mitra et al. have used TVs to improve the performance of continuous
speech recognition systems [29]. DNNs are used for estimating eight TVs. DNNs
are trained using the TVs and synthetic speech generated for the words of CMU
dictionary using Haskins Laboratories Task Dynamic model (TADA). These DNNs
are used for predicting the TVs for training and testing set of Aurora-4, the noisy Wall
Street Journal (WSJ0) corpus. Aurora-4 contained approximately 15 h duration and
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330 test utterances. It was observed that the use of articulatory information in addition
to standard cepstral features provides sufficient complementary information that helps
to reduce the word error rates. The highest recognition accuracies are obtained using
the combination of MFCCs and 30 dimensional principal component analysis-based
modulated TVs. The best recognition accuracies obtained for clean speech are 89.1%
and 85.4% for matched and mismatched channel conditions, respectively [29]. It is
clear that the proposed system has lower recognition accuracy (74.70%) compared to
89.1% reported in [29]. However, it has to be noted that setup in [29] requires us to
generate TVs and synthetic speech using TADA for training DNNs to estimate TVs.
We need to have a special dataset such as CMU dictionary to accomplish this. But, the
proposed setup does not require any special dataset or synthetic speech to predict the
AFs. Bi-gram language model with 15 h of data is used in [29], which is better a setup
compared to current study. In our future work, we would like to explore combination
of TVs and MFCCs described [29] on our database and analyze the performance
improvements.

8 Summary and Conclusion

In this work, AFs are explored for developing the phone recognition systems using
HMMs and DNNs. The proposed PRSs are evaluated on Bengali and TIMIT speech
corpora. The use of articulatory features in addition to the spectral features leads to
an improvement in the performance of PRSs. The articulatory features are predicted
from the spectral features using FFNNs. Five different AF-based tandem PRSs are
developed using the AFs predicted from each AF group. Hybrid PRSs are developed
by combining the AF-based tandem PRSs using the weighted combination approach.
The All-AF-based hybrid PRSs outperform the conventional phone-posterior-based
tandem PRSs. The All-AF-based hybrid PRSs have higher recognition accuracy com-
pared to the Consonant-AF-based and Vowel-AF-based hybrid PRSs. DNNs have
outperformed HMMs in all the cases. The PP-and-All-AF-based hybrid PRSs devel-
oped using DNNs have shown best recognition accuracy on both Bengali and TIMIT
datasets. The recognition accuracy of best performing systems is 55.8% and 74.7%
for Bengali and TIMIT datasets, respectively.
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