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Abstract In this paper, we investigate the problem of exponential stability and pas-
sivity analysis of a class of switched systems with interval time-varying delays
and nonlinear perturbations. By constructing an improved Lyapunov–Krasovskii
functional combining with novel refined Jensen-based inequalities, some improved
sufficient conditions for exponential stability are proposed for a class of switching
signals with average dwell time. Moreover, a new sufficient condition for passivity
analysis of switched continuous-time systems with an interval time-varying delay is
also derived. These conditions are delay dependent and are given in the form of lin-
ear matrix inequalities, which therefore can be efficiently solved by existing convex
algorithms. Lastly, four examples are provided to demonstrate the effectiveness of our
results.

Keywords Switched systems · Exponential stability · Passivity analysis · Lyapunov–
Krasovskii functional · Linear matrix inequalities

1 Introduction

During the last decades, switched systems have attracted a lot of research attentions due
to the increase in their practical applications (see [23,44] and the references therein).
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As well known, the existence of time delays in systems may cause instability and
performance degradation of systems. Therefore, many problems concerning delayed
switched systemshavebeen investigated in the literature (see [2,4,10,20,24,26,27,38–
41,46,47,51,60,61,63,65] and the references therein). For instance, based on the
switched Lyapunov functional approach, the authors in [40] investigated the problems
of disturbance tolerance and rejection of discrete switched systems with time-varying
delay and saturating actuator. Problem of L1 observer design for positive switched lin-
ear delay-free systems with observable and unobservable subsystems was considered
in [20]. Recently, in [27], the authors have studied the problem of finite-time stability
of discrete switched singular positive systems.

On the other hand, as noted by many scholars, nonlinear perturbations are always
unavoidable in practical systems. Therefore, the stability analysis of delayed switched
systems with nonlinear perturbations has been addressed by many authors. For exam-
ple, in [24–26,38], by constructing a common Lyapunov–Krasovskii functionals
combining with Jensen integral inequality [8], the authors gave some sufficient condi-
tions for exponential stability of switched nonlinear systems with time-varying delay.
However, most switched systems do not possess a common Lyapunov–Krasovskii
functionals, yet they still may be stable under certain switching laws. Therefore,
average dwell time technique is an effective tool for choosing such switching laws
[59]. In [47], the average dwell time technique was employed to consider the expo-
nential stability and L2-gain for a switched delay system; however, the results only
apply for the slow time-varying case (the derivative of the delay is limited to be
less than one). To overcome these disadvantages, based on piecewise descriptor-type
Lyapunov–Krasovskii functional and the average dwell time approach, the authors
in [11] investigated the problem of exponential stability of switched neutral systems
with nonlinear perturbations where the derivative of the discrete delay is larger than
one. Noting that, in the majority of the papers which consider the stability analysis
of delayed switched nonlinear systems, the delay is assumed to be differential and its
derivative is bounded [10,11,24–26,38,39,61]. Therefore, it is interesting and worthy
to investigate the problem of exponential stability of switched nonlinear systems in
the case where the time-varying delay function is nondifferentiable.

The problem of passivity and passification of time-delay systems first was consid-
ered in [5,30,35]. In recent years, the problem has attracted a lot of attentions and
many interesting results have been reported in the literature. In [1,12,15,16,29,34,
48,50,56,57,62,64], passivity of delayed neural networks systems was studied. The
problem of passivity and passification of fuzzy systems with time delays was consid-
ered in [17,49,52]. Some sufficient criteria on passivity of delayed singular systems
or singular Markovian systems were proposed in [18,53–55]. Based on using the
Lyapunov–Krasovskii stability theory and linear matrix inequality approach, several
H∞ control approacheswere presented for networked cascade control systems [32,33].
For linear switched systems without time delay, some interesting results were reported
for the problem of passivity and passification of switched discrete-time systems [19] or
switched continuous-time systems [6,66,67]. By using average dwell time approach,
free-weighting matrix method and Jensen’s integral inequality, problems of passiv-
ity and passification for a class of uncertain switched systems subject to stochastic
disturbance and time-varying delay were considered in [21]. Recently, some delay-
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dependent stochastic passivity conditions for switched recurrent neural networks have
been derived in terms ofLMIs in [22] by using themultipleLyapunov functionsmethod
combiningwith average dwell time approach. Themethod used in [21,22] only applies
for the slow time-varying case or the fast time-varying case where the lower bound of
time-varying delay is zero. However, as noted by many researchers, the time-varying
delay may vary within an interval where the lower bound is not restricted to being zero
[3] and can be modeled in systems having network-induced communication delays
[13]. In addition, the time derivatives of the time-varying delay can be unknown or
undefined. Moreover, it has been shown that the conservativeness of the celebrated
Jensen’s inequality can be reduced by employing less restrictive inequalities, such as
Wirtinger-based integral inequality [42] and refined Jensen-based inequalities [9,37].
However, the application of those inequalities to solve the problem of passivity analy-
sis of delayed switched nonlinear systems has been fairly overlooked. Therefore, it is
important to consider the problem of passivity analysis of switched systems with non-
differentiable interval time-varying delays and nonlinear perturbations by employing
some less restrictive inequalities in [9,37].

Motivated by the above discussions, in this paper, the problems of exponential sta-
bility and passivity analysis of switched nonlinear systems with interval time-varying
delay are investigated. Fourmain features of our study are highlighted in the following:
(1) By using novel refined Jensen-based inequalities proposed in [9,37] combining
with the reciprocally convex technique [36] when estimating the derivative of the
Lyapunov–Krasovskii functional and the average dwell time approach, new exponen-
tial stability criterion will be derived in Theorem 1 within the framework of linear
matrix inequalities. Note that, in our work, the time-varying delay is not necessarily
differentiable. Therefore, our derived result can be applied to switched systems with
fast interval time-varying delays; (2) as noted by many authors in the literature [14], in
stability problems of switched systems with time-varying delay, to derive less conser-
vative criteria guaranteeing the stability of the switched systems is a key purpose. The
maximal allowable upper bound (MAUB) of time delay is one of the important indexes
to check conservatism of the proposed condition. Corollary 1 provides an improved
result on the exponential stability of delayed switched nonlinear systems for the case
where the time derivative of the delay is known, i.e., the rate of change of the delay
satisfies an upper bound condition; (3) based on the result of Theorem 1, the problem
of passivity analysis of switched systems with interval time-varying delay and nonlin-
ear perturbations will be suggested in Theorem 2; (4) the applicability of the derived
analytical results is exemplified by several illustrative examples in comparison with
existing results.

Notation In this paper, we denote by R
n and R

n×m , respectively, the n-dimensional
spacewith vector norm‖.‖ and the space ofn×mmatrices. Formatrices A, B ∈ R

n×m ,

diag{A, B} denotes the block matrices

[
A 0
0 B

]
. A matrix P is symmetric positive

definite, write P > 0, if PT = P and xT Px > 0 for all x ∈ R
n, x �= 0. For a

symmetric positive definite matrix Q, we denote maximal eigenvalue by λmax(Q) and
minimal eigenvalue by λmin(Q). We use S+

n to denote the set of symmetric positive
definite matrices in Rn×n .
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2 Preliminaries

Consider the following switched systems with interval time-varying delay and non-
linear perturbations
⎧⎨
⎩
ẋ(t) = Aσ(t)x(t) + Dσ(t)x(t − τ(t)) + Eσ(t)ω(t) + fσ(t)(t, x(t), x(t − τ(t)), ω(t)),
xt0 (s) = x(t0 + s) = φ(s), s ∈ [−τ2, 0],
z(t) = Mσ(t)x(t) +Uσ(t)x(t − τ(t)) + Wσ(t)ω(t),

(1)

where x(t) ∈ R
n is the state vector, ω(t) ∈ R

m is the external input of the switched
system, z(t) ∈ R

m is the output of the system, σ(t) : [0,∞) → N := {1, 2, . . . , N }
is the switching signal, Ai , Di , Ei , Mi ,Ui ,Wi , i = 1, . . . , N , are constant known
matrices, φ(s) is a differentiable vector-valued initial function on [−τ2, 0], τ2 > 0.
The nonlinear perturbations fi (.), i = 1, . . . , N , satisfy fi (t, 0, 0, 0) = 0, and

f Ti (t, x(t), x(t − τ(t)), ω(t)) fi (t, x(t), x(t − τ(t)), ω(t))

≤ xT (t)LT
i Li x(t) + xT (t − τ(t))GT

i Gi x(t − τ(t)) + ωT (t)HT
i Hiω(t), (2)

where Li ,Gi , Hi , i = 1, . . . , N , are known constant matrices. Noting that the
assumption on the nonlinear perturbations is widely applicable in practice and con-
sidered by many researchers [4,11,24–26,65].

In this paper, we assume that the delay τ(t) is time-varying and satisfies

0 ≤ τ1 ≤ τ(t) ≤ τ2, (3)

where τ1, τ2 are known constants involving the lower bound and the upper bound of
the time-varying delay function.

Corresponding to the switching signal σ(t), we have the switching sequence

{xt0; (i0, t0), . . . , (ik, tk): ik ∈ N , k = 0, 1, . . .},

which means that the ik th subsystem is activated when t ∈ [tk, tk+1).

To get inside, let us introduce the following definitions and auxiliary lemmas, which
are essential in order to derive our main results in this paper.

Definition 1 For any T2 > T1 ≥ 0, let Nσ (T1, T2) denote the number of switching
of σ(t) over (T1, T2). If Nσ (T1, T2) ≤ N0 + T2−T1

Ta
holds for Ta > 0, N0 ≥ 0, then

Ta is called the average dwell time. As commonly used in the literature, we choose
N0 = 0.

Definition 2 Switched system (1), with ω(t) = 0, is said to be exponentially stable
under σ(t) if the solution x(t, φ) of the systems (1) satisfies

‖x(t, φ)‖ ≤ βe−α(t−t0)‖xt0‖, ∀t ≥ t0

for constants β ≥ 1, α > 0.
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Definition 3 Switched system (1) is said to be passive if there exists a scalar γ ≥ 0
such that, under zero initial condition, the following inequality holds for all t f ≥ t0

2
∫ t f

t0
zT (s)ω(s)ds ≥ −γ

∫ t f

t0
ωT (s)ω(s)ds. (4)

The following refined Jensen-based inequalities, which are theoretically shown to
encompass the Jensen inequality and Wirtinger-based inequality, were proposed in
[9,37].

Lemma 1 [9,37] For a given matrix R ∈ S
+
n and a function ϕ : [a, b] → R

n whose
derivative ϕ̇ ∈ PC([a, b],Rn), the following inequality holds

∫ b

a
ϕ̇T (s)Rϕ̇(s)ds ≥ 1

b − a
χ̂T Rχ̂ , (5)

where R = diag{R, 3R, 5R}, χ̂ = [
χT
1 χT

2 χT
3

]T
, and

χ1 = ϕ(b) − ϕ(a), χ2 = ϕ(b) + ϕ(a) − 2

b − a

∫ b

a
ϕ(s)ds

χ3 = ϕ(b) − ϕ(a) + 6

b − a

∫ b

a
ϕ(s)ds − 12

(b − a)2

∫ b

a

∫ b

s
ϕ(u)duds.

The reciprocally convex combination inequality provided in [36] is used in this
paper. This inequality has been improved in [43] and is stated in Lemma 2.

Lemma 2 [43] For given symmetric positive matrices R1 ∈ R
n×n, R2 ∈ R

m×m, if
there exists a matrix X ∈ R

n×m such that

[
R1 X
∗ R2

]
≥ 0

then the inequality

[
1
γ
R1 0

0 1
1−γ

R2

]
≥

[
R1 X
∗ R2

]

holds for all γ ∈ (0, 1).

3 Exponential Stability Analysis

For the simplicity of matrix representation, ei (i = 1, . . . , 11) ∈ R
n×11n is defined as

a block entry matrix. For example, e4 = [0 0 0 I 0 0 0 0 0 0 0], A =
Ae1 + De3 + e11, augmented vector χ0(t) = [χT

01(t) χT
02(t) χT

03(t)]T , where
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χ01(t) =

⎡
⎢⎢⎣

x(t)
x(t − τ1)

x(t − τ(t))
x(t − τ2)

⎤
⎥⎥⎦ , χ02(t) =

⎡
⎢⎣

1
τ1

∫ t
t−τ1

x(s)ds
1

τ(t)−τ1

∫ t−τ1
t−τ(t) x(s)ds

1
τ2−τ(t)

∫ t−τ(t)
t−τ2

x(s)ds

⎤
⎥⎦ ,

χ03(t) =

⎡
⎢⎢⎢⎢⎣

2
τ 21

∫ t
t−τ1

∫ t
s x(u)duds

2
(τ (t)−τ1)2

∫ t−τ1
t−τ(t)

∫ t−τ1
s x(u)duds

2
(τ2−τ(t))2

∫ t−τ(t)
t−τ2

∫ t−τ(t)
s x(u)duds

f (.)

⎤
⎥⎥⎥⎥⎦ ,

and matrices

G1(τ ) =
[
eT1 τ1e

T
5 (τ − τ1)e

T
6 + (τ2 − τ)eT7 0.5τ21 e

T
8

]T
,

G2 =
[
A T (e1 − e2)

T (e2 − e4)
T τ1(e1 − e5)

T
]T

,

G3 =
[
eT1 eT2 eT5 eT8

]T
, G4 =

[
eT2 eT3 eT6 eT9

]T
, G5 =

[
eT3 eT4 eT7 eT10

]T
,

and

F =
⎡
⎣In −In 0 0
In In −2In 0
In −In 6In −6In

⎤
⎦ ,

S = diag
{
e−ατ1 S, 3e−ατ1 S, 5e−ατ1 S

}
, Z = diag

{
e−ατ2 Z , 3e−ατ2 Z , 5e−ατ2 Z

}
.

We first consider the nonswitched delay system:

ẋ(t) = Ax(t) + Dx(t − τ(t)) + f (t, x(t), x(t − τ(t))),

xt0(s) = x(t0 + s), s ∈ [−τ2, 0], (6)

where the nonlinear perturbation f (t, x(t), x(t − τ(t))) satisfies the following condi-
tion:

f T (t, x(t), x(t − τ(t))) f (t, x(t), x(t − τ(t)))

≤ xT (t)LT Lx(t) + xT (t − τ(t))GTGx(t − τ(t)), (7)

with L ,G are known matrices.
Choose the Lyapunov–Krasovskii candidate of the form

V (xt ) = ηT (t)Pη(t) +
∫ t

t−τ1

eα(s−t)xT (s)Qx(s)ds +
∫ t−τ1

t−τ2

eα(s−t)xT (s)Rx(s)ds

+ τ1

∫ 0

−τ1

∫ t

t+s
eα(s−t) ẋ T (u)Sẋ(u)duds

+ τ12

∫ −τ1

−τ2

∫ t

t+s
eα(s−t) ẋ T (u)Z ẋ(u)duds, (8)
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where P ∈ S
+
4n , Q, R, S, Z ∈ S

+
n , and

τ12 = τ2 − τ1,

η(t) =
[
xT (t)

∫ t

t−τ1

xT (s)ds
∫ t−τ1

t−τ2

xT (s)ds
∫ t

t−τ1

∫ t

s
xT (u)duds

]T

.

Then, we have the following lemma.

Lemma 3 Given α > 0. Assume that there exist matrices P ∈ S
+
4n, Q, R, S, Z ∈ S

+
n ,

X ∈ R
3n×3n, and a scalar ε > 0 such that the following LMIs hold for τ ∈ {τ1, τ2}

� =
[
Z X
XT Z

]
≥ 0, (9a)

�(τ) = �1(τ ) − �2 − �T�� < 0. (9b)

Then, along the trajectory of system (6), we have

V (xt ) ≤ e−α(t−t0)V (xt0), ∀t ≥ t0, (10)

where

�1(τ ) = G T
1 (τ )PG2 + G T

2 PG1(τ ) + αG T
1 (τ )PG1(τ ) + eT1 (Q + εLT L)e1

+ eT2
(
e−ατ1R − e−ατ1Q

)
e2 − e−ατ2eT4 Re4 + εeT3 G

TGe3

− εeT11e11 + A T
(
τ 21 S + τ 212Z

)
A ,

�2 = G T
3 FT SFG3, � =

[
FG4
FG5

]
.

Proof With ε > 0, from (7) we have

− ε f T (.) f (.) + εxT (t)LT Lx(t) + εxT (t − τ(t))GTGx(t − τ(t)) ≥ 0. (11)

Taking derivative of V (xt ) in t and using (11), we obtain

V̇ (xt ) + αV (xt ) ≤ χT
0 (t)�1(τ )χ0(t) − τ1e

−ατ1

∫ t

t−τ1

ẋ T (s)Sẋ(s)ds

−τ12e
−ατ2

∫ t−τ1

t−τ2

ẋ T (s)Z ẋ(s)ds. (12)

By applying inequality (5) in Lemma 1, we obtain

− τ1e
−ατ1

∫ t

t−τ1

ẋ T (s)Sẋ(s)ds ≤ −χT
0 (t)G T

3 FT SFG3χ0(t) = −χT
0 (t)�2χ0(t).

(13)
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Next, by splitting

−τ12e
−ατ2

∫ t−τ1

t−τ2

ẋ T (s)Z ẋ(s)ds

= −τ12e
−ατ2

∫ t−τ(t)

t−τ2

ẋ T (s)Z ẋ(s)ds − τ12e
−ατ2

∫ t−τ1

t−τ(t)
ẋ T (s)Z ẋ(s)ds

the second integral term in (12) can be bounded by (5) and Lemma 2 as follows

− τ12e
−ατ2

∫ t−τ1

t−τ2

ẋ T (s)Z ẋ(s)ds

≤ − τ12

τ(t) − τ1
χT
0 (t)G T

4 FT Z FG4χ0(t) − τ12

τ2 − τ(t)
χT
0 (t)G T

5 FT Z FG5χ0(t)

= −χT
0 (t)�T

[
τ12

τ(t)−τ1
Z 0

0 τ12
τ2−τ(t) Z

]
�χ0(t)

≤ −χT
0 (t)�T

[
Z X
XT Z

]
�χ0(t)

= −χT
0 (t)�T��χ0(t). (14)

Therefore, from (12) to (14), we have

V̇ (xt ) + αV (xt ) ≤ χT
0 (t)�(τ)χ0(t). (15)

Since �(τ) is an affine function in τ , �(τ) < 0 for all τ ∈ [τ1, τ2] if and only if
�(τ1) < 0 and �(τ2) < 0. Therefore, if (9b) holds for τ = τ1 and τ = τ2 then

V̇ (xt ) + αV (xt ) ≤ 0, ∀t ≥ t0. (16)

Integrating this inequality gives (10). ��
Consider the following switched system with interval time-varying delay and non-

linear perturbations.{
ẋ(t) = Aσ(t)x(t) + Dσ(t)x(t − τ(t)) + fσ(t)(t, x(t), x(t − τ(t))),
xt0 = x(t0 + s) = φ(s), s ∈ [−τ2, 0]. (17)

The following theorem provides an exponential stability condition for the case where
the time derivative of the delay is unknown or the time delay is not differentiable.

Theorem 1 Given α > 0. Assume that there exist matrices Pi =⎡
⎢⎢⎣
Pi
11 Pi

12 Pi
13 Pi

14
Pi
21 Pi

22 Pi
23 Pi

24
Pi
31 Pi

32 Pi
33 Pi

34
Pi
41 Pi

42 Pi
43 Pi

44

⎤
⎥⎥⎦ ∈ S

+
4n, Qi , Ri , Si , Zi ∈ S

+
n , Xi ∈ R

3n×3n, (i = 1, . . . , N ),
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and scalars εi > 0, (i = 1, . . . , N ) such that the following LMIs hold for τ ∈ {τ1, τ2}

�i =
[
Zi Xi

XT
i Zi

]
≥ 0, i = 1, . . . , N , (18a)

�i (τ ) = �i
1(τ ) − �i

2 − �T�i� < 0, i = 1, . . . , N . (18b)

Then, system (17) is exponentially stable for any switching signal with average dwell
time satisfying

Ta > T ∗
a = lnμ

α
. (19)

Moreover, an estimate of state decay is given by

‖x(t, φ)‖ ≤
√
b

a
e−λ(t−t0)‖xt0‖, (20)

where μ ≥ 1 satisfies

Pi ≤ μPj , Qi ≤ μQ j , Ri ≤ μR j , Si ≤ μS j , Zi ≤ μZ j , ∀i, j ∈ N ,

(21)

Ai = Ai e1 + Die3 + e11, Si = diag{e−ατ1 Si , 3e
−ατ1 Si , 5e

−ατ1 Si }, i = 1, . . . , N ,

Zi = diag{e−ατ2 Zi , 3e
−ατ2 Zi , 5e

−ατ2 Zi }, i = 1, . . . , N ,

�i
1(τ ) = G T

1 (τ )PiG2 + G T
2 PiG1(τ ) + αG T

1 (τ )PiG1(τ ) + eT1 (Qi + εi L
T
i Li )e1

+ eT2
(
e−ατ1 Ri − e−ατ1Qi

)
e2 − e−ατ2eT4 Ri e4 + εi e

T
3 G

T
i Gi e3

− εi e
T
11e11 + A T

i

(
τ21 Si + τ212Zi

)
Ai , i = 1, . . . , N ,

�i
2 = G T

3 FT Si FG3, i = 1, . . . , N ,

λ = 1

2

(
α − lnμ

Ta

)
, a = min

i∈N
λmin(P

i
11),

b = max
i∈N

λmax(Pi ) + τ1 max
i∈N

λmax(Qi ) + τ12 max
i∈N

λmax(Ri ) + 1

2
max
i∈N

τ31 λmax(Si )

+ 1

2
τ212(τ1 + τ2)max

i∈N
λmax(Zi ).

Proof Define the following piecewise Lyapunov–Krasovskii functional

V (xt ) = Vσ(t)(xt ) = ηT (t)Pσ(t)η(t) +
∫ t

t−τ1

eα(s−t)xT (s)Qσ(t)x(s)ds

+
∫ t−τ1

t−τ2

eα(s−t)xT (s)Rσ(t)x(s)ds + τ1

∫ 0

−τ1

∫ t

t+s
eα(s−t) ẋ T (u)Sσ(t) ẋ(u)duds

+τ12

∫ −τ1

−τ2

∫ t

t+s
eα(s−t) ẋ T (u)Zσ(t) ẋ(u)duds. (22)
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When t ∈ [tk, tk+1), (18a), (18b) and Lemma 3 give

V (xt ) = Vσ(t)(xt ) ≤ e−α(t−tk )Vσ(tk )(xtk ). (23)

Using (21) and (23), at switching instant ti , we have

Vσ(ti )(xti ) ≤ μVσ(t−i )(xt−i
), i = 1, 2, . . . (24)

It follows from (23), (24) and the relation k = Nσ (t0, t) ≤ t−t0
Ta

, we obtain

V (xt ) ≤ e−α(t−tk )μVσ(t−k )(xt−k
) ≤ · · · ≤ e−α(t−t0)μkVσ(t0)(xt0)

≤ e
−

(
α− lnμ

Ta

)
(t−t0)Vσ(t0)(xt0). (25)

By using simple computing, we have

a‖x(t, φ)‖2 ≤ V (xt ), Vσ(t0)(xt0) ≤ b‖xt0‖2. (26)

Combining (25) and (26) leads to

‖x(t, φ)‖2 ≤ 1

a
V (xt ) ≤ b

a
e
−

(
α− lnμ

Ta

)
(t−t0)‖xt0‖2. (27)

Now, it is easy to obtain (20), which completes the proof of this theorem. ��
Remark 1 It should be noted that the problem of stability analysis of delayed switched
nonlinear systems has been considered in the literature [11,24–26,38,65]. However,
the shortcoming of themethod used in theseworks is that the delay function is assumed
to be differential and its derivative is still bounded. Although it was theoretically and
numerically shown that the integral inequalities proposed in [9,37] give tighter lower
bound than the ones based on Jensen’s inequality and its variants [8,45], particular
challenging remains on how to construct a suitable and effective Lyapunov–Krasovskii
function for nonlinear delayed switched systems. By using novel refined Jensen-based
inequalities proposed in [9,37] combining with the reciprocally convex technique [36]
when estimating the derivative of the Lyapunov–Krasovskii functional and the average
dwell time approach, Theorem 1 solves the problem in case where the time derivative
of the delay is unknown or the time delay is not differentiable. Therefore, our result
may be less conservative than existing results [11,24–26,38,65].

When the rate of change of the delay τ(t) satisfies an upper bound condition, that
is τ̇ (t) ≤ δ < 1, where δ is a known constant, the following corollary provides
an improved sufficient condition for exponential stability of switched systems with
interval time-varying delay and nonlinear perturbations (17). Numerical Example 1
in Sect. 5 will be given to demonstrate the improvement of our results over existing
results in the literature.
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Corollary 1 Given α > 0. Assume that there exist matrices Pi =⎡
⎢⎢⎣
Pi
11 Pi

12 Pi
13 Pi

14
Pi
21 Pi

22 Pi
23 Pi

24
Pi
31 Pi

32 Pi
33 Pi

34
Pi
41 Pi

42 Pi
43 Pi

44

⎤
⎥⎥⎦ ∈ S

+
4n, Qi , Ri , Si , Zi , Qd

i ,W
d
i , Md

i ∈ S
+
n , Xi ∈ R

3n×3n,

(i = 1, . . . , N ), and scalars εi > 0, (i = 1, . . . , N ) such that the following LMIs
hold for τ ∈ {τ1, τ2}

�i =
[
Zi Xi

XT
i Zi

]
≥ 0, i = 1, . . . , N , (28a)

�̂i (τ ) = �̂i
1(τ ) − �i

2 − �T�i� < 0, i = 1, . . . , N . (28b)

Then, system (17) is exponentially stable for any switching signal with average dwell
time satisfying

Ta > T ∗
a = lnμ

α
. (29)

Moreover, an estimate of state decay is given by

‖x(t, φ)‖ ≤
√
b
a
e−λ(t−t0)‖xt0‖, (30)

where μ ≥ 1 satisfies

Pi ≤ μPj , Qi ≤ μQ j , Ri ≤ μR j , Si ≤ μS j , Zi ≤ μZ j , Qd
i ≤ μQd

j ,

Wd
i ≤ μWd

j , Md
i ≤ μMd

j , ∀i, j ∈ N , (31)

Ai = Ai e1 + Die3 + e11, Si = diag
{
e−ατ1 Si , 3e

−ατ1 Si , 5e
−ατ1 Si

}
, i = 1, . . . , N ,

Zi = diag
{
e−ατ2 Zi , 3e

−ατ2 Zi , 5e
−ατ2 Zi

}
, i = 1, . . . , N ,

�̂i
1(τ ) = G T

1 (τ )PiG2 + G T
2 PiG1(τ ) + αG T

1 (τ )PiG1(τ )

+ eT1 (Qi + Qd
i + εi L

T
i Li )e1

+ eT2
(
e−ατ1 Ri − e−ατ1Qi

)
e2 − e−ατ2eT4 Ri e4

+ eT3

(
εi G

T
i Gi − (1 − δ)e−ατ2Qd

i

)
e3

− εi e
T
11e11 + e−ατ1eT2 W

d
i e2 − e−ατ2eT4 Md

i e4

+ (1 − δ)eT3

(
e−ατ1Md

i − e−ατ2Wd
i

)
e3

+ A T
i

(
τ21 Si + τ212Zi

)
Ai , i = 1, . . . , N ,

�i
2 = G T

3 FT Si FG3, i = 1, . . . , N ,

λ = 1

2

(
α − lnμ

Ta

)
, a = min

i∈N
λmin

(
Pi
11

)
,
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b = max
i∈N

λmax(Pi ) + τ1 max
i∈N

λmax(Qi ) + τ12 max
i∈N

λmax(Ri ) + 1

2
max
i∈N

τ31 λmax(Si )

+ 1

2
τ212(τ1 + τ2)max

i∈N
λmax(Zi ) + τ12 max

i∈N
λmax

(
Wd
i

)
+ τ12 max

i∈N
λmax

(
Md
i

)

+ τ2 max
i∈N

λmax(Q
d
i ).

Proof We slightly modify the Lyapunov–Krasovskii functional as follows

V̂ (xt ) = V (xt ) +
∫ t

t−τ(t)
eα(s−t)xT (s)Qd

σ(t)x(s)ds

+
∫ t−τ1

t−τ(t)
eα(s−t)xT (s)Wd

σ(t)x(s)ds

+
∫ t−τ(t)

t−τ2

eα(s−t)xT (s)Md
σ(t)x(s)ds,

where V (xt ) is as defined in the proof of Theorem 1, and then by following the similar
lines as in the proof of Theorem 1, the remained processes can be easily derived. ��
Remark 2 Recently, the authors in [14,28] proposed a new integral inequality which
covers Wirtinger-based integral inequality [42] and free-weighting-based inequality
[58] as special cases. By using the new integral inequality in [14,28] combining
with the reciprocally convex technique [36] when estimating the derivative of the
Lyapunov–Krasovskii functional and the average dwell time approach, improvement
conditions for exponential stability of switched nonlinear systems with interval time-
varying delay can be derived, which will be done in our future works.

4 Passivity Analysis

We first consider the following nonswitched delay system

⎧⎨
⎩
ẋ(t) = Ax(t) + Dx(t − τ(t)) + Eω(t) + f (t, x(t), x(t − τ(t)), ω(t)),
xt0(s) = x(t0 + s) = φ(s), s ∈ [−τ2, 0],
z(t) = Mx(t) +Ux(t − τ(t)) + Wω(t),

(32)

where the nonlinear perturbation f (t, x(t), x(t − τ(t)), ω(t)) satisfies the following
condition:

f T (.) f (.) ≤ xT (t)LT Lx(t) + xT (t − τ(t))GTGx(t − τ(t)) + ωT (t)HT Hω(t),

(33)

with L ,G, H are known matrices.
We denote ei = [0n×(i−1)n In 0n×(11−i)n 0n×m], (i = 1, . . . , 11), e12 =

[0m×11n Im], A = Ae1 + De3 + e11 + Ee12, augmented vector ξ0(t) =
[χT

01(t) χT
02(t) χT

03(t) ωT (t)]T .

We have the following lemma.
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Lemma 4 Given α > 0. Assume that there exist matrices P ∈ S
+
4n, Q, R, S, Z ∈ S

+
n ,

X ∈ R
3n×3n, and two scalars γ ≥ 0, ε > 0 such that the following LMIs hold for

τ ∈ {τ1, τ2}

� =
[
Z X
XT Z

]
≥ 0, (34a)

�(τ) = �1(τ ) − �2 − �T�� < 0. (34b)

Then, along the trajectory of system (32), we have

V (xt ) ≤ e−α(t−t0)V (xt0) −
∫ t

t0
e−α(t−s)ϕ(s)ds, ∀t ≥ t0, (35)

where

ϕ(s) = −2zT (s)ω(s) − γωT (s)ω(s),

�1(τ ) = G T
1 (τ )PG2 + G T

2 PG1(τ ) + αG T
1 (τ )PG1(τ ) + eT1 (Q + εLT L)e1

+ eT2
(
e−ατ1R − e−ατ1Q

)
e2 − e−ατ2eT4 Re4 + εeT3 G

TGe3

− εeT11e11 + AT
(
τ 21 S + τ 212Z

)
A − eT1 M

T e12 − eT12Me1

− eT3 U
T e12 − eT12Ue3 − eT12

(
γ I + W + WT − εHT H

)
e12.

Proof The proof is similar to that of Lemma 3. ��
Now, we present a sufficient condition for passivity analysis of switched systems

with interval time-varying delays and nonlinear perturbations (1).

Theorem 2 Given α > 0. Assume that there exist matrices Pi =⎡
⎢⎢⎣
Pi
11 Pi

12 Pi
13 Pi

14
Pi
21 Pi

22 Pi
23 Pi

24
Pi
31 Pi

32 Pi
33 Pi

34
Pi
41 Pi

42 Pi
43 Pi

44

⎤
⎥⎥⎦ ∈ S

+
4n, Qi , Ri , Si , Zi ∈ S

+
n , Xi ∈ R

3n×3n, (i = 1, . . . , N ),

and scalars εi > 0, (i = 1, . . . , N ), γ ≥ 0 such that the following LMIs hold for
τ ∈ {τ1, τ2}

�i =
[
Zi Xi

XT
i Zi

]
≥ 0, i = 1, . . . , N , (36a)

� i (τ ) = � i
1(τ ) − �i

2 − �T�i� < 0, i = 1, . . . , N . (36b)

Then, system (1) is passive for any switching signal with average dwell time defined
by (19), where μ ≥ 1 satisfies (21) and

Ai = Aie1 + Die3 + e11 + Eie12,

� i
1(τ ) = G T

1 (τ )PiG2 + G T
2 PiG1(τ ) + αG T

1 (τ )PiG1(τ ) + eT1

(
Qi + εi L

T
i Li

)
e1
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+ eT2
(
e−ατ1Ri − e−ατ1Qi

)
e2 − e−ατ2eT4 Rie4 + εi e

T
3 G

T
i Gi e3

− εi e
T
11e11 + AT

i

(
τ 21 Si + τ 212Zi

)
Ai − eT1 M

T
i e12 − eT12Mie1

− eT3 U
T
i e12 − eT12Uie3 − eT12

(
γ I + Wi + WT

i − εi H
T
i Hi

)
e12.

Proof When ω(t) = 0, (36a) and (36b) imply (18a) and (18b). Therefore, from
Theorem 1, the system is exponentially stable. To show the passivity analysis of
system (1), we choose Lyapunov–Krasovskii functional (22). From (21), we have

V (xti ) ≤ μV (xt−i
), i = 1, 2, . . . (37)

For any t ∈ [tk, tk+1), noticing (36a), (36b) and from Lemma 4, we have

V (xt ) ≤ e−α(t−tk )V (xtk ) −
∫ t

tk
e−α(t−s)ϕ(s)ds. (38)

Combining (37) and (38) leads to

V (xt ) ≤ μV (xt−k
)e−α(t−tk ) −

∫ t

tk
e−α(t−s)ϕ(s)ds

≤ μkV (xt0)e
−α(t−t0) − μk

∫ t1

t0
e−α(t−s)ϕ(s)ds − μk−1

∫ t2

t1
e−α(t−s)ϕ(s)ds

− · · · −
∫ t

tk
e−α(t−s)ϕ(s)ds

= e−α(t−t0)+Nσ (t0,t) lnμV (xt0) −
∫ t

t0
e−α(t−s)+Nσ (s,t) lnμϕ(s)ds. (39)

Under zero initial condition, (39) gives

0 ≤ −
∫ t

t0
e−α(t−s)+Nσ (s,t) lnμϕ(s)ds. (40)

By virtue of (19), we get Nσ (s, t) ≤ t−s
Ta

≤ (t−s)α
lnμ

. Therefore, from (40), we have

−
∫ t

t0
ϕ(s)ds ≥ 0.

Hence

2
∫ t

t0
zT (s)ω(s)ds ≥ −γ

∫ t

t0
ωT (s)ω(s)ds.

Thus, in the light of Definition 3, system (1) is passive. The proof of theorem is
completed. ��
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Remark 3 By using novel refined Jensen-based inequalities proposed in [9,37] com-
bining with the reciprocally convex technique [36] and the average dwell time
approach, Theorem 2 derives a new sufficient condition for the problem of passiv-
ity analysis of a class of delayed switched nonlinear systems. The proposed criteria
are quite general since many factors, such as interval time-varying delay in the state
and output, nondifferentiable time-varying delay, are considered. Therefore, the results
obtained in this paper generalize and improve those given in the previous literature
[21,22,66,67].

5 Numerical Examples

In this subsection, we provide four examples and compare our results with the existing
results in the literature to show the effectiveness of ours.

Example 1 Consider switched nonlinear system (17) with the following parameters,
which first considered in [38]:

A1 =
[

0.1 −0.001
−0.001 0.15

]
, D1 =

[−0.7 0.001
0.001 −0.7

]
,

A2 =
[

0.15 −0.001
−0.001 0.05

]
, D2 =

[−0.6 0.001
0.001 −0.6

]
,

and nonlinear perturbations fi (.), i = 1, 2, satisfy the following condition

‖ fi (t, x(t), x(t − τ(t)))‖ ≤ 0.1‖x(t)‖ + 0.0667‖x(t − τ(t))‖, (i = 1, 2).

By simple computing, we have

f Ti (.) fi (.) ≤ xT (t)(2 ∗ 0.12)x(t) + xT (t − τ(t))(2 ∗ 0.06672)x(t − τ(t)), i = 1, 2.

This example has been utilized in many works in the literature to check the supe-
riority of stability criteria for switched system with interval time-varying delay and
nonlinear perturbations. Table 1 lists the allowable maximum upper bounds delays
(MUBDs) of τ2 that guarantee the exponential stability for the system with given
lower bound τ1 = 0 and α = 0.05, δ = 0.5. Comparing with existing results, it is
clear that our result has an improvement over those in [24,26,38]. On the other hand,
when the time-varying delay τ(t) is nondifferentiable or δ is unknown, the method

Table 1 Comparing the
previous results with our results

Case Upper bounds of time-
varying delay τ2

[38] 0.0833

[24] 1.23

[26] 1.3924

Corollary 1 with μ = 1.1 1.4161
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reported in [11,24–26,38] cannot be applied. Notably, by using Theorem 1, condi-
tions (18a) and (18b) are feasible with α = 0.2, μ = 1.01, τ1 = 0, τ2 = 1, ε1 =
0.1155, ε2 = 0.0997, and

P1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0178 0.0000 −0.0844 −0.0001 −0.0087 −0.0000 0 0
0.0000 0.0184 −0.0001 −0.0859 −0.0000 −0.0090 0 0

−0.0844 −0.0001 1.0941 −0.0002 0.0148 0.0000 0 0
−0.0001 −0.0859 −0.0002 1.0873 0.0000 0.0158 0 0
−0.0087 −0.0000 0.0148 0.0000 0.0078 0.0000 0 0
−0.0000 −0.0090 0.0000 0.0158 0.0000 0.0081 0 0

0 0 0 0 0 0 0.6786 0
0 0 0 0 0 0 0 0.6786

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0178 0.0000 −0.0844 −0.0001 −0.0087 −0.0000 0 0
0.0000 0.0183 −0.0001 −0.0859 −0.0000 −0.0090 0 0

−0.0844 −0.0001 1.0942 −0.0002 0.0149 0.0000 0 0
−0.0001 −0.0859 −0.0002 1.0873 0.0000 0.0158 0 0
−0.0087 −0.0000 0.0149 0.0000 0.0078 0.0000 0 0
−0.0000 −0.0090 0.0000 0.0158 0.0000 0.0081 0 0

0 0 0 0 0 0 0.6786 0
0 0 0 0 0 0 0 0.6786

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q1 = Q2 =
[
0.0717 0.0001
0.0001 0.0737

]
, S1 = S2 =

[
0.0015 0.0000
0.0000 0.0015

]
,

R1 = R2 =
[
0.0018 0.0000
0.0000 0.0022

]
, Z1 =

[
0.0051 −0.0000

−0.0000 0.0056

]
, Z2 =

[
0.0049 −0.0000

−0.0000 0.0045

]
,

X1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.0036 0.0000 0.0009 −0.0000 0.0000 0.0000
0.0000 −0.0039 −0.0000 0.0006 0.0000 0.0000

−0.0008 −0.0000 −0.0007 −0.0000 −0.0006 0.0000
−0.0000 −0.0008 −0.0000 −0.0004 0.0000 −0.0007
0.0002 −0.0000 0.0007 −0.0000 0.0012 −0.0000

−0.0000 0.0002 −0.0000 0.0008 −0.0000 0.0015

⎤
⎥⎥⎥⎥⎥⎥⎦

,

X2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.0032 0.0000 0.0003 0.0000 0.0000 0.0000
0.0000 −0.0029 0.0000 0.0007 0.0000 0.0001

−0.0009 −0.0000 −0.0004 −0.0000 −0.0005 0.0000
−0.0000 −0.0010 −0.0000 −0.0005 0.0000 −0.0005
0.0001 −0.0000 0.0007 −0.0000 0.0011 −0.0000

−0.0000 0.0001 −0.0000 0.0005 −0.0000 0.0010

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Thus, the systems are exponentially stable for any switching signal with an average
dwell time of Ta > T ∗

a = 0.0498 and the solutions x(t, φ) of the system satisfy the
following estimate:

‖x(t, φ)‖ ≤ 7.7530 e−0.0751(t−t0)‖xt0‖.

Simulation Results

In order to obtain simulation results, the time-varying delay τ(t) is chosen as
(1 − | sin t |). Clearly, the time-varying delay function is nondifferentiable. The
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Fig. 1 Switching signals of two subsystems
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Fig. 2 Responses of state trajectories of the switched nonlinear system with the designed switching signal
depicted in Fig. 1

perturbation is assumed to be as fi (t, x(t), x(t − τ(t))) =
[
0.1 sin2 t

0.1

]
x(t) +[

0.0667 cos2 t
0.0667

]
x(t − τ(t))(i = 1, 2). Figure 1 shows the switching signals of system

(17) with two subsystems, while Fig. 2 shows the state response of the considered
switched nonlinear system under the designed switching signal depicted in Fig. 1.

Example 2 Consider switched system (17) with fi (.) = 0, (i = 1, 2) as reported in
[25,65] with the parameters

N = 2, A1 = A2 =
[−1 0
0 −1

]
, D1 =

[
0 0.5

−1 0

]
, D2 =

[
0 1

−0.5 0

]
,

fi (.) = 0, (i = 1, 2).

In order to compare the results in [25,65], using Theorem 1, the comparison results
are listed in Tables 2 and 3 for α = 0 and α = 0.3, respectively. Clearly, the results
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Table 2 Comparative results of
τ2 for given α = 0 and various
τ1

τ1 0 0.4 1

[25] 0.687 0.856 1.335

[65] 1.253 1.368 1.708

Theorem 1 with μ = 1.1 2.084 2.237 2.556

Table 3 Comparative results of
τ2 for given α = 0.3 and various
τ1

τ1 0 0.4 0.5

[25] 0.442 0.490 0.518

[65] 0.832 0.869 0.878

Theorem 1 with μ = 1.1 1.006 1.071 1.086
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Fig. 3 Switching signals of two subsystems

proposed in this paper provide a larger admissible upper bound delay to guarantee the
asymptotic or exponential stability of system (17) with fi (.) = 0, (i = 1, 2).

Simulation Results

To obtain simulation results, we choose α = 0 and τ(t) = 1 + 1.5| sin t |. Figure 3
shows the switching signals of system (17) with two subsystems, while Fig. 4 shows
the state response of the considered switched system under the designed switching
signal depicted in Fig. 3.

Example 3 Consider a stream water quality dynamic model for Nile River [7,31] in
two modes of operation:

A1 =
[
k1ce 0

−k1de −k1re

]
, D1 =

[
k1cd k1od−k1dd −k1rd

]
, f1(.) = 0,

A2 =
[
k2ce 0

−k2de −k2re

]
, D2 =

[
k2cd k2od−k2dd −k2rd

]
, f2(.) = 0, (41)

where kice, k
i
de, k

i
re, k

i
cd , k

i
od , k

i
dd , k

i
rd(i = 1, 2) are composite rates. In this example,

we assume that the time-varying delay function is nondifferentiable and satisfies con-
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Fig. 4 Responses of state trajectories of the switched system with the designed switching signal depicted
in Fig. 3

Table 4 Upper bound of τ2 for
various τ1

τ1 0 0.1 0.2 0.3 0.4 0.5

Theorem 1 0.501 0.511 0.519 0.524 0.532 0.542

dition (3). We now consider the problem of exponential stability for system (37) with
the following parameters

k1ce = 0.1, k2ce = 0.2, k1de = 3, k2de = 4, k1re = k2re = 2,

k1cd = −1.55, k2cd = −1.45, k1od = 0.7, k2od = 0.5,

k1dd = 0.25, k2dd = 0.15, k1rd = 0.3, k2rd = 0.1.

The upper bounds τ2 for various τ1 with α = 0.1, μ = 1.01 for exponential stability
of system (37) are derived by Theorem 1 in this paper and are listed in Table 4.

Simulation Results

Toobtain simulation results,we chooseα = 0.1 and τ(t) = 0.1+0.411| sin t |. Figure 5
shows the switching signals of system (17) with two subsystems, while Fig. 6 shows
the state response of the considered switched system under the designed switching
signal depicted in Fig. 5.

Example 4 Consider the following switched system with interval time-varying delays
and nonlinear perturbations (1) with N = 2,

A1 =
[−1 0
0.5 −1.8

]
, D1 =

[
0 0.3

−1 0

]
, E1 =

[
2
1

]
, M1 = [

1 2
]
,

U1 = [−1 2
]
, W1 = [

0.2
]
,
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Fig. 6 Responses of state trajectories of the switched system with the designed switching signal depicted
in Fig. 5

A2 =
[−0.5 0
0.9 −2

]
, D2 =

[
0 0.4

−1 0

]
, E2 =

[
1
0

]
, M2 = [

1 3
]
,

U2 = [
2 −2

]
, W2 = [

0.5
]
,

and nonlinear perturbations fi (.), i = 1, 2, satisfy the following condition

f Ti (.) fi (.) ≤ xT (t)0.12x(t) + xT (t − τ(t))0.22x(t − τ(t))

+ ωT (t)0.32ω(t), i = 1, 2.

The upper bounds τ2 with α = 0.1, μ = 2 for passivity analysis of the system are
derived by Theorem 2 in this paper and are listed in Table 5.
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Table 5 Upper bound of τ2 for
various τ1

τ1 0 0.5 0.9 1 1.5 2

Theorem 2 1.548 1.732 1.880 1.915 2.084 2.214

6 Conclusion

In this paper, the problems of exponential stability and passivity analysis of switched
nonlinear systems with interval time-varying delay have been investigated based
on average dwell time approach. A novel piecewise Lyapunov–Krasovskii func-
tional has been constructed to derive sufficient delay-dependent conditions. To reduce
the conservatism of our results, refined Jensen-based inequalities combining with
the reciprocally convex technique have been used to estimate the derivative of the
Lyapunov–Krasovskii functional. Numerical examples and simulation results have
been provided to show the validity and improvement of our derived results.

Future works can apply the proposed stability analysis method to further consider
the problem of dissipativity analysis of various dynamic networks, such as neutral
switched systemswith interval time-varyingmixed delays and nonlinear perturbations,
switched neural networks systems with interval time-varying delays, stochastic and
Markovian jumping complex systems with interval time-varying delays. To those
dynamic networks, in general, constructing a new effective Lyapunov–Krasovskii
functional is not an easy task, while the auxiliary function-based integral inequalities
[14,28,37] can significantly reduce the conservatism of the derived conditions. This
also needs to be further investigated in the future works.
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