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Abstract This paper is devoted to the event-triggered H∞ static output feedback
control of linear discrete-time networked control systems. With the help of zero-
holder, a time-delay formulation is adopted to describe the even-triggered output.
Resorting to Finsler lemma and time-delay techniques, a co-design framework of
event-triggering communication and static output controller is established in terms of
linear matrix inequalities. Meanwhile, the required H∞ performance could be ensured
by the proposed framework. Two examples are supplied to verify the validity of the
proposed method.
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1 Introduction

As the rapid growing of digital and communication technologies, much interest and
concern have been focused on networked control systems (NCSs) where network
medium is used to communicate the data among the distributed sensors, controllers,
actuators, and plants [24]. The advantages of low cost, flexibility and simple mainte-
nance account for thewide applications in advanced aircraft, electrical power grid [21].
Moreover, a quantity of theoretical results about NCSs can be found in [9,14,16] and
references therein. Considering the communication mechanism in these works, a peri-
odical strategy also called time-triggering paradigm is executed. Under this scheme,
the transmissions of small changed signals could reduce the utilization efficiency of
the limited network bandwidth, particularly in wireless network environments [2].
Hence, it is of theoretical and practical significance to improve the efficiency of the
shared network as well as maintain the system performance.

Alternatively, an aperiodic triggering method, called event-triggered scheme, has
been presented in [19,33]. By pre-designing an appropriate triggering principle to
avoid the transmission of unnecessary signals, more and more results based on event-
triggered scheme have been derived in [4,19,22,37]. It is noteworthy that most of them
need all system state to implement the event-triggered mechanism. Unfortunately,
such requirement is difficult even impossible to be satisfied in practical cases [8,31].
To overcome this obstacle, output-based event-trigged control issues are addressed
in [17,18,20,23,27,34,35]. [34] studies the design of event-triggered dynamic output
feedback controller of continuous linear time invariant systems. For linear continuous-
time systems, [17] copes with the dynamic output feedback event-triggered control
problem with quantisation. By designing a Luenberger state estimator, [18] considers
the robust event-triggered model predictive control for constrained linear systems
with bounded disturbances. The event-triggered output feedback control of distributed
NCSs is studied in [20], where a distributed observer is used to estimate the system
state. Based on the available state, [35] investigates the design of observer-based
event-triggered controller of linear continuous-time systems. As is known, dynamic
and observer-based output control can be transformed to the framework of static output
feedback (SOF) control, which is easy for implementing in engineering applications.
Therefore, in [27], sufficient linear matrix inequalities (LMIs) conditions for event-
triggered SOF control of continuous-time NCSs are addressed without H∞ control
synthesis. For continuous-timeNCSswith time-varying sampling, the H∞ SOFcontrol
problem is developed in [23], where the proposed conditions are non-convex. On the
other hand, most aforementioned outcomes are considered for continuous-time cases,
while the inherent nature of network-based communications is discrete. In NCSs,
since communication protocols utilized to exchange signals between network nodes
are usually based on data packet, a continuous manner to transmit information cannot
be realized. Due to this fact, several results on event-triggered control problem for
discrete-time systems have been reported in [10,15], in which the event-triggered
schemes are dependent on system state. Note that few attention has been paid to study
the design of the event-triggered H∞ output feedback controller of discrete-timeNCSs,
especially for designing SOF controller via a convex method.
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Inspired by the above observations, this paper aims to explore an event-based H∞
SOF controller design method for discrete-time NCSs. Via the zero-holder, the event-
triggered output is presented by a time-delay form. Based on this presentation and
the event-triggering condition, an analysis condition for the closed-loop system to
be asymptotically stable with the required H∞ performance level is established via
Finsler lemmawhich separates systemmatrices fromLyapunovmatrix. Employing the
obtained analysis condition, a co-design method of the event-triggering communica-
tion and static output feedback controller is realized by usingFinsler lemma repeatedly.
Finally, the validity of the provided approach is tested by a numerical example and an
aircraft system.

This article is organized as follows. Section 2 provides the problem statement and
preliminaries. In Sect. 3, sufficient conditions of event-triggered H∞ SOF control
are formulated by LMIs. The simulations are carried out to show the validity of the
proposed method in Sect. 4. Finally, conclusions are produced in Sect. 5.

Notation Throughout this paper, a symmetric and positive ( negative ) definite matrix
R is denoted by R > 0 (< 0). Rn stands for the n-dimensional Euclidean space, and
R
n×m is used to show the set of all n × m real matrices. Z+ is the set of positive

integers. ∗ refers to the symmetric entries of a symmetry matrix. The subscripts T
and ⊥ represent the transpose and the null space of a matrix, respectively. Moreover,
He(X) is defined to mean (X + XT ).

2 Problem Statement and Preliminaries

Consider the linear discrete-time system captured by

⎧
⎨

⎩

x(k + 1) = Ax(k) + B1u(k) + B2ω(k)
z(k) = C1x(k) + D1u(k) + D2ω(k)
y(k) = C2x(k)

(1)

where x(k) ∈ R
n is the system state, u(k) ∈ R

m means control input, ω(k) ∈ R
p

represents the disturbance in L2 [0 ∞), z(k) ∈ R
q denotes control output, y(k) ∈ R

s

is measured output and n,m, p, q, s belong to Z+.
Taking into account the limited network bandwidth and unavailable system state,

a data triggering scheme, as drawn in Fig. 1, is described as below

ks+1 = ks + min
k

{
k|eT (k)�e(k) � δyT (k)�y(k)

}
(2)

where� is aweightingmatrix, δ ∈ [0, 1) is a prescribed scalar, and e(k) = y(k)−y(ks)
is the error between the present sampled signal y(k) and the latest triggered one y(ks),
k, ks ∈ Z

+.
To hold the input signal u(k) of the actuator by the last released data y(ks) before

the new one arrives, a zero-order-holder (ZOH) is adopted, that is

u(k) = Ky(ks), k ∈ [
ks + τks , ks+1 + τks+1 − 1

]
(3)
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Fig. 1 Framework of an event-triggered NCS

where K is the controller gain to bedesigned, τk ∈ [0, τM ] is the communicationdelay.
The time interval� = [ks+τks , ks+1+τks+1−1]ofZOH is represented as� = ∪�r ,
where �r = [ks +n+ τks+n, ks +n+1+ τks+n+1], n = 0, 1, 2, . . . , ks+1 − ks −1.

Define dk � k − ks − n, k ∈ �r . It is obvious that 0 � dk � τm + 1 � dm , where
dm denotes an artificial delay containing the impact of both communication delay and
event-triggered scheme. Then, the actual control input of the actuator is written as

u(k) = KC2x(k − dk) − Ke(k), k ∈ �r (4)

Remark 1 When choosing C2 = I , (2) reduces to the state-based event-triggered
scheme proposed in [15]. Considering the function of a logical zero-order holder,
the system control signal u(k) is expressed by network induced delay and the error
information of event-triggered scheme in (4).

Taking (4) into (1), the resulting closed-loop system is transformed into the follow-
ing delay system

⎧
⎨

⎩

x(k + 1) = Ax(k) + B1KC2x(k − dk) − B1Ke(k) + B2ω(k)
z(k) = C1x(k) + D1KC2x(k − dk) − D1Ke(k) + D2ω(k)
x(ϑ) = φ(ϑ) = x(0), ϑ ∈ [−τm, 0], k ∈ �r

(5)

To design an event-based SOF controller such that the closed-loop system (5) with
required disturbance attenuation performance is asymptotically stable, the definition
of H∞ performance for (5) and several technical lemmas are shown as follows.

Definition 1 [5] Assume that the system (5) is asymptotically stable and the following
inequality

∞∑

i=0

zT (k)z(k) < γ 2
∞∑

i=0

ωT (k)ω(k) (6)

holds for all ω(k) ∈ R
q , then the H∞ norm of the system (5) is less than γ .
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Lemma 1 Finsler Lemma [1]. Let P = PT ∈ R
n×n, and B ∈ R

m×n be given
matrices, then the following statements are equivalent:

(a) υTPυ < 0, for all υ �= 0, Hυ = 0;
(b) B⊥TPB⊥ < 0;
(c) ∃S ∈ R

n×m such that P + He(SB) < 0.

Lemma 2 [26] For arbitrarily vector � , matrices R, M1, M2 and a positive scalar
α ∈ [0, 1], define the function ℵ(α, R) given by:

ℵ(α, R) = 1

α
� T MT

1 RM1� + 1

1 − α
� T MT

2 RM2� (7)

Then, if there exists a matrix X such that

[
R X
∗ R

]

> 0, the following inequality holds

min
α∈(0,1)

ℵ(α, R) �
[
M1�

M2�

]T [
R X
∗ R

] [
M1�

M2�

]

(8)

3 Main Results

This section provides novel sufficient conditions of event-based H∞ stability and
controller design for linear discrete-time systems.

Theorem 1 For given scalars dm, δ, γ , under the event-triggered scheme (2), the
asymptotical stability of closed-loop system (5) with prescribed disturbance attenu-
ation performance γ is satisfied if there exist symmetric matrices P > 0, Q > 0,
S > 0, R > 0, matrices X, G, F satisfying

[
R X
∗ R

]

> 0 (9)


 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣


11 
12 GB1KC2 0 −GB1K 0 GB2

∗ 
22 
23 XT −FB1K CT
1 FB2

∗ ∗ 
33 R − XT δCT
2 � (D1KC2)

T 0
∗ ∗ ∗ −R − Q 0 0 0
∗ ∗ ∗ ∗ (δ − 1)� −(D1K )T 0
∗ ∗ ∗ ∗ ∗ −I D2

∗ ∗ ∗ ∗ ∗ ∗ −γ 2 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

(10)

where 
11 = d2m R + P − He(G), 
12 = GA− FT − d2m R, 
22 = Q + S + d2m R −
P−R+He(FA),
23 = R−XT +FB1KC2,
33 = −S−2R+He(X)+δCT

2 �C2.
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Proof Choose the Lyapunov–Krasovskii functional as

V (x(k)) = xT (k)Px(k) +
k−1∑

s=k−dm

xT (s)Qx(s) +
k−1∑

s=k−dk

xT (s)Sx(s)

+ dm

0∑

l=−dm+1

k−1∑

s=k+l−1

σ T (s)Rσ(s) (11)

where σ(s) = x(s + 1) − x(s).
Now, calculating the time-derivative of V (k), one has

�V (k) = xT (k + 1)Px(k + 1) − xT (k)Px(k) + xT (k)Qx(k)

− xT (k − dm)Qx(k − dm) + xT (k)Sx(k) − xT (k − dk)Sx(k − dk)

+ d2mσ T (k)Rσ(k) − dm

k−1∑

k−dm

σ T (s)Rσ(s) + eT (k)�e(k) − eT (k)�e(k)

(12)

According to Jensen inequality, −dm
∑k−1

k−dm σ T (s)Rσ(s) is relaxed as

− dm

k−1∑

k−dm

σ T (s)Rσ(s) � − dm
dm − dk

ηT (k)eT1 Re1η(k) − dm
dk

ηT (k)eT2 Re2η(k)

(13)

where

ηT (k) = [
xT (k) xT (k − dk) xT (k − dm) eT (k) ωT (k)

]
,

e1 = [
0 I −I 0 0

]
, e2 = [

I −I 0 0 0
]

Resorting to Lemma 2, (13) becomes

− dm

k−1∑

k−dm

σ T (s)Rσ(s) � −ηT (k)
[
eT1 eT2

]
[
R X
∗ R

] [
e1
e2

]

η(k) (14)

where
[
R X
∗ R

]

> 0

Recalling the definition of H∞ performance, define the following index

J =
∞∑

k=0

(
�V (k) + zT (k)z(k) − γ 2ωT (k)ω(k)

)
(15)
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From (2), (13) and (15), it yields

J �
∞∑

k=0

ηT (k)�T
1 �1�1η(k) (16)

where

�1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A B1KC2 0 −B1K B2
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
C1 D1KC2 0 −D1K D2
0 0 0 0 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d2m R + P −d2m R 0 0 0 0 0
∗ �1(2, 2) R − XT XT 0 0 0
∗ ∗ �1(3, 3) R − XT δCT

2 � 0 0
∗ ∗ ∗ −R − Q 0 0 0
∗ ∗ ∗ ∗ (δ − 1)� 0 0
∗ ∗ ∗ ∗ ∗ I 0
∗ ∗ ∗ ∗ ∗ ∗ −γ 2 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�1(2, 2) = Q + S + d2m R − P − R, �1(3, 3) = −S − 2R + He(X) + δCT
2 �C2

To guarantee the closed-loop system to be asymptotically stable with given H∞
performance, the following inequality should be satisfied

J �
∞∑

k=0

ηT (k)�T
1 �1�1η(k) < 0 (17)

which is equivalent to

�T
1 �1�1 < 0 (18)

Thus, motivated by [28], according to the description of system (5) and Lemma 1,
one has

�1 + He
(
H�⊥

1

)
< 0 (19)

where

�⊥
1 =

[−I A B1KC2 0 −B1K 0 B2
0 C1 D1KC2 0 −D1K −I D2

]

,

H =
[
GT FT 0 0 0 0 0
0 0 0 0 0 I 0

]T

.
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Then, (19) can also be expressed as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11 �12 GB1KC2 0 −GB1K 0 GB2

∗ �22 �23 XT −FB1K CT
1 FB2

∗ ∗ �33 R − XT δCT
2 � (D1KC2)

T 0
∗ ∗ ∗ −R − Q 0 0 0
∗ ∗ ∗ ∗ (δ − 1)� −(D1K )T 0
∗ ∗ ∗ ∗ ∗ −I D2

∗ ∗ ∗ ∗ ∗ ∗ −γ 2 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (20)

which is ensured by (10) with �11 = 
11, �12 = 
12, �22 = 
22, �23 = 
23,
�33 = 
33. 
�

Remark 2 Taking into account the event-triggering condition (2), a co-analysis frame-
work of event-triggering communication and static output feedback is established in
Theorem 1. During the derivation, Finsler lemma is employed to separate the coupling
of system matrices and Lyapunov matrix P .

The H∞ stability analysis conditions given in Theorem 1 are non-convex because
of the coupling among the slack variables G, F and system matrices. To handle this,
novel LMI conditions for event-triggered H∞ SOF controller design are proposed in
Theorem 2 by using Lemma 1.

Theorem 2 For given scalars dm, δ, γ , b1, b2, b3, b4, under the event-triggered scheme
(2), the asymptotical stability of closed-loop system (5) with required H∞ performance
γ is satisfied if there exist symmetric matrices P > 0, Q > 0, S > 0, R > 0, matrices
X, G, F, W, N such that (9) and

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11 �12 �13 0 −b1B1N 0 GB2 �18

∗ �22 �23 XT −b2B1N CT
1 FB2 �28

∗ ∗ �33 R − XT δCT
2 � b3(D1NC2)

T 0 �38
∗ ∗ ∗ −R − Q 0 0 0 0
∗ ∗ ∗ ∗ (δ − 1)� −b3(D1N )T 0 �58
∗ ∗ ∗ ∗ ∗ −I D2 �68

∗ ∗ ∗ ∗ ∗ ∗ −γ 2 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ �88

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (21)

hold, where �11 = 
11, �12 = 
12, �13 = b1B1NC2, �18 = GB1 −
b1B1W, �22 = 
22, �23 = R− XT +b2B1NC2, �28 = FB1 −b2B1W, �33 =

33, �38 = b4(NC2)

T , �58 = −b4NT , �68 = D1 − b3D1W, �88 =
−b4He(W ). Moreover, the SOF controller gain is computed by K = W−1N.
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Proof Reformulate (10) in Theorem 1 as

B⊥TPB⊥ < 0

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣


11 
12 GB1KC2 0 −GB1K 0 GB2 0
∗ 
22 
23 R − XT −FB1K CT

1 FB2 0
∗ ∗ −S − R R − X δCT

2 � (D1KC2)
T 0 0

∗ ∗ ∗ 
44 0 0 0 0
∗ ∗ ∗ ∗ (δ − 1)� −(D1K )T 0 0
∗ ∗ ∗ ∗ ∗ −I D2 0
∗ ∗ ∗ ∗ ∗ ∗ −γ 2 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B⊥ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 −KC2 0 K 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (22)

By employing Lemma 1 to (22) once again, it leads to

P + He(SB) < 0 (23)

where

S = [
(b1B1W − GB1)

T (b2B1W − FB1)
T 0 0 0 (b3D1W − D1)

T 0 b4WT
]T

,

B = [
0 0 KC2 0 −K 0 0 −I

]
.

Thereby, (21) is satisfied by (23), which completes the proof. 
�

Remark 3 Constrast to a scaling technique to deal with the coupling term PB1KC2,
Finsler lemma is employed to manage the coupling terms GB1KC2 and FB1KC2,
which could make the obtained result be less conservative.

Remark 4 It is noted that the scalar variables b1, b2, b3 and b4 render the derived
conditions non-convex. To solve this difficulty, a line search algorithm in [25] over
four parameters can be utilized to optimize the H∞ performance γ by LMIs. If these
tuning parameters are equal, the algorithm is with respect to only one scalar variable,
which decreases the amount of computation.
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Table 1 The optimal γ for
different δ

δ 0.1 0.3 0.5

� 68.2723 40.3924 77.6123

K −1.2437 −0.7548 −0.4915

γ 2.2970 3.4776 17.2499

Computation time 1.8750 1.9220 1.8130

4 Numerical Example

Example 1 Consider system (1) with the following parameters

A =
[
1.1 0
1 0.5

]

, B1 =
[
0.5
0.1

]

, B2 =
[
0
1

]

, C1 =
[
1 0
0 1

]

,

D1 =
[

0
0.1

]

, D2 =
[
0.3
0

]

, C2 = [
0.8 0.1

]
.

For τm = 0.6, b1 = b2 = b3 = b4 = 1, sampling interval h = 0.25, the weighting
matrices �, control law gains K , the optimal H∞ gains γ and computation time
calculated by Theorem 2 are given in Table 1.

From the results shown in Table 1, one can see that the smaller the event trigger
parameter is, the better disturbance attenuation performance will be. Thus, for the
above obtained controller gains, ω(k) = sin(2πkh) for 1.5 � kh � 2.5s (otherwise
ω(k) = 0) and zero initial condition, the simulations executed by δ = 0.1, δ = 0.3 and
δ = 0.5 are drawn in Figs. 2, 3 and 4, respectively. Figures 5 and 6 show the compared
state response curves for different δ. The compared transmitting time intervals of
δ = 0.1, 0.3, 0.5 are illustrated in Fig. 7.

According to Figs. 2, 3 and 4, one can see that the H∞ asymptotical stability of
closed-loop system is ensured by the designed controller. From Figs. 5, 6 and 7, it is
noted that as the event threshold parameter decreases, the amount of the transmitted
signals increases as well as the system performance is improved. However, more
transmitted information also means consuming more cost or energy. Consequently, a
trade-off between the cost and system performance should be considered.

Example 2 An aircraft system borrowed from [36] is given as:

[
α̇(t)
q̇(t)

]

=
[−1.175 0.9871

−8.458 −0.8776

] [
α(t)
q(t)

]

+
[−0.194 −0.03593

−19.29 −3.803

] [
δE (t)

δPT V (t)

]

.

For h = 0.05, the above continuous-time system is discretized as

A =
[

0.9331 0.0467
−0.4004 0.9471

]

, B1 =
[−0.0324 −0.0063

−0.9384 −0.1850

]

.
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Fig. 2 The trajectories of system state x(k) and transmitting time intervals under δ = 0.1
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Fig. 3 The trajectories of system state x(k) and transmitting time intervals under δ = 0.3

The other corresponding system matrices are chosen as

B2 =
[
0
1

]

, C1 =
[
1 0
0 1

]

, D1 =
[
1 0
0 0

]

, D2 =
[
0
0

]

, C2 = [
0 1

]
.
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Fig. 4 The trajectories of system state x(k) and transmitting time intervals under δ = 0.5
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Fig. 5 The trajectories of x1(k) under δ = 0.1, δ = 0.3 and δ = 0.5

By taking b1 = b2 = b3 = 1, b4 = 10, τm = 0.1 and δ = 0.1, solving Theorem 2

gives γ = 5.5773,� = 2.1336, K =
[
0.2159
0.0443

]

and computation time is 1.8440. The

initial condition of the considered system is taken as x0 = [1 −0.5], and the simulation
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Fig. 7 Time intervals under δ = 0.1, δ = 0.3 and δ = 0.5

curves are shown in Fig. 8. From Fig. 8, one can observe that the effectiveness of this
proposed method for designing the SOF controller for the considered aircraft system
is also verified.
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Fig. 8 The trajectories of system state x(k) and transmitting time intervals under δ = 0.1

5 Conclusions

This paper investigates the event-triggered H∞ SOF control of discrete-time NCSs.
Resorting to a separation strategy, sufficient conditions for ensuring the closed-loop
system tobe asymptotically stablewith prescribed H∞ index are formedviaLMIs.Two
examples are given to illustrate the effectiveness of the proposed method. Then, the
developed event-triggered output feedback control approach will be extended to deal
with the output feedback control of neural networks [11], T–S fuzzy systems [6,7,12],
Markov jump systems [13,29] and vehicle active suspension systems [30,32].
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