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Abstract In recent years, the continued miniaturization of VLSI circuits leads to
the need for more efficient simulation of large-scale linear dynamical systems with
ever-increasing state-space dimension. The linear dynamical systems in VLSI circuit
simulation are RC or RCLmodels of theVLSI circuit’s interconnected system.Model-
order reduction is an important technique to reduce such a high complexity. Along the
technology scaling, the indetermination in themanufacturing process causes variations
in the critical dimensions and interlevel dielectric thickness of interconnects, which
couldmake the systemperformanceunpredictable andproduce a significant parametric
yield loss. An efficient exploitation of these design activities results in a parameterized
model-order reduction technique able to reduce large systems of equationswith respect
to all of the variable parameters of the circuit, (i.e., resistance, capacitance, and induc-
tance). For this purpose, we propose a novel parameterized model-order reduction
method for interconnect variation systems, which is based on an efficient and reli-
able combination of invariable structure-preserving model-order reduction (SPMOR)
methods and variable parameter retaining schemes. It is referred to as a parameterized
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interconnect model-order reduction via structure-preserving algorithm. The SPMOR
model yields the same form of the original state equation and preserves the passivity
of the parameterized RC and RLC networks, like the well-known passive reduced-
order interconnect algorithm for nonparameterized RC and RLC networks. The most
important benefit it entails is the ability to preserve the probability characteristic of the
original interconnect systems. Pertinent numerical examples are proposed to validate
the proposed SPMOR approach.

Keywords Interconnect system · Structure preserving · Parameterized model-order
reduction · Moment matching

1 Introduction

Complex high-speed interconnect systems have become dominant factors to determine
the performance of VLSI circuits. Interconnect networks are usually tied to large-scale
system equations, and model-order reduction (MOR) techniques are crucial to reduce
the interconnect system complexity and the computational effort of simulation tools.
Furthermore, the uncertainty in the manufacturing process of interconnects leads to
variations in the width size and in the interlayer dielectrics thicknesses of interconnect
wires, which in turn could cause the integrated circuit performance to be uncertain,
as well as result in manufacturing faults and yield loss. Due to process variations, the
parameterizedmodel-order reduction (PMOR)method is a useful simulation technique
for the analysis of parameterized interconnect circuits and statistical static timing
analysis.

Parameterized model-order reduction techniques have become an area of intense
research in the past few years [2,13–15,19,20,23–25,27,34,37,40,41], owing to the
increase in the variability of process control as the technology keeps scaling. Early
methods, such as the perturbation technique [27], mainly capture small variations
around the nominal design values. Although useful to model strong nonlinear effects
caused by the intra-die parameter variations [24], they eventually result to be rather
ineffective. Applying the MOR technique to some parameters based on moment-
matching techniques [7,20] can instead preserve the structure of the original system,
thus guaranteeing the passivity of the reduced-order process naturally. Nevertheless,
the reduced-order methods present numerical stability issues because of the explicit
calculation of the projection basis that they perform. To overcome such drawback,
[8] and [9] suggested to first obtain a linear combination vector with respect to a
set of orthonormal bases, and to later determine the matrix vector products based
on the orthonormal basis vector. However, even such method is not a fully implicit
reduced-order method, and it still presents the above-mentioned numerical stability
issues. Reference [6] proposes a union Krylov subspace for moment matching, which
however requires a wide number of Krylov basis vectors, significantly larger than the
dimension of the original system spaces. Moving further, some parameterized reduce
order methods based on the multi-series expansion of the transfer function method
are proposed in [10] and [12], which in turn are rather difficult to apply to many
parametrized systems. The CORE algorithm [24] is an explicit and implicit method
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to generate basis vectors. However, it does not preserve the structure of the original
system as well as the passivity of the system in the reduced-order process. For what
concerns rational systems, a multi-parameter moment-matching method is introduced
in [14], which uses a subspace projection approach to provide a parameterized MOR.
Its structure, however, exhibits some computational problems, and the results of the
reduced models usually suffer from oversizing when the number of moments to match
is high, either because high accuracy is required or because the number of parameters
is large. The technique presented in [14,15] combines instead traditional passivity-
preserving model-order reduction methods and interpolation schemes based on a class
of positive interpolation operators.

Another type of parameterized reduced-order approach based on truncated balance
realization (TBR) has also been proposed as a variation of theMOR [34,35]. Typically,
the reduced-order methods based on TBR exhibit higher computational complexity
because of the calculation of the two system Grammians. The stochastic spectral
Galerkin reduced-ordermethod proposed by J.M.Wang is instead another approach to
investigate interconnects systems affected by process variations. Homogeneous chaos
is here used to capture the impact of parameter variations on the interconnects system
response (i.e., the variation parameters shown in the generic Hermite polynomial basis
function). Nonetheless, such method is not a true PMOR technique, as well as it does
not preserve the structure of the original interconnects system. One more PMOR
technique is based on rational interpolation, which includes thevariations of electrical
and geometrical parameters in lossy transmission line [38,39] and delayed systems
[15].

We present here a multi-parameter moment-matching method based on PMOR
techniques for parameterized RC and RLC interconnect systems, which combines
the traditional structure-preserving model-order reduction methods and the adjacency
uniformity techniques. We refer to it as structure-preserving parameterized intercon-
nect model-order reduction (SPMOR) algorithm. The SPMOR algorithm embeds the
advantages of structure-preservingmoment-matching-basedmethods, thus it preserves
the structure of the original state equations, like the structure-preserving reduced-order
interconnect macromodeling [16]. The main benefit of SPMOR is preserving the sta-
tistical characteristics of the system, in contrast to the previous PMOR approaches. To
date, all of the multi-parameter moment-matching-based PMOR methods have been
applied to low-dimensional parameter space, although parameter variations in mod-
ern integrated circuits processes sometimes show a high-dimensional space. In [11],
an approach to construct a compact model of parameterized systems is introduced,
which reduces the simulation accuracy of interconnect circuit system. In this paper, we
consider interconnect circuit parameters (i.e., resistance, capacitance and inductance)
which include all physical parameter variations.

This paper is organized as follow. In Sect. 2, the parameter variation interconnect
system problems and the structure-preserving MOR methods are outlined. In Sect. 3,
we present the homogeneous RC and RLC parameter interconnects reduction system.
The extension of the homogeneous parameter system to inhomogeneous system based
SPMOR algorithm is described in Sect. 4. Simulation results, accompanying the com-
parison with the original parameterized interconnect systems, are shown in Sect. 5.
Conclusion and remarks are finally drawn in Sect. 6.
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2 Problem Formulation

2.1 Parameter Variations in Interconnect Systems

For the purposes of this paper, all of the variations of the system interconnects are
lumped into a set of parameters σ = σ1, . . . , σm according to which the matrices of
the interconnect model vary. Assuming the system equations to be in the form of (23),
and coherently to the notation in [27] and [7].

C(σ )
dx

dt
= G(σ )x + Bu(t)

y = LT x (1)

The first challenge in generating the reduced models from (1) is the number of
parameters, which is the dimension size of the parameter variable space. Since the
linearity of process variations in VLSI interconnect systems is typically guaranteed
throughout all reference [1], expression (1) can be rewritten as

C(σ ) = C0 + σ1C1 + · · · + σmCm

G(σ ) = G0 + σ1G1 + · · · + σmGm

where Ci and Gi , (i from 1 to m) are N × N constant matrices. The linear dynamic
interconnect system described by (1) applies to parameterized interconnect networks,
where C(σ ) and G(σ ) are from parameter-dependent memory and memoryless ele-
ments of the interconnect networks [1,21]. In general, the system matrices C(σ ) and
G(σ ) can be approximated by the power series expansion described in [21]. Our pro-
posed method does not require any linear approximation model nor series expansion
approximated models; indeed, it can be applied to any model form, given that the
structure-preserving projected matrices can be efficiently computed.

Secondly, the difficulty in the proper choice of the projection matrix must be con-
sidered. In general, multi-dimensionalmoment-matching algorithms are hardly able to
generate a large projection matrix, while the proposed SPMOR procedure for parame-
ter varying system can efficiently generate projection matrices, as it will be explained
in details in Sects. 3 and 4.

2.2 Projection-Based MOR in Literature

What follows is a literature review of some basic ideas about reduced-order models
of interconnect systems based on projection techniques.

E
dx(t)

dt
= Gx(t) + Bu(t)

y(t) = LT x(t) (2)

where E , G ∈ R
N×N and L , B ∈ R

N .
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The reduced-order models described by (3) is in the same form of (2), but with a
reduced dimension of r (<N).

Er
dx(t)

dt
= Gr x(t) + Bru(t)

y(t) = LT
r x(t) (3)

where Er, Gr ∈ R
r×r and L r, Br ∈ R

r . Thus, the problem of order reduction relies
in finding a reduced state space r or a reduced system and, accordingly, making sure
that the output results represent a good approximation of the original system.

A very common method to construct reduced-order models is to employ the space
projection which is used in space geometry. Let the matrix Vr (Vr ∈ R

N×r and with
full column rank) be given. It follows that the reduced-order system state matrix can
be written as:

Er = V T
r EVr ,Gr = V T

r GVr , Br = V T
r B and LT

r = V T
r L .

The matrix Vr contains a certain Krylov subspace, which is the solution space of the
first equation in (2), based on the Cayley–Hamilton theorem.

2.3 Krylov Subspace Methods and PMOR

The above discussion has also pointed out that a possible approach for calculating Vr is
the Krylov subspacemethod, which is also referred to as “moment-matchingmethod.”
To introduce suchmethod,wefirstlywrite the transfer function in the frequencydomain
based on the Laplace transform of system (2).

H(s) = LT (sE − G)−1B = −
∞∑

0

ms0
i (s − s0)

i (4)

Thems0
i named moments of the interconnect system are the negative Taylor expan-

sion coefficients of the transfer function H(s) around the expansion point s0 in (4).
Based on the expansion point s0, the Krylov vector can be written as

v
j
k = ((G − s0E)−1E) j−1(G − s0E)−1 B

and then the input Krylov sequences are

Kr (s0) = sp{v1k , v2k , . . . , vrk} (5)

where vk are the Krylov space vectors (the index k stands for “Krylov space”). For
the sake of clarity, we only consider single-parameter variation systems, as most of
the bibliographic references do.
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E(σ )
dx(t)

dt
= G(σ )x(t) + Bu(t)

y = LT x(t) (6)

σ is a single scalar parameter. Similarly to (4), the transfer function of (6) in the
frequency domain is

H(s, σ ) = LT (E(σ )s − G(σ ))−1 B (7)

In the same way, based on a series expansion on zero for both s and σ , and maintaining
the terms whose order is lower than r , then:

H(s, σ ) ≈
r∑

i=0

ms,iσ
i +

r∑

i=0

mσ,i s
i +

r∑

i=2

i−1∑

j=1

mmixed,i, j s
jσ i− j

where m.,i are called the i th moments of the expansion, as expressed in (4). In the
same way, the basis V of the reduced-order projection subspace is the column span of
the moments V = {ms,0 . . .ms,qmσ,0 . . .mσ,qmmixed,2,1 . . .mmixed,q,q−1}. There are
two methods to compute such a moment. The first is the direct method [7,19,29,30],
while the other is constructed using a previously computed moment method. In both
of them, the basis is generated by orthonormalizing with respect to each other by a
modified Gram–Schmidt procedure. The moment constructing methods include both
explicit and implicit moment matching [36]. However, all of above methods based on
moment matching do not provide an easy solution to calculate themoments, especially
the mixed moments in PMOR.

2.4 Balanced Truncation/Interpolatory Used in PMOR

The PMORmethodwas originally proposed in [3] and is based on polynomial interpo-
lation. A hybrid approach of balanced truncation (BT) with some kind of interpolation
was instead later proposed in [4]. Itmakes use of rational interpolation and assumes that
the interpolation points are uniformly distributed over the parameter interval. Then,
balanced truncation is applied, leading to order reduction in interconnect systems.

The reduced-order transfer function over the whole parameter interval is obtained
by rational interpolation, i.e., by the use of the barycentric formula [5]. A global error
bound can be derived by a combination of the BT. Thus, the global error estimation
in a given parameter interval [a, b] is expressed as

sup
s∈C+

σ∈[a,b]

‖H(s, σ ) − Hn(s, σ )‖ ≤ sup
s∈C+

σ∈[a,b]

‖Rk(H, s, σ )‖

+ tol · sup
σ∈[a,b]

∥∥∥∥∥∥
1

∑k
j=1

u j
σ−σ j

∥∥∥∥∥∥
(8)

where tol is the error tolerance (more details can be found in [5,22]).
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The main problem of this method is the number of interpolation points, which
grows exponentially for high-dimensional parameter spaces. This increases the com-
putational complexity in the case of BT, and furthermore, the order of the reduced
system would also grow exponentially.

2.5 Problem Statement

To summarize, there is no easy method, to date, for accomplishing parameter model-
order reduction using Krylov subspace methods or balanced truncation methods. Even
the simple expansion along a subset of parameter spaces (i.e., without performing
the moment computation of any mixed term), the selected expansion points already
appear to be more complex. This paper introduces a structure preserving parameter
model-order reduction method which can partly address the above-mentioned issue,
facilitating the investigation of parameterized system by preserving the main proba-
bility characteristics.

3 Homogeneous RC and RLC Parameterized Interconnects Reduction
Method

In this section, we briefly review the formulation of the circuit equations for param-
eterized RC and RLC circuits. The connectivity of a circuit can be indicated using
differential state equations or a directional graph. The nodes of the graph correspond
to the nodes of the circuit, and the edges of the graph correspond to the circuit ele-
ments. An arbitrary direction is assigned to the graph edges to distinguish between the
source and destination nodes. The adjacency matrix of the directional graph describes
the connectivity of the circuit.

3.1 RC Circuit State-Space Formulation and PMOR

A lumped, linear, time-invariant circuit can be best described using differential state
equations. While this is not the only possible description, it is however the simplest to
understand and formulate. Such a network description usually exists, and is given by

dx(t)

dt
= Ax(t) + bu(t)

y(t) = cT x(t) (9)

where x(t) is the N-dimensional state vector, u(t) is the m-dimensional excitation
vector, and y(t) is the vector of the required outputs. As a simple example, let us
consider the network in Fig. 1. The state-space equations for it are given in (10).
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Fig. 1 Simple RC interconnect
network

R1 R2

C2
Vin C1

V1 V2

[ dv1
dt
dv2
dt

]
=

[
−

(
1

R1C1
+ 1

R2C1

)
1

R2C1
1

R2C2
− 1

R2C2

] [
v1
v2

]
+

[ 1
R1C1

0

]
vin

vout = [−1 0
] [

v1
v2

]
(10)

We assume that the electrical parameters of the interconnect network are homogeneous
(i.e., R1 = R2 = R and C1 = C2 = C). This is in general true in distributed RC
interconnect lines due to the local homogeneous condition. Therefore, (10) can be
reformulated as

[ dv1
dt
dv2
dt

]
= 1

RC

([−2 1
1 −1

] [
v1
v2

]
+

[
1
0

]
vin

)

vout = [−1 0
] [

v1
v2

]
(11)

Considering now

A =
[−2 1

1 −1

]
, b =

[
1
0

]

then the Krylov space described in (11) can be expressed in the form

V =
[

1
RC b

( 1
RC

)2
Ab

]
= [

b Ab
]
[

1
RC 0

0
( 1
RC

)2

]
(12)

We now provide an example to demonstrate a way to use parameter extracting
MOR. The circuit chosen for such example is an interconnect circuit consisting of a
single bus. The order of the interconnect system state matrix is N , while that of the
reduced system is r . H(s) represents the original system transfer function, while the
reduced system transfer function is denoted as Hr(s).

H(s) = cT
(
s I − 1

RC
A

)−1 1

RC
b (13)
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Fig. 2 Transfer function variation in 10 sets of RC variation

Hr (s) = cr
T

(
s Ir − 1

RC
Ar

)−1 1

RC
br (14)

where A ∈ R
N×N .

As expected from the parameter model-order reduction method, the variations of
resistances and capacitances (R and C) are preserved in the reduced system. The only
restriction is that R and C parameters must be homogeneous. This will be further
addressed in Sect. 4. Figure 2 shows the variation of the transfer function with 10 dif-
ferent sets of R andC parameters, which are Gaussian-distributed with average values
of 0.027�(μr ) and 0.1nF (μc) for R and C respectively and standard deviations of
0.001�(σr ), and 0.01nF (σc) for R and C , respectively. It is worth noting that the
transfer function of parameter MOR systems is similar to that of the original R–C
system in the large-frequency domain.

3.2 State-Space Formulation and PMOR of RLC Circuits

In deep nanoscale CMOS technologies, the effect of the inductance of interconnect
lines becomes significant.We therefore address our analysis toRLCcircuits.Assuming
ideal voltage and current sources, V (t) and I (t) will hereafter be denoted as the node
voltage vector and branch current vector, respectively. Their transient analyses can be
formulated using the modified nodal analysis as follows:

[
C 0
0 L

] [ dV
dt
dI
dt

]
+

[
0 −Al

−AT
l −R

] [
V (t)
I (t)

]
=

[
U (t)
0

]
(15)
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Fig. 3 Simple RLC
interconnect network

L1R1

C2Vs C1

R2 L21 2

where C , L and R are matrices of coefficients for capacitors, inductors and resistors,
respectively, while U (t) is the input vector generated by the ideal voltage and current
sources. The simple RLC network shown in Fig. 3 can be considered as an example
of a typical interconnect line in modern integrated circuits. The linear state equations
of such a circuit can be expressed as

⎡

⎢⎢⎣

C1 0 0 0
0 C2 0 0
0 0 L1 0
0 0 0 L2

⎤

⎥⎥⎦

⎡

⎢⎢⎣

dv1
dt
dv2
dt
di1
dt
di2
dt

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0 0 1 −1
0 0 0 1
1 0 R1 0

−1 1 0 R2

⎤

⎥⎥⎦

⎡

⎢⎢⎣

v1
v2
i1
i2

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

0
0

−vs
0

⎤

⎥⎥⎦ (16)

We assume here that the electrical parameters of the interconnect network are homo-
geneous (i.e., R1 = R2 = R, L1 = L2 = L and C1 = C2 = C), which is generally
true in distributed RLC interconnect lines due to the local homogeneous condition.
The system Eq. (16) is therefore rewritten as

⎡

⎢⎢⎣
C

(
1 0
0 1

)
0 0
0 0

0 0
0 0

L

(
1 0
0 1

)

⎤

⎥⎥⎦

⎡

⎢⎢⎣

dv1
dt
dv2
dt
di1
dt
di2
dt

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0 0
0 0

1 −1
0 1

1 0
−1 1

R

(
1 0
0 1

)

⎤

⎥⎥⎦

⎡

⎢⎢⎣

v1
v2
i1
i2

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

0
0

−vs
0

⎤

⎥⎥⎦

(17)
We let

E =

⎡

⎢⎢⎣
C

(
1 0
0 1

)
0 0
0 0

0 0
0 0

L

(
1 0
0 1

)

⎤

⎥⎥⎦ , G =

⎡

⎢⎢⎣

0 0
0 0

1 −1
0 1

1 0
−1 1

R

(
1 0
0 1

)

⎤

⎥⎥⎦ .

It is evident from the structure of matrices E and G that the system in (17) describes
an RLC circuit. According to [16], the heaviest computation in structure-preserving
reduced-order interconnect macromodeling (SPRIM) is the generation of a suitable
basis for the r th Krylov subspace Kr (M, R). In this section, for simplicity, we assume
that the basis matrix Vr is constructed according to the Krylov subspace method
(further details are given in Sect. 4).

Let

Vr =
[
V1
V2

]
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be the partitioning of Vr. Then

E =
[
V T
1 C I1V1 0

0 V T
2 L I2V2

]
,G =

[
0 V T

1 AlV2
(V T

1 AlV2)T V T
2 RI3V2

]

where

Al =
[
1 −1
0 1

]

Formally set

M =
[

0 1
C A12

1
L A21

R
L I

]
, R =

[
0
b21

]

where

A12 =
[
1 −1
0 1

]
, A21 =

[
1 0

−1 1

]
, b21 =

[
1
0

]

The Krylov subspace-based partitioned matrices M and R are given as

K (M, R) = [
R MR M2R M3R

]

Let

A =

⎡

⎢⎢⎣

0 0 1 −1
0 0 0 1
1 0 1 1

−1 1 1 1

⎤

⎥⎥⎦ , b =

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦ (18)

then

M = A × K , R = b

where

K =

⎡

⎢⎢⎣

1
L 0 RCL

LC − 1
C

0 1
L

RC−2L
LC

RC−2L
LC

0 0 1
C 0

0 0 0 1
C

⎤

⎥⎥⎦

Assuming now to reduce the simple interconnect system to a second order system, the
projection V would then be

V = [A0 K 0b A1K 1b ] = [
A0 A1

] [
K 0b 0
0 K 1b

]
(19)
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Another representation of the Krylov subspace is shown below, where the terms A
and b are as in (18).

Then

M = K × A, R = b

where

K =

⎡

⎢⎢⎣

1
C 0 0 0
0 1

C 0 0
R−1
L

R−2
L

1
L 0

− 1
L

R−2
L 0 1

L

⎤

⎥⎥⎦

The projection matrix V is

V = [ A0b A1b ] = [
K 0 K 1

] [
A0b 0
0 A1b

]
(20)

So, from (19) and (20), we can see that the projection matrix V is complex in PMOR
method. Still considering R, C , and L variations around their mean value, we will
hereafter make use of such mean values to generate the Krylov subspace matrix V ,
which is the constant matrix shown in (21).

V = [
A0b A1b

] =
[
V1
V2

]
(21)

A is here constructed by using themean values of R,C and L . The original interconnect
system can therefore be reduced by structure-preserving MOR methods. The mean
values which have been adopted to define the projection matrix are listed in Sect. 4.
In the following, we presents a 10th-order single-bus interconnect system, where
homogeneous resistances (R), capacitances (C), and inductances (L) are Gaussian-
distributed random variables, whose mean and standard deviation are, respectively,
Rμ = 0.027�, Rσ = 0.0081, Cμ = 1 pF, Cσ = 0.3 pF, Lμ = 1 nH, Lσ = 0.3 nH.

The wire parasitic resistances, capacitances, and inductances are variable param-
eters because of the variations of thickness and width of the metal and interlayer
dielectric, as well as because of the finite resistivity of the material. It has been shown
that an increase of 10% of the width leads to about a 10% increase in the total capac-
itance, 12% increase in the coupling capacitance and 10% reduction of the resistance
[31]. Thus, we will hereafter assume that the variation of the interconnect electrical
parameters are Gaussian-distributed with a standard deviation of about 30%, which is
instead generally around 20% .

Figure 4 shows the magnitude frequency response of the RLC interconnect system
affected by parameters variations, while Fig. 5 is its probability density function. Both
of them are based on the s0 = 107 expansion point. From Figs. 4 and 5, it can be seen
that the parameter reduced system based on the structure-preserving method is similar
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Fig. 4 Transfer function variation in 10 sets of RLC variation

Fig. 5 Transfer function probability distribution in ω = 107 point

to the original interconnect system in terms of its frequency response and probability
density distribution.

In summary, the order of a homogenous parameterized interconnect system can
be reduced albeit maintaining the statistical characteristics under the two following
conditions:
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(1) the RC parameterized interconnect system projection matrix is as in (12).
(2) the RLC parameterized interconnect system projection matrix is as in (21).

4 Non-homogeneous Parameterized Interconnects Reduction Method

The two major sources of variability of device parameters are the limited control
over the manufacturing process (extrinsic causes of variations) and the fundamental
atomic-scale randomness (intrinsic causes of variations) [33]. The variations of the
interconnect parameters aremainly causedby the former. Indeed, processing steps such
as chemical, mechanical polishing and etching may induce variations in interconnects
and wire dimensions. This results in interconnect electrical parameters which vary in
different places, although still locally homogeneous.

The key question in parameter MOR is, firstly, how to stably and efficiently com-
pute an orthonormal basis V of solution subspace and, secondly, how to preserve
the variation parameters in reduced interconnect systems. In this section, a method
for defining V based on the mean value of the electrical parameter variations is pro-
posed. For preserving the variation parameter, we use the structure-preserving reduced
method, which massively exploits the electrical parameter local homogeneous char-
acteristics. In the following, we firstly review the structure-preserving reduced-order
method and then proceed further by providing details about the SPMOR algorithm
based on non-homogeneous RC and RLC parameterized interconnect systems.

4.1 SPRIM Algorithm Review

The SPRIM (structure-preserving reduced-order interconnect macromodeling) algo-
rithm was originally introduced for RLC circuits including only current sources (no
voltage sources). Let us consider a modified nodal formulation of an RLC circuit
equation in the frequency domain:

Gx(s) + sCx(s) = Bi(s)

v(s) = BT x(s) (22)

where x(s) is the state variable vector, G and C ∈ R
N×N are state matrices and B is

the incident matrix. Thus, the transfer function H(s) is

H(s) = BT (G + sC)−1B (23)

According to the Krylov subspace projection method, we can find a projection matrix
V whose columns span the r -thKrylov subspaceKr (A, R), where A = (G+s0C)−1C ,
R = (G + s0C)−1B, and s0 is the expansion point, which typically is a real number.
The transfer function of the reduced-order system can therefore be expressed as

Hr (s) = BT
r (Gr + sCr )

−1Br ,
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where Gr = V T GV ,Cr = V T CV , and Br = V T B. The first expanded r -th
moments of Hr (s) is identical to those of the original transfer function H(s).

The above method, such as indeed the MOR, cannot instead preserve the structure
of the original models. This means that if the transfer function H(s) is symmetric,
the one of the reduced system Hr (s) will not be. The primary result of the structure-
preserving model-order reduction is to keep the said transfer function symmetric and
to preserve the passive properties. This is achieved by using a split projection matrix
V .

SPRIM starts with the 2 × 2 structured modified nodal analysis (MNA) circuit
matrices. Thus, a structured projection matrix can be built by splitting the projection
matrix V obtained from the Krylov subspace method as

V =
[
V1
V2

]
, V =

[
V1 0
0 V2

]
(24)

where V1 ∈ R
n×r , V2 ∈ R

m×r and hence V ∈ R
N×2r . As a result, the number of

columns in V is double compared to that of V (the moment matching doubles). The
main benefit of the SPRIM algorithm is that the reduced model system maintains
matching 2r order moment based r -th Krylov subspace. The 2r matching property
mainly applies because both the original and the reduced system transfer functions are
symmetric. The same result could be obtained from the structure-preserving reduced
method for RCL circuits which include voltage sources.

The rank of the projection matrix V ∈ R
N×r is r . After the splitting operation in

(24), the rank usually results to be less than 2r , since some of the columns become
dependent (i.e., the columns in V are no longer orthogonal with respect to each other).
To solve such problem, it is necessary to re-orthonormalize each sub-block, thus
obtaining a new projection matrix T :

T =
[
V 1 0
0 V 2

]
(25)

It is worth noting that the moment-matching property still holds after the re-
orthonormalization process [28].

4.2 Non-homogeneous Parameterized RC MOR

When the electrical parameters of an interconnect circuit are non-homogeneous, as
in the case of part 3.2 of Sect. 3, it is rather complicated to extract their variations
because the variation parameters cross each other in a block structure. However, the
physical parameters of interconnect wires exhibit local consistency in space. We can
therefore assume that the parameters of adjacent resistor R and capacitor C are the
same. Furthermore, we will consider the interconnect system divided into k local
homogeneous blocks, whose individual size is m. The system state equation is thus
expressed as
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dv1
dt
...

dvm
dt
...

dv2m
dt
...

dvkm
dt

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
R1C1

. . .
1

R1C1
. . .

1
R2C2

. . .
1

RkCk

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1
1 −2 1

. . .

. . .

. . .

. . .

1 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
R1C1

. . .
1
C1

. . .
1
C2

. . .
1
Ck

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
...
...
...
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Vin (26)

where k = N/m. The projection matrix is considerably hard to calculate, as the
one in Sect. 3. We will therefore use the mean values of the interconnect electrical
parameters to construct such projection matrix, which results to be similar to the
global homogeneous interconnect system introduced in Sect. 3. Themoment-matching
characteristic will be verified in part 4.4 of Sect. 4.

The projection matrix Vr is

Vr = [
b Ab . . . Arb

]
(27)
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where

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
R10C10

. . .
1

R10C10
. . .

1
R20C20

. . .
1

Rk0Ck0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1
1 −2 1

. . .

. . .

. . .

. . .

1 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b = 1

R10C10

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
...
...
...
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Rn0 andCn0(n = 1. . ., k) are the mean values of the local homogeneous resistors and
capacitors, respectively. A structure-preserving projection matrix V is consequently
constructed by splitting the projection matrix Vr obtained from the Krylov subspace
method.

V =

⎡

⎢⎢⎢⎣

V1
V2

. . .

Vk

⎤

⎥⎥⎥⎦ (28)

where Vn ∈ R
m×r (n = 1, . . ., k), V ∈ R

N×kr . Finally, the reduced-order state
equation is
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⎡

⎢⎢⎢⎢⎢⎢⎣

dx1
dt
...

dxr
dt
...

dxkr
dt

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1
R1C1

. . .
1

R1C1
. . .

1
RkCk

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

V T T V + V T

⎡

⎢⎢⎢⎢⎢⎣

1
R1C1

0
...

0
0

⎤

⎥⎥⎥⎥⎥⎦
Vin (29)

It is worth mentioning that every local homogeneous block equation of order m
is reduced to r , while the structure of all of the electrical parameters of variation is
preserved, such as indeed the probability characteristics.

4.3 Non-homogeneous Parameterized RLC MOR

When the electrical parameters of interconnect RLC circuits are non-homogeneous, as
evident fromEq. (16), generating the projectionmatrix is rather difficult. The electrical
parameters of the interconnect wires are locally uniform, as already mentioned in part
4.2 of Sect. 4. We can therefore assume that the parameters of adjacent resistor R,
inductor L and capacitorC are the same (i.e., their probability distributions are equal).
By also assuming that the interconnect system is divided in k averageblocks, the system
state equation is expressed as

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1
. . .

Ck

L1
. . .

Lk

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dv1
dt
...

dvk×m
dt
di1
dt
...

dik×m
dt

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

0 Q

QT

R1
. . .

Rk×m

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
...

vk×m

i1
...

ik×m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

+B × vin (30)

where Cn, Ln and Rn ∈ R
m×m(n = 1, . . ., k, k = N/2m), Q can assume the values

1, −1 and 0, while B is the input matrix, shown in the following.

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
1
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

As previously described in part 4.2 of Sect. 4, we can still make use of the mean values
of the electrical parameters of interconnects in order to construct the projectionmatrix.
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We also assume that the projection matrix Vr obtained by applying the Krylov
subspace method can be written as.

Vr = [
b Ab . . . Arb

]
(31)

where

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

C10
. . .

Ck0
L01

. . .

Lk0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

⎡

⎢⎢⎢⎣

0 Q

QT

R10
. . .

Rk0

⎤

⎥⎥⎥⎦

b =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

C10
. . .

Ck0
L01

. . .

Lk0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
1
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

Rn0, Ln0 and Cn0(n = 1. . ., k = N/2m) ∈ R
m×m . A structure-preserving projection

matrix V is thus derived by splitting Vr into 2k parts.

V =

⎡

⎢⎢⎢⎣

V1
V2

. . .

V2k

⎤

⎥⎥⎥⎦ (32)

where Vn ∈ R
m×r (n = 1, . . . , 2k), V ∈ R

N×2kr . The reduced-order state equation
results to be of form

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1r
. . .

Ckr

L1r
. . .

Lkr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dv1
dt
...

dvk×r
dt
di1
dt
...

dik×r
dt

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

0 Qr

QT
r

R1r
. . .

Rkr

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
...

vk×r

i1
...

ik×r

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

+Br × vin (33)
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where Cnr , Lnr , Qr and Rnr ∈ R
r×r (n = 1, . . . , k), i.e., every homogeneous block

equation of order m is reduced to r . Furthermore, the structure of all the electrical
parameters of variation is preserved, such as the probability characteristic.

4.4 Moment-Matching Characteristics of the SPMOR Algorithm

The main invariant properties of MOR techniques are the coefficients of some power
series expansion of the transfer function H(s). The techniques proposed in this paper
rely on a reduced-order model that accurately matches the leading coefficients of order
kr or 2kr of the transfer function. This improved moment-matching property can be
stated as follows.

Theorem 1 Let the projection matrix Vr satisfy the Krylov subspace κr (A, b). Then,
the first r moments of the expansion of the transfer function H(s) and the r-th transfer
function Hr (s) around s0 are identical [17,32]:

H(s) = Hr (s) + O((s − s0)
r )

Theorem 2 Let Vr be amatrixmatches κr (A, b) ⊆ span Vr whose number of columns
is possibly higher than r. Then, the first r moments in the expansion of the transfer
function H(s) and r-th transfer function Hr (s) around s0 are identical [16,18]:

H(s) = Hr (s) + O((s − s0)
r )

Theorem 3 Let s0 ∈ R and let V be the projection matrix described in Eqs. (28) and
(32), which is the one used in the SPMOR algorithm. Then, the first kr or 2kr moments
in the expansions of the transfer function H(s) and the reduced transfer function Hr (s)
around s0 are identical. For the special case of s0 = 0, the results reported in [42]
can be readily extended to this slightly more general scenario. The proof results in
[16, Theorem 3] are instead readily extendable to all of the other cases of Theorem 3.

It is worth noting that the above theorems hold under the assumption that the
electrical parameters of the interconnect system (resistor R, capacitor C and inductor
L) are invariant. We will now discuss the moment-matching characteristics of the
SPMOR algorithm.

Theorem 1 postulates that the basic idea behind Krylov subspace-based order
reduction for electronic circuits with one parameter is to reuse the low-upper (LU)
factorization, which is exploited to obtain H(s0) in order to generate the information
contained in the leading Taylor coefficients of H(s), expanded around s0. According
to this, the transfer function is rewritten as:

H(s) = BT (s0C − G + (s − s0)C)−1B = BT (I + (s − s0)M)−1R (34)

where

M := (s0C − G)−1C and R := (s0C − G)−1B
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The Taylor expansion of H(s) around s0 is given by

H(s) =
∞∑

j=0

(−1) j BT M j R(s − s0)
j . (35)

For the sake of clarity, we firstly show the basic ideas of multi-parameter inde-
pendent model-order reduction methods with a two parameters system, which indeed
corresponds to a homogeneous RC interconnect system. We then proceed by gener-
alizing them to any n parameters interconnect system. The transfer function with two
parameters is defined as

H(s1, s2) = BT [I s1 − (Gs2 + G0)]
−1 B (36)

where s1 = s, s2 = 1/RC. Similar to the model reduction method with one parameter,
the Taylor expansion of H(s1, s2) is reported:

H(s1, s2) = −BT
[
I −

(
s1G

−1
0 − s2G

−1
0 G

)]−1
G−1

0 B

= −BT
∞∑

i=0

(
s1G

−1
0 − s2G

−1
0 G

)i
G−1

0 B (37)

By expanding each of the terms of the above series, Eq. (37) is expressed as

H(s1, s2) = −BT
∞∑

i=0

i∑

j=0

(
Fi
j

(
G−1

0 ,G−1
0 G

))
G−1

0 Bsi− j
1 s j2 (38)

where Fi
j are the multipliers before si− j

1 s j2 , when
(
s1G

−1
0 − s2G

−1
0 G

)i
are expanded

into separate terms. For example, when i = 2,
(
s1G

−1
0 − s2G

−1
0 G

)2
is expanded into

three terms, each of which corresponds to F2
0 , F

2
1 and F2

2 , respectively,

F2
0 =

(
G−1

0

)2
, F2

1 =
(
G−1

0

)2
G + G−1

0 GG−1
0 , F2

2 =
(
G−1

0 G
)2

. (39)

Assuming that the coupling term can be neglected (i.e., F2
1 ), the projection matrix V

is then constructed based only on the terms Fi
j

(
G−1

0 ,G−1
0 G

)
G−1

0 B,

spancol{V } = spancol
{
B,G0B,G2

0B, . . .
}

.

where G = σG0, above the Krylov subspace, is derived from a spatial transformation
of spancol

{
B,G0

−1B,G0
−2B, . . .

}
. It has been demonstrated that the aforemen-

tioned projectionmatrix ensures that the systemmatches the term Fi
j which is included
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in the right-hand side of Eq. (38) [42]. Thus, for a two-parameter system, the moment

is matched except for the coupling terms (i.e., BT Fm
k

(
G−1

0 ,G−1
0 G

)
G−1

0 B =
BT
r Fm

k

(
G−1

0r ,G−1
0r Gr

)
G−1

0r Br , k = 0, . . . ,m,m = 0, . . . J ). The two-parameter

system can be generalized to an n-parameter one, as also discussed in [7]. The state
variable x can be expanded into series around s1, s2 . . . sn as

x = [I − (s1G
−1
0 G1 + · · · + snG

−1
0 Gn)]−1G−1

0 Bu(t)

=
∞∑

m=0

(s1G
−1
0 G1 + · · · + snG

−1
0 Gn)

mG−1
0 Bu(t)

=
∞∑

m=0

m−(k3+···+kn)∑

k2=0

· · ·
m−kn∑

kn−1=0

m∑

kn=0

(Fm
k2,...,kn

(G−1
0 G1, . . . ,G

−1
0 Gn)G

−1
0 Bu(t))sm−(k2+···+kn)

1 sk22 . . . sknn

where Fm
k2,...,kn

is defined as in (39). The projection matrix V, still neglecting the
coupling terms, is constructed as

spancol{V } = spancol{BM , M1BM , M2BM , . . . MnBM , M2
1 BM , M2

2 BM . . .}

where Mi = −G−1
0 Gi , i = 1, 2, . . ., n, BM = G−1

0 B. In the experimental examples
provided in [7], although only the first few F with m = 0, 1 were used to gener-
ate the projection matrix V , the reduced models introduced already exhibit enough
accuracy. In contrast, the proposed SPMOR algorithm is able to preserve more terms,
thus ensuring therefore an even superior accuracy. Apart from the moment-matching
characteristics of SPMOR, another advantage of such an algorithm is to preserve the
structure parameters, which justifies the fact that the coupling terms of the Taylor
expansion could be neglected.

4.5 Passivity

It is well known that H is passive if, and only if, the following three conditions are
satisfied (see, e.g., [43]):

(a) H(s) has no poles in C+ = {s ∈ C|Res > 0};
(b) H(x) = H(s) for all of the s ∈ C;
(c) Re(xHH(s)x) ≥ 0 for all of the s ∈ C+ and x ∈ C

m

In particular, the RC and RLC transfer functions H are passive. In [16] and [32] it is
shown that the reduced-order models of RLC circuits obtained by projection preserve
passivity. This property applies also to the SPMOR model, which justifies the results
we have obtained. We can therefore conclude that the SPMOR reduced-order model
Hr given by (29) and (33) is passive.
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4.6 Summary

To summarize, the procedure forRLC systemswithmultiple electrical parameters (i.e.,
non-homogenous systems) is similar to that adopted for single-parameter systems
(i.e., homogenous systems), with the only difference that the projection matrix is
larger, since more structure needs to be preserved. The procedure for RC systems
with multiple electrical parameters (i.e., non-homogenous systems) is instead slightly
different from the single-parameter case, since the former is equivalent to the MOR
method with a fixed parameter value, apart from the fact that the projection results
need to be multiplied by a parameter preserving matrix. Instead, for RC systems with
a single electrical parameter (i.e., homogenous systems), the SPMOR technique is
typically adopted, or at least works as a criterion for other PMOR techniques.

The computational complexity of the SPMOR algorithm for parameter variations
in interconnect systems, including the affine linear system of variations of electrical
(or geometric) parameters and the nonlinear variation parameters system, depends
on the number of basis vectors of the projection subspace V . For simplicity, let us
assume that all of the electrical parameters are of the same order m among every
even block, and the reduced order is r . From the application of the Arnoldi method
to calculate the projection matrix, it is quite straightforward to conclude that such
method is numerically more reliable and can be implemented in O(nr2), while the
storage requirement is of O(nr), where n is the size of the original system matrix. It
is therefore evident how this algorithm can avoid the curse of dimensionality for all
of moment-matching based PMOR methods.

5 Numerical Results

In this section, we present two numerical examples to demonstrate the accuracy, sta-
bility and efficiency of the proposed SPMOR method. All of the experiments have
been performed usingMATLAB, run on a PCwith a 3.3GHz Intel Core (TM) i3-3220
processor.

Example 1 We here illustrate the accuracy of the structure-preserving parametric
model-order technique for a simple interconnect circuit consisting of only one bit
bus (see Fig. 3). The near end of the line is driven by a voltage source and the far
end voltage across the capacitor is our output signal. An RLCmodified nodal analysis
formulation is used to model the capacitive and inductive effects of the interconnect
lines. The description matrices are

C =
[
Q 0
0 H

]
,G =

[
0 E

−ET N

]

where Q, H , and N are capacitance, inductance, and resistance matrices respectively,
while E is the incident matrix associated to the inductive connectivity. The order of Q,
H , and N is 1000, while the electrical parameters variations due to process spreads are
assumed to be bounded within ±15% of the mean values. The RLC distributed circuit
is divided into 10 even subcircuits, for a total of 30 variation parameters. To the best of
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Fig. 6 Transfer function-based SPMOR algorithm in different order

our knowledge, all of the parameterized model-order methods are a generalization of
the traditional model-order method for single-parameter systems based on projection
techniques. However, the frequency parameter generated from the Laplace transfer is
coupled to the other electrical parameters. Therefore, no comparison with [7,20] and
[26] is proposed.

Figure 6 shows the simulated transfer function of a single interconnect wire, where
all of the electrical parameters are Gaussian-distributed. The details of the electrical
parameters are shown in Table 1, where ri , ci and li (i = 1. . .10) are respectively the
unit resistance, capacitance, and inductance referred to the 10 different interconnect
segments. Given the almost perfect overlapping between the two curves, it is evident
how the SPMOR algorithm with reduced order of 10 is better matched to the original
results. Moreover, such algorithm is stable at high frequency.

From a computational complexity standpoint, we propose a comparison between
the traditional single-parameter structure-preserving MOR and the multi-parameter
SPMOR method. For the sake of simplicity, we will here purposely avoid a direct
comparison among multi-parameter moment-matching methods due to its complexity
(an idea of such complexity could be gathered from [26]). Table 2 shows the approxi-
mation order of the reduced systems and CPU elapsed time in model-order reduction.
The number of homogeneous interconnect segments is 10 in all of the presented con-
ditions. It can be seen that the computational complexity of the SPMOR algorithm is
comparable to the single-parameter structure-preserving MOR. The reason is that the
main process of SPMOR is structure preserving (i.e., the parameterized interconnect
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Table 1 Electrical parameters
of a single interconnect wire

Parameter Nominal value Deviation from
mean value

R(�) r0 0.0270 0

r1 0.0267 −0.0003

r2 0.0268 −0.0002

r3 0.0276 0.0006

r4 0.0273 0.0003

r5 0.0275 0.0005

r6 0.0276 0.0006

r7 0.0256 −0.0014

r8 0.0267 −0.0003

r9 0.0259 −0.0011

r10 0.0285 0.0015

C(pF) c0 5.0000 0

c1 4.8903 −0.1097

c2 5.0046 0.0046

c3 5.0109 0.0109

c4 5.1804 0.1804

c5 4.9740 −0.0260

c6 4.7814 −0.2186

c7 5.0402 0.0402

c8 5.0812 0.0812

c9 5.0397 0.0397

c19 4.9967 0.0033

L(pH) l0 5.0000 0

l1 4.9507 −0.0493

l2 4.9936 −0.0064

l3 5.1814 0.1814

l4 4.9277 −0.0723

l5 5.0600 0.0600

l6 4.8673 −0.1327

l7 5.1470 0.1470

l8 5.0546 0.0546

l9 4.9248 −0.0752

l10 5.1636 0.1636

system is a special structure of interconnect system). Moreover, the computational
complexity is independent from the number of homogeneous interconnect segments.

Finally, the main advantage of the SPMOR method is that it retains the probability
features of the original variation interconnect system. Figure 7 presents a comparison
between the probability densities of the transfer function H of the original system
and that of the SPMOR model reduced system at 1MHz. The variation electrical
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Table 2 Comparison of classic
structure-preserving and
SPMOR methods

Reduced order Classic
structure-preserving
method (s)

SPMOR
method (s)

5 10.238237 10.236901

10 10.780144 10.822426

20 12.335941 10.404206

50 22.346406 22.292809

100 55.540334 55.208077

Fig. 7 Probability comparison between original and reduced system

parameters are 3 (i.e., the totalwire is one segment). Figure 7 also shows the probability
density of the transfer function of the reduced system (reduced to 20 orders), which is
similar to the original system probability density (useful characteristic to be preserved
for the statistical static timing analysis of a circuit).

Example 2 Let us consider an RLC network with three different electrical parameters.
The interconnect circuit consists of a 3-bit bus employed in an industrial application
(Fig. 8), which can be modeled as an RLC mesh. The voltage is probed at node 20.
The circuit parameters are Gaussian-distributed, with mean values of Rs = R = 1�,
L = 1 nH, C = 1 pF and CC = 0.5 pF, and standard deviation equal to 15% of their
mean values. The near end of the first line is driven by a voltage source (Vs). An RLC
modified nodal analysis formulation is used to model the capacitive and magnetic
coupling effects between any two of these lines. The description matrices are

C =
[
Q 0
0 H

]
,G =

[
0 E

−ET N

]
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RS R L

C

1 20

R

L
CC

Vs

Fig. 8 RLC grid circuit

Fig. 9 Transfer function-based SPMOR algorithm in different order
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Fig. 10 Comparison of the probability densities between the original and reduced systems

where Q, H , and N are respectively the capacitance, inductance, and resistance matri-
ces, while E is the incident matrix associated to the inductive connectivity.

Figure 9 shows that the SPMOR model with approximation order 19 is visually
almost overlapped to the exact transfer function, although the relative error at high
frequency is slightly larger due to the frequency expansion point s = 0. The number of
matched moments is 38 (19×2). The profiles of the CPU elapsed time in the SPMOR
and common structure-preserving algorithms are also reasonably comparable.

Figure 10 shows the probability density of the reduced-order system based on the
SPMOR model. The frequency point chosen to compare the probability densities of
the original and reduced system is 100MHz. It is worth noting how the probability
density of the SPMOR model reduced to 15 orders is appreciably matched to that of
the original system (i.e., all of the probability features are preserved).

6 Conclusions

The main innovative contributions of this paper can be summarized in the following
major milestones: introduction of a standard model suitable as a criterion for parame-
terized MOR of homogeneous RC interconnect systems [(Eq. (12)] and presentation
of a stable and efficient numerical procedure to generate an orthonormal basis of the
projection subspace in parameterized MOR. The new parameterized MOR method
(SPMOR) can efficiently preserve the probability feature, while the SPMOR reduced-
order model has the same form of the original system. Its computational complexity
is similar to the nonparameterized MOR algorithm, while it preserves the passivity
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property. As sustained by numerical examples, we can therefore conclude that the
SPMOR method is highly flexible with regards to multiple parameters.
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