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Abstract In blind channel equalization, the use of criteria from thefield of information
theoretic learning (ITL) has already proved to be a promising alternative, since the use
of the high-order statistics is mandatory in this task. In view of the several existent ITL
propositions, we present in this work a detailed comparison of the main ITL criteria
employed for blind channel equalization and also introduce a new ITL criterion based
on the notion of distribution matching. The analyses of the ITL framework are held
by means of comparison with elements of the classical filtering theory and among
the studied ITL criteria themselves, allowing a new understanding of the existing
ITL framework. The verified connections provide the basis for a comparative perfor-
mance analysis in four practical scenarios, which encompasses discrete/continuous
sources with statistical independence/dependence, and real/complex-valued modula-
tions, including the presence of Gaussian and non-Gaussian noise. The results indicate
the most suitable ITL criteria for a number of scenarios, some of which are favorable
to our proposition.
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1 Introduction

In the signal processing area, the problem of channel equalization is of paramount
significance in view of its vast horizon of applications, like in communication systems,
radar, sonar, seismic analysis and image processing [10]. The equalization task can be
performed in a supervised or in an unsupervised fashion, which essentially differ by
the presence or absence of a desired—or reference—sequence throughout the filter
adaptation process. The unsupervised (or blind) operation mode has the advantage of
a higher information transmission rate, since the reference sequence (e.g., a header
already known by the receiver) does not need to be sent. On the other hand, in order
to correctly perform linear blind equalization, the use of equalization criteria able to
encompass statistical information beyond second order is necessary [23].

The research branch known as information theoretic learning (ITL) [22] focuses on
the study of criteria and methods capable of extracting signal statistical information
in a manner as complete as possible, using concepts and measures from information
theory [3]. In that sense, its application to the blind channel equalization problem is
very attractive. Indeed, there are already a set of criteria successfully employed on
this task, like Rényi’s entropy [24], correntropy [26] and the matching of probability
density functions (PDFs) [13,15].

Although the main features of each ITL criteria have been individually stressed,
a “side-by-side” comparison among them has not yet been addressed—with some
exceptions, like [13,25], where a few ITL criteria were considered. Thus, this paper
includes twomain contributions:We develop a joint analysis considering the complete
unsupervised ITL framework in the context of channel equalization, and, in addition
to that, in order to compose the corpus of criteria, we propose a new ITL criterion
based on PDF matching. The study will aim at establishing connections between ITL
criteria and the classical unsupervised (or even supervised) methods—something very
clarifying, since the classical approach can be more intuitive due to its simplicity—
as well as the relationship among themselves. In this context, we will show that the
proposed criterion presents a good performance, significantly reducing computational
cost.

The analysis will be carried out under the assumption of linear channels—in the
presence of noise, e.g., Gaussian and impulsive noise—and of linear finite impulse
response (FIR) filters as equalizers, for both continuous and discrete sources. Blind
criteria are known to present, as a rule, multimodal cost functions [23], which has
motivated the use of metaheuristics [2] in their optimization, as they are capable
of avoiding, to a certain degree, local optima. For this reason, the analysis of the
equalization performance—measured in terms of the residual intersymbol interference
(ISI) caused by the channel—will encompass two optimization methods: those based
on the stochastic gradient and on the differential evolution (DE) metaheuristic [29].

This work is organized as follows. In Sect. 2, we present the blind channel equal-
ization problem and introduce the main aspects of the ITL research field. In Sect. 3,
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we present all the classes of ITL criteria to be analyzed, including the new proposi-
tion. The relationship between the ITL framework and the classical theory is shown
in Sect. 4 and the connections among them in Sect. 5. In Sect. 6, we present a perfor-
mance analysis in four distinct scenarios and, finally, the conclusions are exposed in
Sect. 7.

2 The Blind Equalization Problem and Information Theoretic Learning

In the equalization problem, an information signal s(n) is transmitted over a channel in
order to reach a receiver, as shown in Fig. 1. However, the channel can impose certain
distortions to the signal, especially the so-called intersymbol interference (ISI). From
the receiver standpoint, the incoming signal can be written as

x(n) =
Mh∑

i=0

h∗
i s(n−i) + η(n) = hHs(n) + η(n), (1)

where it is assumed a linear channel with impulse response h = [h0 h1 . . . hMh ]T
of length Mh+1 and the presence of additive noise η(n), which can be the result of
interferences of other signals and/or thermal noise; s(n) = [s(n) s(n − 1) . . . s(n −
Mh)]T is the vector with the transmitted signal s(n) and its delayed versions, (·)∗
denotes complex conjugation, and (·)H denotes the Hermitian transposition. Both
channel and noise are assumed to be stationary.

In order to mitigate or completely remove the channel effects, as well as eventual
noise disturbances, a filter known as equalizer is employed. In the case of a linear
finite impulse response (FIR) filter with M+1 coefficients w = [w0 w1 . . . wM ]T,
the equalizer output signal y(n) is given by

y(n) = wHx(n), (2)

where x(n) = [x(n) x(n−1) . . . x(n−M)]T is the vector of received signal samples.
Theoretically, the blind (channel) equalization problem is founded on two main

pillars: the Benveniste–Goursat–Rouget (BGR) [1] and the Shalvi–Weinstein (SW)
[27] theorems. Basically, they state that, in statistical terms, successful equalization
requires the extraction not only of second-order moments of underlying signals, but
also their high-order statistics (HOS). In view of this, a very promising research branch
is that of information theoretic learning (ITL)-based methods [22], which seek an
extensive extraction and utilization of the statistical information about the signals,
including the HOS. The potential of ITL is usually attributed to its ability in using a

Fig. 1 Block diagram of a
communication system
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large amount of statistical information about the signal distributions through metrics
and concepts derived from information theory [3], like entropy andmutual information.
Therefore, based on theBGRandSW theorems and also on the richer statistical content
offered by the ITL framework, it becomes a very attractive possibility to employ the
ITL methods for solving the problem of blind channel equalization.

In the following, we present, to the best of our knowledge, an original overview of
themain ITL criteria that are applied to perform blind channel equalization.Moreover,
we also introduce a new ITL criterion, which can be viewed as a variation of the
quadratic matching of multivariate distributions [6].

3 Unsupervised ITL Criteria

The unsupervised ITL framework can be roughly divided into three main classes,
which are basedondifferent concepts:Rényi’s entropy, correntropy andPDFmatching.

3.1 Rényi’s Entropy

Since Shannon’s classical work on information theory [28], the entity named entropy
gained remarkable importance in the context of communications [3], which can be
explained by its inherent capability of using all the statistical information associated
with a random variable (RV) and to represent it as a measure linked to the notion of
uncertainty. From the standpoint of equalization, the adoption of the entropy measure
proved to be a promising tool for obtaining efficient and sound optimization crite-
ria, given the vast diversity of application scenarios. It is also possible to assert that
this entity was primarily responsible for giving rise to the ITL research area [22].
Particularly, the notion of reducing the entropy (or the uncertainty) associated with a
filtered signal is in consonance with the idea of mitigating the distortions caused by
transmission.

In that sense, in parallel with the development of supervised ITL criteria [24], one
of the first blind ITL approaches aimed at bringing together entropy and the p-order
dispersion that engenders the Godard’s family of cost functions [8]. However, in order
to obtain simpler estimators for entropy, instead of Shannon’s definition, the α-order
Rényi’s entropy [22] is considered, being defined as

Hα(Y ) = 1

1 − α
log

∫ ∞

−∞
f α
Y (v) dv, (3)

where fY (v) is the probability density function associated with the RV Y . The use
of the Rényi’s entropy results in the cost function that we call Rényi’s entropy of the
p-order Dispersion (RD) [24]:

JRD(w) = Hα

(
Y p − Rp

) = Hα(Y p) (4)

where the RV Y p is associated with the modulus signal |y(n)|p, Rp =
E

[
S2p

]
/E

[
S p

]
, with S p associated with |s(n)|p, p ∈ Z and E[·] is the statisti-
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cal expectation operator. The last equality comes from the fact that the entropy does
not depend on the mean of the RV.

As a standard procedure within the ITL framework, the PDF associated with Y p,
fY p (v), is estimated according to the Parzen window method [21], a kernel-based
approach [22]. Assuming Gaussian kernel functions [22], defined as

Gσ 2(v) = 1√
2πσ

exp

(−|v|2
2σ 2

)
, (5)

where σ is the kernel size and v is a real- or complex-valued variable, this method
is particularly convenient for the α = 2 Rényi’s entropy (or the quadratic Rényi’s
entropy), which results in a simplified estimated cost for RD:

ĴRD(w) = 1

L2

L−1∑

i=0

L−1∑

j=0

G2σ 2(|y(n − j)|p − |y(n − i)|p) (6)

where L is the size of the samples window used for estimation. Since Eq. (6) does
not consider the negative logarithm present in the Rényi’s entropy definition, the
objective of the RD criterion is the maximization of the cost ĴRD(w) [24]. This cost
is also referred to as quadratic Information Potential (IP) [22].

For the cases in which the transmitted signals are continuous, it is possible to
consider as a criterion theminimization of Hα (Y ) [4],whichwill be called hereRényi’s
entropy for Continuous sources (RC). Again, the attractive simplicity of choosing
α = 2 and the use of Gaussian kernels in the Parzen window method lead to the
following estimate for the cost function:

ĴRC(w) = 1

L2

L−1∑

i=0

L−1∑

j=0

G2σ 2 (y(n − j) − y(n − i)) , (7)

which should be maximized, as the negative logarithm of entropy is not considered.
The RV Y can be either real- or complex-valued.

The RD and RC criteria make use only of the statistical information brought by the
filter output signal y(n), and as a consequence, it is necessary to avoid convergence
toward the trivial solution, which can be done through the application of a constraint
over the equalizer, such as keeping one of the taps equal to one [24].

3.2 Correntropy

Other emblematic entity in the context of unsupervised ITL is the measure called
correntropy,which can be viewed as a generalized correlation function [22,26]. It takes
into account not only the statistical distribution of signals but also their time structure,
which is particularly useful when treating signals with statistical dependence. It may
be defined as
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vY (m) = E
[
κ(Yn, Yn−m)

]
, (8)

where κ(·, ·) denotes a positive definite kernel function andm is the time delay between
samples. As in the Rényi’s entropy class, the Gaussian kernel is usually considered,
and a sample mean approximates the statistical expectation in Eq. (8), resulting in

v̂Y (m) = 1

L − m + 1

L∑

n=m

Gσ 2(y(n) − y(n − m)). (9)

In this case, an interesting criterion for blind equalization is the minimization of
the following cost function [26]:

Jcorr(w) =
P∑

m=1

(vS(m) − vY (m))2 , (10)

where vS is the correntropy of the source, vY is the correntropy of the equalizer output,
and P is the number of lags being considered. Equation (10) can be seen as a matching
of correntropies. It is usually assumed that vS(m) is analytically obtained, while vY (m)

is replaced by its estimate v̂Y (m).
Other approaches considering correntropy can be found in the literature, like [9,

16,17]; however, as we are considering here the specific problem of blind channel
equalization, the only criterion to be studied in this class is that of minimizing the cost
given by Eq. (10).

3.3 PDF Matching

The third class within the unsupervised ITL framework is associated with the BGR
theorem [1], which basically states that a channel can be successfully equalized if
the distribution associated with s(n) is identical to that of y(n). In that sense, the
set of criteria belonging to this class aims at the matching of distributions, which
is done mainly under the perspective of a quadratic divergence (QD) measure [13,
25]. Interestingly, this idea also establishes connections with the notion of mutual
information [22].

In the sequence, we will present the set of criteria belonging to this ITL class,
which is much more diversified than the previous ones. We start with the classical
QD criterion, then discuss its extensions/variations, and finally, we present the criteria
which have the peculiarity of not considering the modulus of the signals—including
a variation that is one of the contributions of this work.

3.3.1 The Quadratic Divergence Between Distributions

The most generic notion of a PDF matching by means of the QD measure is the
criterion proposed in [13]:
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JQD(w) =
∫

( fY p (v) − fS p (v))2 dv

=
∫

f 2Y p (v)dv +
∫

f 2S p (v)dv − 2
∫

fY p (v) fS p (v)dv,

(11)

where fY p (v) and fS p (v) are the PDFs associated with the RVs Y p = {|y(n)|p} and
S p = {|s(n)|p}, respectively. Note that this method considers the modulus of the
symbols to the power p, similarly to the p-order dispersion [8] discussed in Sect. 3.1.
Also, it is important to mention that the second term after the last equality of Eq. (11)
is generally disregarded, since it is assumed that fS p (v) is a target PDF and remains
fixed during the filter adaptation process; we will follow this assumption here.

In the equalization problem, the PDF fY p (v) is unknown and must be estimated.
Traditionally, this is done through the Parzen window method considering a Gaussian
kernel, which is particularly useful when computing the product between PDFs [22]—
this same idea is employed in the RD and RC criteria. As for fS p (v), since S p is
generally a discrete RV in communication problems, this PDF is considered as the
convolution between the Gaussian kernel and the discrete distribution of the source
pS(v) [13]:

f̂ S p (v) =
∑

i∈A
pS(si )Gσ (v − |si |p) (12)

where A is the alphabet of all possible occurrences of the RV S—associated with
s(n)—and si is the i th symbol ∈ A. Based on this, the QD cost function can be
estimated as

ĴQD(w) = 1

L2

L−1∑

i=0

L−1∑

j=0

G2σ 2(|y(n − j)|p − |y(n − i)|p)

− 2

L NA

∑

i∈A

L−1∑

j=0

G2σ 2(|y(n − j)|p − |si |p),

(13)

where NA is the number of elements in A. Note that we have not considered the
second term of Eq. (11) for obtaining (13).

The extension of this idea allowed the emergence of some extensions/variations,
such as the matching by sampling points (SPs) [14] and the reduced PDF matching
[13,15], which will differ in the computational cost, algorithmic robustness and other
features that we will discuss ahead.

3.3.2 Extended Formulations of the QD Cost Function

Other PDF matching-based criteria make additional simplifications over the QD cri-
terion given by Eq. (11). Basically, there are three main variations of this concept, as
shown in the following.

In the work of Santamaría et al. [25], instead of using the PDF fS p (v), the authors
suggest the use of an approximated distribution f̂S p (v) = Gσ (v − R̂p) in Eq. (11),
which basically results in a change in the last term of the cost estimation (13), being
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|si |p replaced by a constant named R̂p. Since this method encompasses a constant
parameter to establish the matching of PDFs, we refer to it as QD-C. It is important
to mention that the QD-C will only differ from QD if the modulus to the power p of
the s(n) symbols are not constant; otherwise, these methods will coincide.

The second alternative formulation of the QD cost can be achieved by consider-
ing a sampled version of the distributions fY p (v) and fS p (v) [14]. In this case, the
PDF fY p (v) is estimated at sampling points (SPs) vi and they should match the corre-
sponding values of fS p (v) at each SP.Mathematically, the cost function can be written
as

JQD−SP(w) = 1

Ns

Ns∑

i=1

( fY p (vi ) − fS p (vi ))
2 , (14)

where Ns is the number of sampling points. It is important to observe that since
there is no integration, the use of other kernels different from the Gaussian for PDF
estimation is also suitable for gradient computation [14]. Hence, the estimated cost
function becomes

ĴQD−SP(w) = 1

Ns

Ns∑

i=1

⎛

⎝ 1

L

L−1∑

j=0

κσ (vi − |y(n − j)|p) − 1

NA

∑

k∈A
κσ (vi − |sk |p)

⎞

⎠
2

(15)
Finally, the third variation of the QDmeasure is based on the idea that the quadratic

distance between the two PDFs is in fact measured by the last term of Eq. (11), which
is referred to as cross-IP; the other terms work just as normalization factors and can
be disregarded in the cost [13,15,22]. Thus, it is possible to consider a reduced cost
function of the form:

JQD−R(w) =
∫

fY p (v) fS p (v)dv. (16)

Following the canonical approach, i.e., considering the Parzen windowmethod and
Gaussian kernels, the estimated cost function may be written as:

ĴQD−R(w) = 1

L NA

∑

i∈A

L−1∑

j=0

G2σ 2
(|y(n − j)|p − |si |p) (17)

which is basically the last termof (13).Note, however, that the cost function (17) should
be maximized, while (13) should be minimized. As a curiosity, the cost function (17)
can also be intuitively formulated within a digital communication scenario under the
assumption of Gaussian noise disturbances, as pointed out in [18].

The QD-C, QD-SP and QD-R criteria presented here form a set of alternative QD-
based methods, whose main objective is to achieve greater mathematical simplicity
than that of the original QD criterion, defined in Eq. (11). However, the variations of
the QD is not limited by them, as will be described next.
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3.3.3 The Direct Matching of PDFs

The common feature of this PDF matching subclass is the non-application of the
modulus (to the power p) to the considered RVs, which, as will be discussed, allows
the adoption of the criteria in a broad set of scenarios. Under this perspective, there are
two possible approaches concerning the distribution of the source s(n): (i) it is assumed
that the distribution associated with the RV S can be approximated by a combination
of Gaussian kernels, as is similarly done in Eq. (12), allowing the direct application
of the Parzen window method for PDF estimation [11,12], and (ii) it is assumed
that the RV S is associated with a probability mass function (PMF)—i.e., a discrete
source—and a matching between PDF and PMF must be considered [6], which leads
to a reduction in the complexity and reveals itself to be a very important link to other
unsupervised ITL criteria. Although the authors assume multivariate distributions in
[6] (this approach is very suitablewhen dealingwith statistically dependent sources), in
thiswork,we consider a slightmodificationof the criterion proposed in [6] by assuming
only univariate distributions, as presented in the following. This new criterion, along
with other density matching criteria, will be discussed in the sequel.

3.3.4 The Matching of Two PDFs

As previously mentioned, the notion of PDFmatching can be directly employed in the
variables Y and S—associated with the signals y(n) and s(n), respectively, without
resorting to the application of the modulus. Following the same concept of measuring
(dis)similarity via the QD, we obtain the resulting cost function [11,12]:

JQD−D(w) =
∫

f 2Y (v)dv +
∫

f 2S (v)dv − 2
∫

fY (v) fS(v)dv, (18)

where, again, we will not consider the second term. Very interestingly, by adopting
the RVs Y and S instead of Y p and S p, we are not privileging any type of distribution,
hence either continuous or discrete distributions can be considered.

In order to estimate the cost in (18), the first approach points toward the use of the
Parzen window method for estimating both the distributions, and the result is very
similar to Eq. (13) (but with the direct samples of y(n) and s(n)—Eq. (12)—and not
their modulus to the power p) [11,12].

3.3.5 The Matching Between PDF and PMF

An alternative view bearing the very notion of the matching between a PDF and a
PMF [6] is assumed in the second approach, being able to provide a simpler estimation
methodwhendealingwith discrete sources (in a certain sense, the idea is closely related
to the sampled PDF given by Eq. (14)). Here, we modified the criterion proposed in
[6] to univariate distributions. The estimated cost becomes



212 Circuits Syst Signal Process (2018) 37:203–231

ĴQD−D(w) =
∫ (

f̂Y (v) − pS(v)
)2

dv

= 1

L2

L∑

i=1

L∑

j=1

G2σ (y(n−i) − y(n− j))

− 2

L

∑

i∈A

⎡

⎣pS(si )

⎛

⎝
L∑

j=1

Gσ (si − y(n− j))

⎞

⎠

⎤

⎦ ,

(19)

where pS(v) is the PMF associated with the RV S—note that we have not considered
the term involving the square of pS(v).

The source PMF can be estimated through samples—e.g., via histogram-based
methods—or assumed to be known. This criterion will be adopted here when the
source is discrete. For continuous sources, the previous approach—the matching of
two PDFs—will be used. Both of them will be referred to as QD-D and will be
distinguished according to the type of source (continuous/discrete).

3.3.6 Novel Simplified Matching Criterion

Similarly to the relation between the QD and QD-R, the term that really measures the
difference between the two PDFs (or the PDF and the PMF in the case of discrete
sources) in the QD-D criterion is given by the last term of Eq. (18). Thus, we propose
to use, as a criterion, only this last term—the term correspondent to the cross-IP, as in
Eq. (16). The resulting reduced cost functionwill be referred to asQD-DR. Just like the
QD-R, we discard the constant factor −2 so that the QD-DR cost must be maximized.
Similarly to the QD-D criterion, we will also consider two QD-DR versions, one for
continuous sources and the other for discrete ones. For the continuous case, the cost is
similar to Eq. (17)—but with the direct use of the signals y(n) and s(n) and not their
modulus—and, for the discrete case, the estimated cost function will be given by:

ĴQD−DR(w) = 1

L

∑

i∈A

⎡

⎣pS(si )

⎛

⎝
L∑

j=1

Gσ (si − y(n− j))

⎞

⎠

⎤

⎦ . (20)

The continuous or discrete cost will be distinguished according to the type of source.
In general terms, since the criteria presented in this topic share the commonnotion of

the matching of distributions, it is expected that their solutions occur at the same filter
coefficients values (or, at least, within a small neighborhood), as will be investigated
later in the next sections.

3.4 Summary of the ITL Criteria

In summary, there are threemain classes of the ITL criteria applied to the blind channel
equalization problem: the entropy-, the correntropy- and the density matching-based
criteria. Due to the number of criteria encompassed in this study, we provide a brief
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Table 1 Summary of the ITL criteria for blind channel equalization

Class Criteria Acronym Equation

Entropy Rényi’s entropy of the p-order dispersion RD (6)

Rényi’s entropy for continuous sources RC (7)

Correntropy Matching of correntropies corr (10)

Distribution matching The quadratic div. between distributions QD (13)

The QD-constant approximation QD-C –

The QD at samples points QD-SP (15)

The QD-reduced cost QD-R (17)

The QD-direct matching QD-D (19)

The QD-direct matching Reduced QD-DR (20)

list in Table 1 with all of them, including their acronyms and estimated cost equation
number.

In order to investigate these classes of methods, we will analyze in the following
the relationship between the ITL criteria and the classical approaches and also among
themselves, including a cost surface analysis. The aim of such analysis is to help
improve the understanding of the ITL framework as a whole, something that still
is lacking in the literature. Then, a performance comparison will be held in distinct
scenarios for equalization.

4 Connections with the Classical Approaches

The unsupervised ITL criteria raise interesting possibilities for extracting the statistical
information about the variables of interest in amore extensivemanner. Nevertheless, as
we intend to show, they also preserve strong connectionswith the classical equalization
theory, specially the constant modulus (CM) criterion. In that sense, we present in this
section some of these relations, which shall be of use to the improvement in our
understanding of these ITL criteria.

We start by the RD criterion, defined by Eq. (4), which presents a straightforward
connection to the p-order dispersion criterion in its strict formulation. The adoption
of Rényi’s entropy, in this case, is the key factor that contributes to the use of a richer
statistical content. For the continuous counterpart, the relationship between the RC
criterion and the classical framework is not so evident, but it shows itself clearer under
certain considerations. Specifically, from Eq. (7), if we assume expectation operators
instead of the samplemean and through a second-order Taylor series expansion around
zero of the Gaussian kernel, we obtain:

ĴRC(w) ≈ 1√
4πσ 2

(
1 − 1

2σ 2

(
σ 2

Y − rY

))
(21)
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where σ 2
Y is the variance of Y and rY is the correlation for all time differences, i.e.,

E
[
Yn−i Y ∗

n− j

]
for i, j ∈ Z (for the sake of simplicity, we dropped the notation of the

cost dependence on w). Since a scale factor and an additive constant do not impact on
the optimal points, it is possible to state that ĴRC(w) is proportional to the correlation
function rY , and, as the RC cost should be maximized, it results that rY should be
maximized as well. In that sense, from the classical standpoint, the RC criterion can
produce a signal y(n) as similar as possible to itself, but also causes the samples to be
colored.

For the correntropy, similarly to the RC criterion, it can be shown that its second-
order Taylor series expansion around zero results in a term proportional to the negative
classical correlation [5,22], i.e., vY (m) ≈ −rY (m); however, it is able to consider
arbitrary time differences m. Additionally, considering the specific case in which m =
0, μY = E[Y ] = 0 and the instantaneous estimate rY (0) ≈ y(n)y∗(n) = |y(n)|2, the
correntropy-based criterion given by (10) becomes (|y(n)|2 − rS(0))2, which is very
similar to the stochastic approach used in theCMalgorithm (CMA) [5]—except for the
constant term, which is now the source correlation rS(0) (under certain circumstances,
they can be equal). It is true that the correntropy-based criterion does not even consider
the delay m = 0 in its formulation, even though this standpoint reveals certain degree
of similarity to the CM cost and how the signal time structure is used.

In the third class of the blind ITL criteria, the most generic criterion based on the
QD measure can be represented by Eq. (13), which is composed of two terms. The
first one is basically the estimate of the RD criterion, Eq. (6), which, as we mentioned,
refers to the p-order dispersion criterion in its strict definition. For the second term,
the connection with the classical framework can be made more explicit through the
following assumptions: in Eq. (13), L = 1 and |si |p = R̂s , for all i ∈ A; in this case,
the second term of (13) reduces to

− 2G2σ 2(|y(n)|p − R̂s) ≈ 1

σ
√

π

(
(|y(n)|p − R̂s)

2

4σ 2 − 1

)
, (22)

where the approximation is the result of the second-order Taylor series expansion
around zero. Since neither a scale factor nor a constant subtraction affects the minima,
if R̂s = Rp, then the second-order approximation leads exactly to the same possible
solutions of the p-order dispersion algorithm—the same assertion can be held for the
CM criterion when p = 2.

Regarding the extended formulations of the QD measure, it is also possible to
make similar comparisons: for the QD-C criterion [25], the analysis is even more
straightforward, since the assumption of |s(n)|p = R̂s is already considered in the
cost formulation; for the QD-SP criterion [14], which also has the two mentioned
terms, the only difference remains at the SPs vi ; however, considering that vi is the
representation of a chosen sample of the RV Y p, the comparison remains the same,
and finally, the QD-R criterion [13,15] is basically the last term of the estimate of QD
criterion, and no further considerations are necessary.

The last blind ITL case to be analyzed is the QD-D criterion, which, differently
from the previous approaches, does not raise points of contact with the p-order dis-
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persion framework, at least from the adopted perspective. However, a closer look at
the two terms of Eq. (19) can also reveal very attractive relationships with the clas-
sical approach. The first term is identical to the estimate of the RC criterion, which
is in turn related to the correlation function. The second term, which gives rise to the
proposed QD-DR criterion, very curiously, can be linked to the mean-squared error
(MSE) method, a supervised approach. To understand this, we will assume a single
sample of y(n) for PDF estimation, and, again, Taylor series expansion, which results
in:

− 2E [Gσ (si − y(n))] ≈ −2√
2πσ

(
1 − 1

2σ 2 E
[
|si − y(n)|2

])
, (23)

for i ∈ A; this is similar to the mean-squared error signal, although it encompasses all
possible occurrences of s(n) in the expectation operator—represented by the symbols
si . Indeed, the efficacy of this approach lies in the proximity between samples y(n)

and s(n)—notice that the transmitted sequence s(n) is not known, only the probability
structure of its symbols.

So far, the search for connections with the classical equalization theory contributed
to better elucidate the modus operandi of each blind ITL criterion—since the classi-
cal approach, which was extensively studied along decades, provides more intuitive
tools—however, as we intend to show in the next section, a deeper understanding can
be achieved by studying the relationship among these criteria.

5 Blind ITL Criteria Interconnections

Although the classes of blind ITL criteria employ distinct concepts to deal with the
statistical information, they still present some common features—as also suggested
by the comparison to the classical equalization theory—that can be explored to find
analytical relations among them.

In some cases, we will provide illustrations of the surface contours of the cost
functions, which will be result of the simulations held in a scenario with a binary phase
shift keying (BPSK) source signal, a channel with transfer function H(z) = 1+0.6z−1

and an equalizer with two coefficients, w0 and w1—for the sake of visualization. The
parameters assumed for all ITL criteria were σ = 0.65 and L = 100. Observe that
this simple scenario is not sufficient to obtain general conclusions, but it might give
some important intuition on the interconnections. The comparison in more complex
scenario will be carried in the next section.

A straightforward relationship is one among the costs associated with the estimated
versions of the RD, QD and QD-R criteria, represented by Eqs. (6), (13) and (17),
respectively, which can be expressed as

ĴQD = ĴRD − 2 ĴQD−R. (24)

A similar expression was presented in [25], but the QD-R cost was not considered. In
that sense, Eq. (24) allows us to make additional remarks. Firstly, we have that ĴQD
must be minimized, which, taking as a reference Eq. (24), implies in the minimization
of ĴRD and in the maximization of ĴQD−R (due to the negative sign). However, in
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ĴQD(w)
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Fig. 2 Surface contours. a Surface contours of the QD, QD-R and RD costs. b Surface contours of the
QD-D, QD-DR and RC costs

the original context, the cost ĴRD—Eq. (6)—must be maximized, which indicates
that this cost plays a different role in (24): it points toward decorrelated samples.
Hence, regarding the relationship between the criteria QD and QD-R, the cost ĴRD
will contribute, to a greater or lesser extent, to modifications in the surface, so that the
optimum points of QD and QD-R are not coincident. Notwithstanding, it is expected
that their solutions be as close as possible, since both of them aim at the matching of
PDFs. In Fig. 2a, we illustrate the contours and solutions1 of the three mentioned cost
functions (for the sake of visualization, we exhibited only half of the QD-R and RD
costs—due to their symmetry along the axisw0 = w1, there is no loss of information).
It is possible to observe that the costs aremultimodal and, indeed, their global solutions
are close. However, the same does not hold for local solutions. For this reason, the
surface ĴQD—that is the combination of both ĴQD−R and ĴRD—presents several local
minima. Hence, additional care is necessary when using gradient-based methods for
optimization. We remark that the global solutions of these criteria will only coincide
when the zero-forcing (ZF) solution is achieved, i.e., when the channel is completely
equalized. Finally, Eq. (24) also highlights that the computational complexity of the
QD cost is higher than the RD or the QD-R costs, since it includes both of them.

A situation similar to Eq. (24) can be outlined, but involving the QD-D estimated
cost function. Basically, this cost can be related to the RC and the proposed QD-DR
estimated costs in the following manner:

ĴQD−D = ĴRC − 2 ĴQD−DR, (25)

and the comparison is analogous to that presented for Eq. (24). As illustrated in Fig. 2b,
theQD-D andQD-DRpresent surfaces similar to that of theQDandQD-R,with points
of maxima and minima close to each other. However, in contrast, the RC surface is
clearly different from that of QD-D, with global solutions relatively distant from each

1 The global maxima of the RD and RC criteria were obtained considering a unity norm restriction over
the filter coefficients.
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Fig. 3 Comparison of surface contours. a Surface contours of the QD-SP and the correntropy-based costs.
b Surface contour of correntropy cost or (the specific case) of QD-DR cost

other. Indeed, from Eq. (25), we know that the QD-D is much more similar to QD-DR
due to its greater weight (by a factor of two).

The resemblance between the correntropy-based criterion, Eq. (10), and the esti-
mated QD-SP, Eq. (15), is also worth mentioning, as it can clarify the points of contact
with the notions of matching of PDFs and correntropy. To illustrate, we will consider
the hypothetical case in which only one SP is used in the QD-SP, assumed to be
vi = |y(n)|p = |s(n)|p (being used vi = |y(n)|p in the first term and vi = |s(n)|p

in the second term inside parentheses in Eq. (15)). In such case, the estimated QD-SP
criterion can be expressed as

ĴQD−SP =
⎛

⎝ 1

L

L−1∑

j=0

κσ (|y(n)|p − |y(n − j)|p) − 1

NA

∑

k∈A
κσ (|s(n)|p − |sk |p)

⎞

⎠
2

=
⎛

⎝ 1

L

L−1∑

j=0

v̂Y p ( j) − 1

NA

∑

k∈A
v̂S p (k)

⎞

⎠
2

, (26)

which can be interpreted as the matching of the average correntropy with respect
to the RVs Y p and S p. Although the correntropy-based criterion does not consider
variables to the power p and computes differences in each delay m, in a certain sense,
both criteria make use of a common framework. In Fig. 3a, we illustrate the surface
contours of both criteria (we assumed P = 3 for correntropy). It is possible to note
that the use of the modulus of the signal and the different delays at the same time are
determinant to obtain completely different surfaces. In addition to that, we can say
from Fig. 3a that the QD-SP, as a PDF matching-based criterion, is much more alike
to the QD than the correntropy-based criterion.

Finally, the proposed criterion QD-DR can also be related to the correntropy. As
explained in [6], the second term of (19) can correspond to a more generic version
of correntropy: by assuming, for example, the matching of a PDF associated with
the signal u(n) = y(n) − y(n − m) and a PMF associated with the constant signal
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s(n) = 0 (i.e., a null signalwith pS(0) = 1), theQD-DRwill reduce to the correntropy.
Mathematically,

ĴQD−DR = 1

L

L∑

j=1

Gσ (y( j) − y( j − m))

= v̂Y (m),

(27)

which means that correntropy can also be viewed, from the standpoint of the QD-DR
criterion, as a measure of the similarity between the density associated with u(n) =
y(n) − y(n − m) and the discrete distribution associated with a null signal, similarly
as occurs with an error signal. In that sense, increasing the correntropy will make the
signal y(n) be constant as u(n) approaches zero. In Fig. 3b, we illustrate the surface
contours of the estimated correntropy for the equalizer output (and m = 1, i.e., v̂Y (1)),
which is equivalent to the ĴQD−DR cost for the conditions established in Eq. (27). Note
that the global maximum occurs for null weights of w, corresponding to the case in
which the signal y(n) is null and, consequently, u(n) = y(n) − y(n − 1) is null as
well. Hence, the distributions pU (v) and pS(v) are equivalent and the correntropy is
maximum, agreeing with the new presented perspective.

6 Performance Analysis

In this section, a performance comparison among the presented criteria will be car-
ried out considering four equalization scenarios and two optimization methods, viz.,
a stochastic gradient-based approach and an evolutionary search. Traditionally, the
gradient method is employed along with ITL criteria due to its lower computational
cost. However, as indicated in the previous section, the potential existence of local
optima can possibly lead this adaptation method to converge to suboptimal solutions,
depending on the parameter initialization. With this in mind, the second option—
the evolutionary search—shows to be more robust against local convergence, but
is computationally more costly, depending on the size of the search space, which
grows in function of the number of coefficients in the equalizer. Undoubtedly, a less
costly approach would be the adoption of several different initialization points for the
gradient-based algorithms, but, given the great computational power of nowadays, the
evolutionary search shows to be suitable for the analysis. The evolutionary algorithm
to be employed in the simulations is the differential evolution (DE) [29], a metaheuris-
tic whose population adaptation operators strictly use the information available in the
current solution candidates, instead of the classical random perturbations.

Performance evaluation, in practical blind equalization, is usually made with mea-
sures regarding the equalized samples, e.g., through an eye diagram analysis. However,
in our case, to exhibit a detailed profile of the criteria performance, we will count on
two ISI-based metrics, which are representative measures of how much ISI remains
in the equalization process. Usually, the quadratic ISI (QISI) measure is employed
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Fig. 4 Measured values for QISI and HISI. a Combined channel+equalizer impulse response. b Equalizer
impulse response

[14,15], defined as

QISIdB = 10 log10

(∑Mc
i=0 |ci |2

)
− max j |c j |2

max j |c j |2 , (28)

where c = [c0 c1 . . . cMc ]T is the combined channel + equalizer impulse response,
with length Mc+1, but a promising ISI measure capable of considering the HOS
involved in the process is the entropy-based ISI (HISI) [20], defined as

HISIdB = 10 log10

(
−

Mc∑

i=0

α|ci |log2 (α|ci |)
)

, (29)

where α = 1/
∑

i |ci |. By considering a richer statistical content, the HISI measure
shows to be more adequate for scenarios with non-Gaussian distributed sources and
low noise interference. To illustrate the HISI and the QISI features, we consider below
two cases: Firstly, the equalizer can achieve the ZF condition, and, secondly, when the
ZF condition is not attainable.

When a ZF solution is attainable, both QISI and HISI provide similar performance
measures. Considering the channel+equalizer impulse response c = [α 1− α]T, with
α varying from 0 to 1, we obtain the measured values for QISI and HISI shown in
Fig. 4a, where it is possible to note that the optimal (minimal) values for both QISI
and HISI happen at α = 0 and α = 1 (the ZF solutions). However, for intermediate α

values, the HISI measure weights the ISI effect differently from the QISI measure.
When the ZF solutions are not attainable, the difference between HISI and QISI

becomes sharper. We consider the case in which the channel has an impulse response
H(z) = 1 + 0.6z−1, and the equalizer, W (z) = 1 + αz−1. By varying α from −1 to
+1, we obtain the measures of QISI and HISI presented in Fig. 4b. Now, the optimum
value for QISI is different from that of HISI (denoted by red crosses in the figure).
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Fig. 5 Eye diagram for the optimal cases of QISI and of HISI. a Optimum QISI. b Optimum HISI

If it is considered that the source is a BPSK modulated signal, the performance of
each optimum in terms of the QISI and the HISI can be evaluated considering the
classical eye diagram, as shown in Fig. 5. It is clear that both of them lead to a open-
eyed solution for W (z); however, the ISI peak measured in the optimum QISI case
(0.8475) is higher than the HISI case (0.7200), and the noise margin is narrower in the
QISI case (0.5765 for QISI and 0.6400 for HISI). This indicates that, for this case, the
HISI measure can be more adequate as a performance measure instead of the QISI.
Indeed, in [20], it is shown that the HISI can be an interesting performance measure
when the source is not Gaussian, e.g., for sparse and uniform sources. For the Gaussian
case, the classical QISI is sufficient. In view of this, we will make use of both these
measures, always considering the scenario at hand.

Other key point to be considered in simulations is the parameter adjustment proce-
dure for the ITL criteria and the optimization methods, as described in the sequence.

6.1 ITL Criteria Parameters

The common parameters of the ITL criteria are the kernel size σ and the window
length L . The additional parameters are the number of lags P in the correntropy-
based criterion, and the dispersion p for RD, QD, QD-C, QD-SP and QD-R.

The kernel size σ , in special, can significantly change the behavior of the criteria, as
it has the capability ofmodifying the cost surface. Basically, it is known that an increase
in the σ value has a smoothing effect on the cost function, which, on the one hand, can
contribute to reducing the number of local optima and to a faster convergence, but,
on the other hand, reduces the precision of the solutions, causing the ISI to increase
[13,22].

In order to obtain the best performance, the adjustment of σ for each criterion and
scenario was made through a line search—in the range from 0 to 2 (with resolution of
0.01)—by measuring the HISI associated with the best individual obtained by the DE
(it was assumed that therewas a set of test samples andDEparameters suitable for each
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scenario—as will be described next). The chosen value of σ was that corresponding
to the lowest measured HISI.

With respect to the window length, the higher the (integer) value of L , the better the
cost estimation [21], but also the higher the computational cost. In that sense, there is
a trade-off. To establish a fair comparison among criteria, we adopted a single value
of L for all criteria in each scenario. Naturally, the number of samples L depends on
the distributions of the source and the equalized signal—continuous distributions, for
instance, tend to demand a larger number of samples. In our simulations,we considered
a few hundred of samples, depending on the scenario.

The number of lags P and the order of dispersion p were chosen according to the
usual practice in the channel equalization task, being P a number about 10 delays [26]
and p = 2 [13–15,24].

Finally, the source-related variables—like the source correntropy vS(m), the mod-
ulus of symbols |s(n)|2 or the source probability pS(v)—are all assumed to be known
and their analytic values are considered in the simulations.

6.2 Parameters of The Optimization Methods

The optimization methods have parameters to be adjusted as well. In the case of the
gradient-based search, it is necessary to adjust the step size μ; for the metaheuristic
DE, the parameters are: the population size Np, the population adaptation step size F ,
the combination rate C R and the number of iterations [29].

The step size μ of each algorithm was adjusted aiming at a fast convergence.
However, to keep a fair comparison, the value of μ was restrained so that the
mean displacement between iterations (in terms of the Euclidean distance—i.e.,
||w(n+1)−w(n)||) after convergence was approximately the same for all algorithms.
It is also important to mention that the gradient-based algorithms for the criteria RD,
RC, correntropy, QD, QD-C, QD-SP and QD-R can be found in [4,13–15,24–26]. The
QD-D and QD-DR algorithms are presented in appendix, since the first is a modifica-
tion of [6] and the second was developed in this work. In all gradient-based methods,
we have not considered constant multiplicative factors on the gradient, as done in the
original proposals of the algorithm.

At last, the DE parameters F and C R can assume fixed values for all scenarios,
since the search space exploration pattern is basically the same. For all cases, we
assumed F = 0.5 and C R = 0.9 and only changed the population size Np and the
number of iterations, according to the scenario at hand. These values were empirically
chosen, observing the HISI performance of the best individual in the population.

6.3 First Scenario—BPSK Modulation

In the first simulation scenario, we consider the classical BPSK modulation, whose
symbols belong to the alphabet {+1,−1}. The independent and identically distributed
(i.i.d.) source is transmitted through the channel

H1(z) = 0.2258 + 0.5161z−1 + 0.6452z−2 − 0.5161z−3. (30)
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Fig. 6 Scenario 1—Average HISI/QISI performance for the gradient-based algorithms adaptation process.
a HISI performance. b QISI performance

There is also the presence of additive white Gaussian noise (AWGN) with signal-to-
noise ratio (SNR) level of 30 dB.

For the equalizer, we assumed an FIR filter with 9 coefficients (i.e., M = 8).
The DE parameters were chosen to be Np = 100 and 400 iterations (we considered
F = 0.5 and C R = 0.9 fixed). As we deal with an i.i.d. discrete source, the criteria
RD, QD, QD-SP, QD-R, QD-D and QD-DR are suitable for this scenario (note that
the criteria QD and QD-C are equivalent, since the source modulus is constant). On
the other hand, since the RC are aimed at continuous sources and correntropy at
dependent sources, they were disregarded. We adopted L = 100 for all analyzed
criteria and, after performing a linear search for the parameter σ , we obtained the
values σRD = 20, σQD = 0.87, σQD−SP = 1.48, σQD−R = 0.47, σQD−D = 0.50 and
σQD−DR = 0.46. For the QD-SP criterion, we chose the SP vi = {1}; for the RD
criterion, we fixed the equalizer center tap at unity in order to avoid the convergence
to the trivial solution. Next, the step size μ of each criteria was adjusted as previously
described. The resulting values were: μRD = 200, μQD = 0.01, μQD−SP = 30,
μQD−R = 0.01, μQD−D = 0.02 and μQD−DR = 0.1 (the mean Euclidean distance
between iterations—after convergence—was 7×10−4). We also considered the CM
criterion (with μC M = 0.007) due to its known good performance in this scenario.

After setting the parameters, we carried out 30 independent simulations and mea-
sured the performance in terms of HISI and QISI obtained by the gradient-based
algorithms—using the center spike initialization [7]—and by the DE solution for each
criterion. Figure 6 shows the average performance in the adaptation process and, in
Table 2, the average performance of the best individual after applying the DE opti-
mization method for the mentioned criteria. Starting with the analysis of the proposed
QD-DR algorithm, Fig. 6a shows that it had a satisfactory performance, attaining an
HISI value of −0.3948 dB while QD-SP, RD and CM attained about −0.8dB. The
QD-SP algorithm presented the fastest convergence, followed by QD-DR and RD
algorithms. Indeed, one of the main features associated with the QD-SP algorithm
is its fast convergence when compared to other algorithms [14]: The convergence
occurred after 160 iterations, approximately, while for the QD-DR and RD—that are
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Table 2 HISI of the best individual of the DE metaheuristic

Criterion Scenario 1 Scenario 2

HISI [dB] QISI [dB] HISI [dB] QISI [dB]

CM −8.22 × 10−1 −24.99 5.10 −0.22

RD −6.17 × 10−1 −26.26 4.81 −2.74

QD −6.68 × 10−1 −24.96 4.85 −2.35

QD-C – – 4.83 −2.10

QD-SP −8.35 × 10−1 −25.29 4.80 −2.42

QD-R −4.42 × 10−1 −24.08 4.27 −4.28

QD-D −9.01 × 10−1 −25.13 5.17 +1.61

QD-DR −8.64 × 10−1 −25.17 4.16 −0.30

also fast algorithms—needed about 300 and 400 iterations, respectively. The QD, QD-
R and QD-D algorithms converged to solutions—probably local optima—associated
with higher values of HISI. If analyzed in terms of QISI, Fig. 6b, the comparison,
in general lines, is similar to that of HISI, being the QD-SP, RD and CM algorithms
responsible for attaining the best performance. The main exception is the QD-DR,
which, from the QISI standpoint, indicates a slow convergence and a greater distance
from the other criteria in comparison with the HISI case.

Using the DE optimization method for the studied criteria, we observe from Table 2
that, in terms of HISI, not only the QD-DR but also the QD, QD-R and QD-D were
able to improve their performances in comparison with their correspondent gradient
algorithms, which indicates that they had converged to local optima. On the other
hand, the CM, RD and QD-SP criteria obtained a similar performance. The best HISI
performance in this case was that associated with the QD-D criterion, followed by
the QD-DR, QD-SP and CM criteria. From the QISI perspective, the DE performance
associated with the CM, QD, QD-SP, QD-D and QD-DR criteria are close (about−25
dB). Meanwhile, the RD criterion achieved the best QISI performance, and the QD-R
the worst. It is important to emphasize that we consider the HISI performance a more
suitable evaluation metric when dealing with non-Gaussian signals, as is the case of
the source signal considered here [20].

6.4 Second Scenario—16-QAM Modulation and Impulsive Noise

Complex multilevel modulation schemes—such as 8-PAM, 16-QAM and 32-QAM—
increase the information rate, but cause the equalization process to become more
difficult. In this scenario, we will investigate the ITL criteria performance for an i.i.d.

16-QAM modulated source; furthermore, we also consider the presence of impulsive
noise, for which the ITL criteria are known to exhibit a certain robustness.

The channel is the same considered in the previous case, except for introducing a

phase rotation of 45 degrees, i.e., H2(z) = H1(z)e
jπ
4 . The impulsive noise was mod-



224 Circuits Syst Signal Process (2018) 37:203–231

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.5

2

2.5

3

3.5

4

4.5

5

Iterations

H
IS

I [
dB

]

QD−SP

QD−R

QD−DR
QD−D

RD
QD−CQD

CM

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−20

−15

−10

−5

0

5

Iterations

Q
IS

I [
dB

]

QD−SP

QD−R

QD−DR QD−D

RD

QD−C
QD

CM

(a) (b)

Fig. 7 Scenario 2—Average HISI/QISI performance for the gradient-based algorithms adaptation process.
a HISI performance. b QISI performance

eled as the combination of two Gaussian distributions [26] with different variances.
The probability of occurrence of the small variance Gaussian was set to 0.85, while
the large variance Gaussian was 0.15. The variances were adjusted so that the resulting
SNR was 22 dB.

The equalizer was assumed to have 7 complex coefficients, which, considering the
real and complex parts, resulted in 14 coefficients to be adjusted. In view of this large
search space, the used DE parameters were Np = 200 and 500 iterations. The criteria
considered for this scenario were the same of the previous one plus the QD-C. We
adopted L = 150 for all, and from the linear search for σ , we obtained σRD = 20,
σQD = 0.77, σQD−C = 0.79, σQD−SP = 1.03, σQD−R = 1.02, σQD−D = 0.72 and
σQD−DR = 0.36. For the filter to be trainedwith the RD criterion, the center tap is fixed
at 1; for the QD-SP criterion, we adopted the SPs {0.2, 1, 1.8} (since the transmitted
symbols were (±{1, 3} ± {1, 3} j)/

√
10), and for the QD-C, we set R̂p = 1. The

step sizes for the gradient-based algorithms were adjusted so that the coefficients
mean Euclidean distance between iterations was of 10−3, resulting in μC M = 0.001,
μRD = 130,μQD = 0.03,μQD−C = 0.03,μQD−SP = 2.5,μQD−R = 0.15,μQD−D =
0.32 and μQD−DR = 4.2.

In Fig. 7, we illustrate the mean performance of the gradient-based algorithms
adaptation process in terms of HISI and QISI for 30 independent simulations. Com-
paring to Fig. 6, we note that the QD-SP algorithm is not the fastest anymore, being
replaced by the QD-DR algorithm; however, it attains the lowest HISI/QISI level. The
CM becomes even slower, but still converges to a low level of HISI/QISI. The QD-R
algorithm now converges to a better optima, but with HISI/QISI level higher than the
QD-SP; the RD algorithm, on the other hand, is affected by the multilevel modulation
and loses performance (which possibly also affects the QD and QD-C algorithm, due
to their connection, as Eq. (24) shows); the QD-D algorithm maintains the HISI level
achieved in the previous case. Finally, the QD-DR algorithm presents an improvement
in terms of the QISI measure, being close to the QD-R performance.

Interestingly, the analysis of the signal scatter plots can also be clarifying in this
case, since the ISI measures do not consider phase rotation. In that sense, we displayed
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Fig. 8 Scenario 2—Scatter plot of the signals involved in the equalization process

in Fig. 8 these plots of the transmitted, s(n), and the received signals, x(n), as well
as the filter output, y(n), trained by the CM, RD, QD-SP, QD-R, QD-D and QD-
DR algorithms (considering a single simulation). It is possible to observe that the
resulting CM- and RD-trained filters generated signals with rotated constellation and
non-easily identifiable symbols; with respect to the QD-SP and QD-R trained filters,
the symbols can be identified, but the phase rotation persists; for theQD-DandQD-DR,
the symbols are identifiable and there is no phase rotation, which is a very interesting
property inherent to these criteria, since they are not based on the modulus of the
signals.

In Table 2, we also show the performance obtained by the DE optimization method.
It is possible to see that the mean HISI/QISI performance in 30 simulations are
equal or higher than that obtained from the gradient-based method: Although the
DE metaheuristic presents a wider search potential, there is no guarantee of optimal
convergence. Indeed, since we have a large search space, the DEmethod has generally
converged to suboptimal solutions. Undoubtedly, the DE parameter Np and the num-
ber of iterations could have been incremented in order to expand the search potential,
but the computational burden would become extremely costly. Nonetheless, the crite-
ria QD-R and QD-DR performed better with the DE in terms of HISI. From the QISI
perspective, the QD-R followed by RD, QD-SP and QD criteria were better, but we
emphasize that, as the source is discrete (and uniformly distributed) and the noise is
non-Gaussian, the HISI measure is more adequate.

6.5 Third Scenario—Continuous Source

The ITL criteria also admit application in scenarios where the sources are continuous.
To illustrate, we consider a Laplacian source transmitted over the recursive noiseless
channel:

H3(z) = 1

1 − 0.5z−1 . (31)
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Fig. 9 Scenario 3—Average HISI/QISI performance for the gradient-based algorithms adaptation process.
a HISI performance. b QISI performance

The DE parameters were set as Np = 100 and 300 iterations. The equalizer is an
FIR filter with M = 2 (3 coefficients), whose weights were adapted by the criteria RC,
QD, QD-SP, QD-R, QD-D and QD-DR (being the continuous version for the QD-D
and QD-DR)—RD and correntropy were not addressed as they consider discrete and
colored sources, respectively; the QD-C does not perform well in this case and was
also disregarded. For the RC criterion, the central tap of the filter was set fixed to
unity. For the family of criteria based on PDF matching, a fixed set of 150 samples
randomly generated from the Laplacian distribution was considered—as it is assumed
that the source distribution is known—to be used as the reference signal s(n) in the
cost functions. Naturally, this set differs from the actual transmitted source, which is
unknown by the receiver. For the QD-SP, we adopted the SPs {0, 1, 2, 3}. The window
length was chosen to be L = 200 for all analyzed criteria.

To determine the kernel sizes, we made the linear search and found: σRC = 0.49,
σQD = 0.18, σQD−SP = 0.87, σQD−R = 0.05, σQD−D = 0.70 and σQD−DR = 0.96.
The step sizes were adjusted to μRC = 0.004, μQD = 0.0008, μQD−C = 0.001,
μQD−SP = 0.08, μQD−R = 0.0008, μQD−D = 0.025 and μQD−DR = 0.004, with
coefficients mean Euclidean distance between iterations of 0.0001.

ThemeanHISI/QISI performance after 30 independent simulations for the gradient-
based algorithms is illustrated in Fig. 9. It is possible to note that the RC and QD-D
algorithms achieved the lowest levels of HISI/QISI. Note that both algorithms present
a common term, as shown in Eq. (25). The difference, given by the term correspondent
to QD-DR, on the other hand, causes the QD-D algorithm to behave differently from
the RC. From the HISI point of view, the QD-D algorithm performs similarly to the
RC algorithm until 4000 iterations, when it converges to a minima with HISI level of
0.4 dB, while the other remains at about −0.03 dB. Most probably, the presence of
a local optimum in the QD-DR algorithm—which causes him to lose performance—
also influences the QD-D. The QISI measure reveals an inverted perspective for the
RC and QD-D performance, but again, the use of the HISI is more suitable. All the
other criteria converge to local optima.
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Table 3 HISI of the best individual of the DE metaheuristic

Criterion Scenario 3 Criterion Scenario 4

HISI [dB] QISI [dB] HISI [dB] QISI [dB]

RC 0.52 −09.16 Corr. +3.40 −01.28

QD 2.23 −05.68 QD −2.44 −12.92

QD-SP 2.15 −07.49 QD-SP −3.81 −29.95

QD-R 3.94 +01.47 QD-R +2.61 −04.96

QD-D 1.08 −12.30 QD-D −5.86 −36.72

QD-DR 3.95 −00.44 QD-DR +2.48 −05.11

By applying the DE optimization method, we measured the average HISI/QISI
performance presented in Table 3. The result is very similar to the gradient-based
optimization method in this case, except for the QD and QD-SP criteria, which have
now improved their performance, but still remain worse than the RC and QD-D.

Therefore, this illustrative case reveals that the term involving the entropy of y(n)—
i.e., the term relative to the RC criterion—is essential when dealing with continuous
sources, being the RC and QD-D criteria the most suitable for this scenario. Although
the QD and QD-SP present a term similar to that of the RC, they are based on the
modulus of y(n), which reduces the performance. The QD-R and QD-DR criteria do
not have neither of these terms and perform poorer.

6.6 Fourth Scenario—Dependent Source

In the last scenario, we analyze the performance of the ITL criteria when the source is
characterized by statistical dependence. In this case, it is admitted that an i.i.d. BPSK
signal is submitted through a codification process, which can be modeled by a linear
FIR filter, named pre-coder [6,26], with transfer function P(z) = 1 + 0.5z−1. The
resulting signal of this process—named s(n), with symbols {−0.5,−1.5, 0.5, 1.5}—is
then transmitted through the channel, here assumed to be

H4(z) = 0.1856 − 0.9650z−1 + 0.1856z−2. (32)

There is also the presence of AWGNwith SNR level of 30 dB. It is important to remark
that the pre-coder is responsible for introducing the temporal dependence in the source,
being not required any additional structure at the receiver, since the objective here is
to recover at the equalizer output the same temporally dependent source.

The equalizer is a 5-coefficient filter, being the DE parameters Np = 300 and
500 iterations enough for an extensive exploration of the search space. The criteria
considered in this simulation case were the correntropy-based, QD, QD-SP, QD-R,
QD-D and QD-DR—the RD, RC and QD-C were not considered in the analysis as
they are aimed at independent sources or are unable to approach the desired PDF.
For the correntropy-based criterion, it was chosen P = 5; for the QD-SP, the SPs
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Fig. 10 Scenario 4—AverageHISI/QISI performance for the gradient-based algorithms adaptation process.
a HISI performance. b QISI performance

{0.25, 2.25}, and the filter initialization for the gradient-based algorithms was w =
[0 0 1 0 0]. We adopted L = 100 for all analyzed criteria; the kernel size values
were σCorr = 1.74, σQD = 0.37, σQD−SP = 0.18, σQD−R = 1.78, σQD−D = 0.33
and σQD−DR = 0.26, and the step sizes μCorr = 0.5, μQD = 0.015, μQD−SP = 0.01,
μQD−R = 3, μQD−D = 0.1 and μQD−DR = 0.1 (with the mean Euclidean distance of
the coefficients between iterations of 0.001).

Figure 10 shows the average HISI/QISI performance for 30 independent simu-
lations. It is possible to see that the QD-D and QD-DR algorithms have similar
performances, with the fastest convergence and lowest HISI/QISI. The QD-SP and
the correntropy-based algorithms, although slower, also converge to good solutions,
even though the QD-SP algorithm attains lower HISI/QISI level with faster conver-
gence in comparison with correntropy. The QD and QD-R algorithms converge to
local optima.

Table 3 exhibits the mean HISI/QISI performance obtained with the DE optimiza-
tion method. From both HISI and QISI measures, the QD-D, QD-SP and QD criteria
showed the best performances (which reveals that the QD algorithm converged to a
local solution). Indeed, these criteria are able to extract the temporal dependencies
included in the PDFs—as pointed out in Sect. 4, where the second-order approxima-
tion revealed correlation-like functions—and are able to provide good solutions even
for dependent sources. The correntropy-based and the QD-DR criteria, curiously, had
their performance reduced in comparison with the correspondent gradient-based algo-
rithms. Considering that the DE offers greater probability of global convergence, this
means that there are local solutions (like the ones in which the algorithms converged)
related to these criteria capable of reducing the HISI/QISI to levels lower than that
associated with the global solutions, which is not desired. Note that this similar behav-
ior between correntropy and the QD-DR criteria is in accordance with the comparison
held in Sect. 5.

In general, statistically dependent sources can provoke changes in the criteria
cost surfaces [19], but the QD-D (principally, its multivariated version [6]) and the
correntropy-based criteria are known to be more robust in this type of scenarios [5].



Circuits Syst Signal Process (2018) 37:203–231 229

Correntropy needs additional care, since the source can lead to similar values of cor-
rentropy for different delays and the performance can be reduced. If an evolutionary
algorithm is employed, the QD-SP and QD are also possible candidates.

7 Conclusion

In this work, the objectives are twofold: the proposition of a new PDF matching
criterion and the presentation of a general overview of the main ITL criteria for blind
channel equalization. In the former, the notion of the matching was considered by
means of the cross-term product between the two PDFs (or between a PDF and a
PMF), reducing the computational cost. The theoretical analysis of theQD-DR showed
that such criterion can be linked to the well-known mean-squared error criterion,
when compared to the classical approaches, and can be viewed as an extension of the
correntropy measure, when analyzed in the ITL framework. In terms of performance,
the algorithm presented good results in the scenarioswith discrete independent sources
and, together with the QD-D criterion, had one of the best performances in the case of
dependent sources. The only situation in which it was not able to converge to a good
solution was in the presence of continuous sources, case in which the majority of the
algorithms also failed.

In the second objective, the ITL criteria overview revealed the connections with the
classical framework, where it was possible to associate: terms of the CM criterion to
the RD, correntropy and some of the PDF matching-based criteria, and terms of the
supervised MSE in the QD-D and, as already mentioned, the QD-DR criteria. We also
showed the relationships among some of the ITL criteria, like the QD, RD and QD-
R, and the QD-D, RC and QD-DR, whose surface analysis indicated similar global
optima solutions. Also, the QD-SP encompasses a correntropy-like comparison.

In the performance analysis considering both the gradient-based algorithm and
the DE optimization method, the criteria QD-SP, QD-D, QD-R and also the QD-DR
demonstrated better performance for discrete sources in the chosen scenarios (from
this set, the QD-DR presents the lower computational cost, followed by the QD-R and
QD-SP). For constant modulus modulations, the RD criterion can also be included
in this group. We highlight the QD-D and QD-DR criteria performance for complex-
valued modulations, since these methods are able to recover phase distortions. When
dealing with continuous sources, the simulation case revealed that the QD-D and RC
are the most promising criteria, being the QD-D more complex but more robust. For
statistically dependent sources, the best performances in simulations were achieved
by the QD-D, QD and QD-SP (the QD-SP algorithm presents lower complexity but is
slower)—the correntropy-based criterion, although not performing well in this case,
is also considered to be a suitable criterion for dealing with dependent sources.

In general, the set of ITL criteria studied represents efficient tools for dealing with
the task of blind equalization; however, each criterion has its particularity that can
be better explored according to the scenario at hand, as we have shown. Indeed, the
ITL framework provides powerful resources capable of dealing with a large content
of information; notwithstanding, the manner in which the statistical information is
employed in each criterion can privilege certain types of data. In that sense, in view
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of frontier research topics that deal with unusual distributions, we expect that the ITL
frameworkwill continually grow in order to encompass different signal characteristics.

Appendix: QD-D and QD-DR Gradient-Based Algorithms

The stochastic gradient-based algorithms rely on adaptive filters whose weights are
updated in every iteration according to

w(n+1) = w(n) − μ∇ J (w(n)), (33)

where ∇ J (w(n)) is the gradient vector of J (w(n)) and μ is the step size.
Hence, for the QD-D cost, given by Eq. (19), the gradient is

∇w ĴQD−D = 1

2σ 2L2

( L∑

i=1

L∑

j=1

G2σ (y(n−i) − y(n− j))

· (y(n− j)−y(n−i)) (x(n−i)−x(n− j))

)

− 2

σ 2L

∑

i∈A

⎡

⎣pS(si )

⎛

⎝
L∑

j=1

Gσ (si − y(n− j)) (si − y(n− j))x(n− j)

⎞

⎠

⎤

⎦

(34)
which can be directly replaced in Eq. (33) to form the QD-D gradient-based algorithm.
The term 1/σ 2 is a common factor that usually is disregarded.

The QD-DR gradient is basically the second term of Eq. (34)—and the factor 2/σ 2

can be disregarded.
For the continuous counterpart, the samples of s(n) are used instead of the source

PMF, and the QD-D (and QD-DR) gradient only differs on the second term, as shown
in [12].
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