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Abstract Blind source separation (BSS) techniques aim at recovering the original
source signals from observed mixtures without a priori information. The bivariate
empirical mode decomposition (BEMD) algorithm combined with complex indepen-
dent component analysis by entropy bound minimization (ICA-EBM) technique is
proposed as an alternative to separate convolutive mixtures of speech signals. The
empirical mode decomposition (EMD) is a local self-adaptive decomposition method
that allows analyzing data fromnon-stationary and/or nonlinear processes. Its principle
is based on the sequential extraction of different amplitude and frequency modulation
single-component contributions called intrinsic mode functions (IMFs). The BEMD is
an extension of the EMD to complex-valued signals. First, the convolutive mixtures in
the frequency domain are decomposed into a set of IMFs using the BEMD algorithm,
and then, the complex ICA-EBMmethod is applied to extract the independent sources.
The performance of the proposed approach is tested on real speech sounds chosen from
available databases and compared to the results obtained via conventional frequency
ICA and BEMD-ICA-based separation for convolutive mixtures. Simulation results
show that the proposed method of BSS outperforms the BEMD-ICA separation tech-
nique for convolutive mixtures and conventional frequency ICA.
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1 Introduction

Blind source separation (BSS) techniques aim at recovering the original source signals
from observed mixtures based on a few general assumptions about the data. The BSS
has much evolved during the last two decades and found a wide range of applications
which are currently used in major areas of research such as multichannel telecom-
munications [61], biomedical signal analysis [18,42,51], multispectral astronomical
imaging [48], geophysical data processing [57], detection and radar localization [6]
andmany other applications [27,32–34]. In some simple situations such as in biomedi-
cal signal processing [22], each recording of the mixture can bemodeled as a weighted
sumof the source signals. Thismodel is known as instantaneousmixture. Inmany real-
world applications such as in radio communications [16] and multipath propagation
of acoustic signals [35], each recording of the mixture is modeled as a weighted sum
of delayed versions of the source signals. This model is called convolutive mixture.

The problem of BSS can be formulated either in the time domain or in the frequency
domain. Time-domain BSS methods are computationally cumbersome. Frequency
domain BSS techniques are computationally more efficient; moreover, the convolutive
mixture is turned into an instantaneous mixture in the frequency domain. The most
important hypothesis in BSS is that the sources are mutually independent or, mutually
uncorrelated over time. This assumption is exploited by BSS methods to extract the
sources. Most techniques of BSS use a cost function as a measure of the statistical
independence of sources.

A large number ofBSS algorithms have been proposed in the literature. Independent
component analysis (ICA) is the conventional statistical method commonly used in
BSS. The ICA technique transforms the data vector into a vector whose components
are statistically independent. The ICA techniques for BSS are based on high-order
statistics to optimize the cost function usingmaximum likelihood,mutual information,
entropy and negentropy and non-Gaussianity measures [2,9,10,15,43,44,52].

Recently, a new ICA algorithm called independent component analysis by entropy
bound minimization (ICA-EBM) has been introduced. The technique uses the pro-
jected conjugate gradient and accurate estimates of the entropy and can efficiently
exploit both the non-circularity and non-Gaussianity to solve the problem of BSS by
minimizing mutual information [37]. The major advantage of ICA-EBM is that it does
not require any prior knowledge about source distribution. In [25], an extension of the
ICA-EBM algorithm called independent component analysis by entropy rate bound
minimization (ICA-ERBM) has been proposed. The method is based on ICA-EBM
and a flexible correlation model. The ICA-ERBM has been used in [12] to separate
and classify the EEG fatigue data.

A drawback of the ICA-based techniques for BSS is their restricted application to
real-valued signals. Furthermore, they cannot be directly used to solve the problem of
BSS of complex-valued signals. The problem of separating complex-valued signals
arises inmany situations. Indeed, the separation of convolutivemixtures of real-valued
signals is turned into the separation of instantaneous mixtures of complex-valued sig-
nals via the Fourier transform. Several algorithms have been proposed to solve the
problem of BSS in the case of complex-valued signals [1,19,26]. In general, com-
plex ICA algorithms exploit two signal characteristics which are the non-Gaussianity
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and the non-circularity. In the literature, some algorithms ignore the non-Gaussianity
and exploit only the non-circularity by using the joint diagonalization of the covari-
ance and complementary covariance matrices [17,49], while other algorithms exploit
only the non-Gaussianity as in [55] where the estimation of the unmixing matrix for
each frequency is performed using the maximum likelihood with an adaptive arrange-
ment to apply some frequency coupling for neighboring frames, and in [5] where the
electroencephalographic signals have been decomposed using complex infomax ICA
algorithm in order to capture and understand their dynamics.

Several methods that exploit both the non-Gaussianity and non-circularity of the
sources have been developed. In [47], the correlation magnitude has been used as
a nonlinear constraint function for negentropy maximization in order to perform a
permutation correction. In [20], an extension of the algorithmproposed in [17] has been
presented. The technique uses the normalized kurtosis adapted to non-circular sources
as a cost function. These algorithms cannot solve the problem of BSS for non-circular
Gaussian sources. Moreover, the presence of outliers results in a degraded separation
performance. In [38], the ICA-EBM algorithm developed in [37] has been extended
to complex-valued signals. The technique is based on the projected conjugate gradient
and provides accurate estimates of the entropy by bounding the entropy estimates;
moreover, it approximates a wide range of probability density functions.

The empirical mode decomposition (EMD) [29] is a local self-adaptive decomposi-
tionmethod that allows analyzing data fromnon-stationary and/or nonlinear processes.
Its principle is based on the sequential extraction of different amplitude and frequency
modulation (AM–FM) single-component contributions called intrinsic mode func-
tions (IMFs). The EMD has given rise to many research works on both theory and
applications [8,11,13,21,24]. Several improved versions of the EMD algorithm have
been proposed in the literature. The ensemble empirical mode decomposition (EEMD)
[60] and the complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) [14,40] have been used for noisy data processing. The EMD algorithm
has been combined with ICA in several studies to separate the source signals from
observed mixture recordings. In [62], an EMD-ICA-based method has been used to
separate the source signals from single-channel and two-channel recordings. In [45],
the EEMD combined with the ICA algorithm has been used to classify neuromuscular
disorders based on the data recorded from a single-channel EMG sensor. An adaptive
algorithm called local mean decomposition which resembles in its principle to the
EMD has been proposed in [56] to demodulate amplitude and frequency modulated
signals; also it has been used in [28,39] to solve the problem of BSS.

Relying essentially on local extrema, the conventional EMD is confined to the anal-
ysis of scalar signals because the notion of extrema does not exist for vector-valued
signals. Thus, this decomposition is not directly applicable to complex-valued sig-
nals. The rotation invariant empirical mode decomposition (RIEMD) [3] and bivariate
empirical mode decomposition (BEMD) [54] are two variants of complex EMD that
have been proposed to decompose complex-valued signals. They have the advantage
to yield the same number of the IMFs for the real part as for the imaginary part of
the complex-valued signals. The complex empirical mode decomposition (CEMD)
[58] uses the intrinsic relationship between the positive and negative frequency com-
ponents of a complex signal spectrum and the Hilbert transform (HT) to estimate the
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IMFs. However, this method does not guarantee the same number of IMFs for real
and imaginary parts. Extensions of the EMD to the more general case of multivariate
signals have also been proposed [53,65].

In this paper, the BEMD algorithm combined with complex ICA-EBM technique
is proposed as an alternative to separate convolutive mixtures of speech signals. The
performance of the proposed approach is tested on real speech chosen from available
databases, and compared to the results obtained via conventional ICA and BEMD-
ICA-based separation [41] for convolutive mixtures in terms of source-to-distortion
ratio (SDR), source-to-artifact ratio (SAR), source-to-interference ratio (SIR) using
BSS EVAL toolbox [23]. In order to measure the distortion between the original
source and the estimated source, the improvement in signal-to-noise ratio (ISNR) is
also computed.

The remainder of the paper is organized as follows. Complex independent com-
ponent analysis by entropy bound minimization algorithm is presented in Sect. 2.
Bivariate empirical mode decomposition is presented in Sect. 3. Blind source separa-
tion combining BEMD and complex ICA-EBM is developed in Sect. 4. Simulation
results are presented in Sect. 5. Finally, conclusions are given in Sect. 6.

2 Complex Independent Component Analysis by Entropy Bound
Minimization Algorithm

Let s (t) = [s1 (t) , . . . , sN (t)]T be a vector of N independent sources at the discrete
time instant t . The vector x (t) = [x1 (t) , . . . , xM (t)]T of the M observed instan-
taneous mixtures is modeled as x (t) = As (t), where A is the (M × N ) mixing
matrix. The goal is to recover the N source signals from the M observed mixtures
by computing the unmixing matrix W whose output z(t) is an estimate of the vec-
tor s(t) of the source signals z (t) = Wx (t), where z (t) = [z1 (t) , . . . , zN (t)]T and
W = [w1 (t) , . . . ,wN (t)]T . To perform the separation of the N independent sources,
the ICA-EBM method minimizes the mutual information I (z1; . . . ; zN ) defined as

I (z1; . . . ; zN ) =
N∑

n=1

H (zn) − log| det (W) | − H (x) (1)

where H (zn) is the entropy of the nth separated source, and H (x) is the entropy of
the observed mixture signals.

In unitary ICA approaches, prewhitening themixtures allows having |det (W)| = 1,
under the constraint of an orthogonal unmixing matrix. The orthogonality constraint
guarantees the properties of stability and convergence of the ICA algorithms. The cost
function to be minimized becomes as follows:

I (z1, . . . , zN ) =
N∑

n=1

H (zn) − H (x) (2)
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To simplify the algorithm, the authors in [38] propose to divide I (z1, . . . , zN ) into a
series of sub problems.

The ICA-EBM algorithm is summarized as follows:
For n = 1, . . . , N

1. Calculate the vector hn which is a unit-length vector obtained via the Gram–
Schmidt orthogonalization procedure and satisfies Wnhn = 0 where Wn =[
w1, . . .wn−1,wn+1, . . . ,wN

]H .
2. Set zn = wH

n x and estimate the entropy of zn . The complex random variable
entropy estimation is based on the principle of maximum entropy introduced in
[31]. Several entropy maxima are calculated and then bounded using numerical
computations.Thefinal entropy estimate is the tightest one,which is achievedwhen
the estimated negentropy is always nonnegative. For the estimation procedure, the
quit flexible entropy estimator is based on QR decomposition.

3. Calculate the conjugate gradient defined as

∂Jn (wn)

∂w∗
n

= ∂Ĥ (zn)

∂w∗
n

− hn
wH
n hn

(3)

and
∂Ln (wn,λ)

∂w∗
n

= ∂Jn (wn)

∂w∗
n

+ λwn (4)

where Ln (wn,λ) denotes the Lagrangian defined as

Ln (wn,λ) = Jn (wn) + λ

(
wH
n wn − 1

)
(5)

where Ĥ denotes the estimated entropy, and Jn is the cost function expressed as

min Jn (wn) = Ĥ (zn) − 2 log
∣∣∣hH

n wn

∣∣∣ + C (6)

where C is a constant term.
4. Calculate the projected conjugate gradient on the constraint surface ‖wn‖ = 1 as

un = u+
n

‖u+
n ‖ (7)

where ‖.‖ denotes the l2-norm, and

u+
n = ∂Jn (wn)

∂w∗
n

− Re

{
wH
n

∂Jn (wn)

∂w∗
n

}
wn (8)

5. update wn as follows

w[new]
n = wn − μun

wn − μun
(9)

where μ > 0 is a real-valued step size.
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The complex ICA-EBM algorithm repeats the procedure over different row vectors
of W until convergence.

3 Bivariate Empirical Mode Decomposition

The empirical mode decomposition (EMD) algorithm proposed in [29] is a method
that decomposes adaptively a real-valued signal into a sum of amplitude and frequency
modulated signals called intrinsic mode functions (IMFs), and a residue which repre-
sent fast to slow oscillations in the signal.

The bivariate EMD (BEMD) is an extension of the EMD to bivariate or complex-
valued signals. Let x(t) be a complex-valued signal. The BEMD algorithm can be
summarized as follows [3].

1. Initialize the residue k ← 1 (kth IMF) ; rk (t) ← x (t)
2. Extract the kth IMF:
2.1 Estimate the envelope curves
2.1.1. Project the bivariate-value signal rk (t) on the direction ϕk where ϕk =

2kπ/K for k = 1 . . . K

pϕk (t) = Re
(
e−iϕk rk (t)

)

2.1.2. Extract the location
{
tkj

}
of the maxima of pϕk (t)

2.1.3. Interpolate the set
{(

tkj , rk
(
tkj

))}
to obtain the envelope curve in the

direction ϕk

2.2 Compute the mean of all envelope curves μ (t) = 1
K

∑
k
eϕk (t)

2.3 Substract the mean to obtain d (t) = rk (t) − μ (t)
2.4 Iterate on the detail d (t) by repeating steps 2.1 to 2.3 until the stopping criterion

based on the standard deviation between two consecutive details is below a
predefined threshold leading to the IMFk signal

3. Update the residue k ← k + 1; rk (t) ← rk−1 (t) − IMFk (t)
4. Iterate on the residue by repeating steps 2 and 3 until the number of extrema of

rk (t) is less than 2.

The signal is reconstructed by summing the IMFs computed via the BEMD and the
residue

x (t) =
K∑

k=1

IMFk (t) + rK (t) (10)

The major advantage of the BEMD is that it guarantees accurate values of the local
mean and results in an equal number of IMFs of the real and imaginary parts of the
signal.
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4 Blind Source Separation Combining BEMD and Complex ICA-EBM

In this paper, we will be interested in convolutive mixtures. The N source signals
s(t) = [s1(t) s2(t) . . . sN (t)]T are convolutively mixed. Each observed mixture x j (t)
is a weighted sum of K delayed versions of the N source signals:

x j (t) =
N∑

i=1

K−1∑

k=0

a ji (k)si (t − k) (11)

where a ji denotes the impulse response from source i to sensor j .
In matrix form, the vector x (t) = [x1 (t) , . . . , xM (t)]T of the M observed convo-

lutive mixtures is modeled as

x(t) =
K−1∑

k=0

Aks(t − k) (12)

where Ak is an M × N matrix which contains the kth filter coefficients.
Taking the Fourier transform of both sides of (12), each convolutive mixture in the

time domain is transformed into instantaneous mixtures in the frequency domain:

X( f ) = A( f )S( f ) (13)

where f denotes frequency,A( f ) is anM×N complexmatrixwhose elements A ji ( f )
are the frequency responses from source i to sensor j , X( f ) is an M × 1 complex
vector whose elements X j ( f ) are the Fourier transforms of the mixture signals x j (t)
and S( f ) is an N ×1 complex vector whose elements Si ( f ) are the Fourier transforms
of the source signals si (t).

Since the separation of the signal is performed frame by frame, short-time Fourier
transform (STFT) is used. The mixing model of each frame can be written as:

X( f,m) = A( f )S( f,m) (14)

where m denotes the frame index, X( f,m) and S( f,m) are complex vectors
corresponding to the frame m:S( f,m) = [S1( f,m) . . . SN ( f,m)]T X( f,m) =
[X1( f,m) . . . XM ( f,m)]T .

The solution of the problem of BSS in the case of convolutive mixtures, consists in
finding for each frequency bin the separation matrixW( f ) which outputs an estimate
of the source signals: Z( f,m) = W( f )X( f,m), where Z( f,m) denotes the estimate
of the vector S( f,m) of the source signals Z ( f,m) = [Z1 ( f,m) , . . . , ZN ( f,m)]T .

The problemofBSS for convolutivemixtures can be solved in the frequency domain
by using the complex-valued version of ICA methods [5,7,30] combined with the
BEMD algorithm. First, the convolutive mixtures in the frequency domain are decom-
posed into a set of IMFs using the BEMD algorithm and then, the complex ICA is
applied to extract the independent sources.
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Fig. 1 Blind source separation combining bivariate empirical mode decomposition (BEMD) and complex
independent component analysis by entropy bound minimization (ICA-EBM)

The BEMD enables to decompose a complex-valued signal into a set of IMFs. The
main characteristic of the BEMD is that it results in an equal number of IMFs of
the real and imaginary parts of the signal. In this paper, the BEMD is applied in the
frequency domain, to decompose the real and imaginary parts of the Fourier transform
of each frame of the observed mixtures into a set of IMFs.

The proposedmethod is summarized by the flowchart shown in Fig. 1. The different
steps of the method combining BEMD and complex ICA-EBM are the following:

1. Compute the Fourier transform of each frame of the observed mixture signals. The
frame length is set to 1024 samples.

2. Apply the BEMD to the Fourier transform of each frame of the observed mixtures.
So for each frame, we obtain two sets of IMFs corresponding to the real and
imaginary parts of the Fourier transform.

3. Extract independent components in the frequency domain by using ICA-EBM
algorithm.

4. Solve the permutation and scaling ambiguity.
5. Compute the inverse Fourier transform to obtain the independent components in

the time domain.

Several algorithms have been proposed to solve the permutation and scaling ambiguity
[4,50,63], and in this paper, we use the method proposed in [64].

As an illustration example, the proposedmethod is applied to separate a convolutive
mixture of two speech signals. Figure 2a, b shows the source signals, and Fig. 2c, d
shows their respective spectrograms. The sources are convolutively mixed using the
following mixture matrix in the z-transform domain.

A (z) =
[
1 + .08z−1 + 0.5z−2 0.8 + 0.7z−1 + 0.4z−2

0.7 + z−1 + 0.6z−2 1 + 0.9z−1 + 0.3z−2

]
(15)

The observed mixture signals are shown in Fig. 2e, f. The real and imaginary parts of
the Fourier transform of the frames are extracted from both mixture signals, and their
corresponding IMFs are shown in Fig. 3. The real and imaginary parts of the estimated
sources corresponding to both frames of mixture signals in the frequency domain are
shown in Fig. 4, and the estimated sources are shown in Fig. 5.
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Fig. 2 Illustration example of
the separation of a convolutive
mixture of two speech signals.
a Source signal 1, b source
signal 2, c spectrogram of source
1, d spectrogram of source 2,
e observed signal 1, f observed
signal 2
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Fig. 2 continued

As can be seen, the estimated signals are highly similar to the sources signals. The
BEMDcombinedwith complex ICA-EBMprovides an accurate estimate of the source
signals and results in a spectral content located with high accuracy.

5 Simulation Results

The performance of the proposed approach is evaluated and compared to the per-
formance of the conventional frequency ICA (FICA) method and to the combined
BEMD-ICA algorithm proposed in [41] that we have adapted to convolutive mixtures.
For this goal, two speech datasets comprising convolutive mixtures are constructed.
The first speech dataset is constructed from TIMIT database available online [59] by
simulating convolutive mixtures using the recordings of two sentences of 3 s sam-
pled at 16 kHz pronounced by male and female speakers. A set of 4 noisy mixtures
are simulated by corrupting clean mixtures at a signal-to-noise ratio (SNR) ranging
from 5 to 20 dB with a step of 5 dB. The second speech dataset is constructed by
simulating convolutive mixtures using 20 pairwise sentences randomly chosen from
the NOIZEUS database [46]. The speech mixtures are corrupted by additive white
Gaussian noise with the SNR fixed at 10 dB.
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Fig. 3 Real and imaginary parts of the Fourier transform of the frames of 1024 samples length extracted
from mixture signals and their corresponding IMFs. a Fourier transform of the frame from mixture 1, b
IMFs and residue of the Fourier transform of the frame from mixture 1, c Fourier transform of the frame
from mixture 2, d IMFs and residue of the Fourier transform of the frame from mixture 2
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Fig. 3 continued

The performance of the proposed technique is analyzed by using the bsseval toolbox
[23]. For the objective performance criteria measurement, the estimated sources are
expressed as ŝ = starget + einterf + enoise + eartif , where starget is the source signals, and
einterf denotes the interferences from other sources, enoise is the distortion caused by
the noise and eartif includes all other artifacts introduced by the separation algorithm.
The performance criteria are as follows:

SDR = 10 log10
‖starget‖2

‖einterf + enoise + eartif‖2 (16)

SAR = 10 log10
‖starget + einterf + enoise‖2

‖eartif‖2 (17)

SIR = 10 log10
‖starget‖2
‖einterf‖2 (18)

In order to measure the distortion between the original sources and the estimated
sources, the improvement signal-to-noise ratio (ISNR) is computed. The ISNR is
defined as

ISNR = SNRoutput − SNRinput (19)
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Fig. 4 Estimated frames of
sources 1 and 2 in the frequency
domain. a Estimated frame of
source 1, b estimated frame of
source 2
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The input and output SNR are defined as

SNRinput = 10 log

∑
t |s (t)|2

∑
t

∣∣x (t) − ŝ (t)
∣∣2

(20)

SNRoutput = 10 log

∑
t |s (t)|2

∑
t

∣∣s (t) − ŝ (t)
∣∣2

(21)

where x (t) is the observed mixture, s (t) is the original sources, and ŝ (t) is the
estimated source.

The performance criteria of the three BSSmethods corresponding to the first dataset
are shown in Fig. 6 for different SNR values. The proposed method results in a bet-
ter performance in terms of the four performance criteria compared to both FICA
and BEMD-ICA methods for convolutive mixtures. For all SNR values, the BEMD
combined with the ICA-EBM method results in higher performance criteria.

To test whether the difference between the performance criteria of the proposed
method and those of FICA and BEMD-ICA methods is statistically significant,
Kruskal–Wallis statistical test [36] has been performed on the second speech dataset.
Kruskal–Wallis statistical test is a nonparametric statistical test that does not require
assumptions on data distribution. The advantage of this test is to remain as powerful as
ANOVA statistical test. Kruskal–Wallis statistical test shows that the averages of the
performance criteria values of the proposed method differ statistically significantly



Circuits Syst Signal Process (2017) 36:4670–4687 4683

Fig. 5 Estimated sources and
their spectrograms. a Estimated
source 1, b estimated source 2,
c spectrogram of the estimated
source 1, d spectrogram of the
estimated source 2
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Fig. 6 Comparison between proposed method and independent component analysis combined with bivari-
ate empirical mode decomposition (ICA-BEMD) separation method and conventional frequency ICA
(FICA) in terms of SIR, SAR, SDR and ISNR

Table 1 p values of Kruskal–Wallis statistical test for SIR, SAR, SDR and ISNR of 20 speech mixtures

SIR SAR SDR ISNR

p value 1.025−10 11.129−11 7.143−11 0.8692−10

from those of FICA and BEMD-ICA methods for convolutive mixtures. The p values
of the test are given in Table 1.

6 Conclusion

A newmethod combining bivariate empirical mode decomposition and EBM-ICA for
blind separation of convolutive mixtures has been presented. The method operates
in the frequency domain. The observed convolutive mixtures in the time domain are
transformed into instantaneous mixtures in the frequency domain, and hence, the
bivariate empirical mode decomposition is used to decompose the complex mixtures
into a set of IMFs fromwhich the independent components are extracted using the ICA-
EBM algorithm. The proposed method has been tested on speech datasets constructed
from TIMIT and NOIZEUS databases; the results are very satisfactory compared to
BEMD-ICA separation for convolutive mixtures and conventional FICA, indicating
the high values of SIR, SAR, SDR and ISNR, and confirmed by Kruskal–Wallis
statistical test.
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