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Abstract The accurate delineation of R peaks in an ElectroCardioGram (ECG) is
required for analysis and diagnosis of various cardiac abnormalities. Detection of the
R peak is a challenging task due to the presence of various artifacts and varying mor-
phology of the ECG signal in inter- and intrasubject. In this paper, an effective and
novel algorithm for the accurate detection of R peaks in the single-lead ECG sig-
nal is proposed. The QRS complex is enhanced by removing P, T waves and other
artifacts using combination of wavelet transform, derivatives and Hilbert transform.
The enhanced QRS complex is detected by adaptive thresholding. This method is
robust against inter- and intrasubject variations of the ECG signal morphology and
also provides high degree of accuracy for very noisy signals. The algorithm is tested
on all the signals of MIT-BIH arrhythmia Database, QT database and noise stress
database taken fromphysionet.org (Massachusetts Institute ofTechnology,Biomedical
Engineering Center, Cambridge, MA, 1992. www.physionet.org/physiobank/databse/
html/mitdbdir/mitdbdir.htm). The performance of the algorithm is confirmed by sen-
sitivity of 99.9%, positive predictivity of 99.9% and detection accuracy of 99.8% for
R peaks detection.
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1 Introduction

The ElectroCardioGram (ECG) signal is the foremost tool used by cardiologist for
diagnosis, prognosis and survival analysis of the heart diseases. It is a record of the
magnitude and direction of electrical commotion that is generated by the heart muscles
on depolarization and repolarization of the atria and ventricles. The ECG signalmainly
corresponds to a single heart beat consisting of temporally distinct wave shapes: (i)
P wave, (ii) QRS complex, (iii) T wave, (iv) U wave, etc. The QRS complex corre-
sponds to depolarization of the ventricles and has amplitude of approximately 1mV.
The integral part of modern computerized ECGmonitoring systems is mainly the QRS
detectors [7]. Algorithms for ECG beats detection focus on the QRS complex because
of its short duration and high amplitude of R peak in the QRS complex. The good
performance of an automatic ECG analyzing system depends upon the accurate delin-
eation of the QRS complex even in the presence of artifacts, the inter- and intrasubject
variations of the ECG signal morphology. Any cardiac dysfunction related to excita-
tion from ectopic centers in themyocardiummay result in premature complexes (atrial
or ventricular), which changes the morphology of the waveform [7]. The occurrence
of multiple premature complexes is used for diagnosis of congestive heart failure and
various other heart disorders. Therefore, the delineation of QRS complex is clinically
important and attempts are being made to find the universal solution for the accurate
detection of R peaks.

The R peak has maximum amplitude; therefore, algorithms in the literature have
been suggested to enhance the amplitude of R wave w.r.t to noise and other waves.
Ahlstrom et al. [1] formed a linear combination of first and second derivatives to accen-
tuate the R peak followed by fixed threshold for detection. A digital filter algorithm
was introduced byOkada [16] to extract theQRS complex followed by fixed threshold.
Benitez et al. [3] used band-pass filter to remove the noise and emphasize the QRS
complex followed by Hilbert transform and fixed thresholding. For detection of QRS
complex template matching and morphological filtering [22], empirical mode decom-
position [9] has also being used. The wavelet transform-based QRS detectors have
been also reported in [2,6,13,18,21]. Zidemal et al. [23] have reported the detection
of R peaks using S-transform and Shannon energy. The lifting wavelet is used in [14]
for detection of R peaks. The localization of R peak is being done using heuristic rules
[7] and matched filters [11], hidden Markov method [5], neural network [10], fixed
and adaptive thresholding [1]. Though lot of algorithms are available in the literature,
the precise detection and localization of the R peak is still a challenge, as various
artifacts and intersubject variations of ECG signal morphology affect the estimation
adversely.

In this paper, an algorithm is proposed consisting of preprocessing and decision
stage that simultaneously reduces noise and gives precise detection of the R peaks
even in the presence of artifacts. As ECG signal consists of different waves having
different frequency contents occurring at different intervals, therefore to get complete
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accurate representation of ECG signal, wavelets-based time–frequency analysis is
used. The combination of first and second derivative is applied on the signal obtained
from wavelet transform to accentuate the QRS complex and suppress P, T waves.
Further, the Hilbert transform is applied to have envelope for R peaks for single-
sided threshold mechanism. The peak of the envelope is then detected by adding a
high-frequency signal whose amplitude depends on the QRS complex.

The algorithm was validated with MIT-BIH arrhythmia database, QT database
and MIT-BIH noise stress database taken from physionet.org [15]. As the real-time
ECG signals contain various types of noises, therefore to check the performance of the
algorithmvarious artifactswere also simulated and added linearly to theECGsignals of
the MIT-BIH arrhythmia database. The algorithm is also validated for the ECG signal
corrupted with artificial noise at varying SNR. The algorithm attains 99.9% sensitivity
and positive predictivity, which has been improved against the results reported in the
literature [7]. This algorithm even works well for the signals with QRS complexes
having small amplitude, broad QRS complexes, large and pointed P, T waves, varying
QRS morphology.

2 The Proposed Method

2.1 Preprocessing and De-noising the ECG Signal

Mathematically, the observed ECG signal y[n] can be written as,

y[n] = αs[n] + w[n] (1)

where s[n] is the ECG signal andw[n] denotes all the artifacts present such as baseline
wandering noise, motion artifacts, electrosurgical, muscle contraction noise, power
line interference and electrode contact noise, α is the attenuation parameter where
α ∈ R. Though the QRS complex is generally strongest, time–frequency-varying
morphology degrades its amplitude and shape. The assumption is being made that the
artifacts are linearly added in the observed ECG signal.

As the QRS complex present in ECG signal occupies the frequency band from
5 to 25Hz [7] and all other waves of ECG signal have frequency band lower than
the band of QRS complex. Therefore, the QRS complex x[n] is estimated from the
observedECG signal y[n], by time–frequency analysis, i.e., discretewavelet transform
(DWT). The db6 is used as mother wavelet for R peak delineation, as it resembles with
QRS complex and energy spectrum of db6 mother wavelet is concentrated around low
frequencies [2,17]. TheDWTanalyzes the signal at different resolution by decomposi-
tion of the signal into several successive frequency bands. The resolution of the signal,
which is a measure of the amount of detail information in the signal, is changed by the
filtering operations, and the scale is changed by upsampling and downsampling oper-
ations [18]. DWT employs two sets of functions, called scaling functions and wavelet
functions, which are associated with low-pass and high-pass filters, respectively. The
decomposition of the signal into different frequency bands is simply obtained by suc-
cessive high-pass and low-pass filtering of the time-domain signal. The original signal
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Table 1 Frequency distribution of detail coefficients

Detail coefficients (d1[n] − d10[n]) Frequency range (Hz)

d1[n] 90–180

d2[n] 45–90

d3[n] 22.5–45

d4[n] 11.25–22.5

d5[n] 5.625–11.25

d6[n] 2.8125–5.625

d7[n] 1.40625–2.8125

d8[n] 0.703125–1.40625

d9[n] 0.3515625–0.703125

d10[n] 0.17578125–0.3515625

y[n] is first passed through a half-band high-pass filter g[n] and a low-pass filter h[n]
along with down sampling by factor of 2. One level of decomposition can be expressed
as follows:

di [n] = Yhigh[n] =
∑

k

y[k] · g[2n − k] (2)

ai [n] = Ylow[n] =
∑

k

y[k] · h[2n − k] (3)

where i ∈ I , Yhigh[n] and Ylow[n] are the outputs of the high-pass and low-pass filters,
g[n] and h[n], respectively. di [n] are known as the detail coefficients, and ai [n] are
known as the approximation coefficients.

The observed ECG signal is decomposed till level 10 with sampling frequency
of 360Hz, as used in the MIT-BIH arrhythmia database [15]. With this sampling
frequency, the signal is decomposed till 10 level. The approximation and detail infor-
mation obtained till level 10 are labeled as a1[n] to a10[n] and d1[n] to d10[n],
respectively. The frequency band corresponding to each detail scale after the wavelet
decomposition of the observed ECG is shown in Table 1. With the knowledge of
frequency bands of each detail scale, the QRS complex can be easily estimated.

The electrosurgical noise (100kHz–1MHz) and muscle contraction noises (dc-
10kHz), power line interference (50–60Hz) are removed by discarding the details
d1[n] and d2[n]. Themotion artifacts (transient baseline changes) and baselinewander-
ing noise are removed by discarding the lowest-frequency components, i.e., coefficient
d9[n] and d10[n]. It is clear from Table 1, the coefficients d9[n] and d10[n] have fre-
quency varying from 0.17 to 0.7Hz, which is frequency band of motion artifacts and
baseline wandering noise. Also, in the ECG signal, most of the energy is concentrated
at the QRS complex [2,21]. For the energy analysis, the average energy content of
the detail coefficients for all signals of MIT-BIH arrhythmia database is calculated
and the plot is shown in Fig. 1. The plot of energy distribution of detail coefficients
shows that the energy is highest at scale 4. Therefore, it is considered that d4[n] and its
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Fig. 1 Energy distribution of detail coefficients

neighboring scales carry the dominant details of the QRS complex. As stated in [17],
the power spectra of the ECG signal indicate that energy of QRS complex is present
at d3[n], d4[n] and d5[n] scales. Therefore, all other approximations and details are
discarded and signal can be estimated from detail d3[n], d4[n] and d5[n] only. But
from literature [2] and experimentally, it is observed that d3[n] also has some noise,
which interferes with accurate beat detection. Therefore, d3[n] is discarded and the
noise-free signal is therefore estimated from d4[n] and d5[n] only, which has QRS
frequency band of 5–25Hz.

x̂[n] = d4[n] + d5[n] (4)

where d4[n] and d5[n] are details at levels 4 and 5, respectively, and is obtained
from DWT of the signal y[n]. Figures 2 and 3 show observed ECG signal y[n] and
signal x̂[n] estimated from detail coefficients of wavelet transform. This record in
Fig. 2 contains high-grade noise and baseline drift which is removed in estimated
signal obtained after wavelet transform. As shown in Fig. 3, the observed signal has
premature ventricular contractions (PVCs) and the QRS morphology changes due to
axis shift. This signal also consists of various noises like muscle artifact and baseline
shifts which are removed in the estimated signal.

2.2 Enhancement of QRS Complex

In this stage, a linear combination of first and second derivatives is constructed to
accentuate the higher frequencies that are characteristics for the QRS complex, and
attenuate the lower frequencies that are characteristics for the P and T waves. The
first and second derivatives are performed on the reconstructed signal obtained after
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Fig. 2 (i) Observed ECG signal. (ii) Signal estimated after wavelet transform
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Fig. 3 (i) Observed ECG signal. (ii) Signal estimated after wavelet transform

DWT. The first and second derivative are approximated as three-point first difference
equation as in (5) and (6), respectively.

ŷ0[n] = x̂[n] − x̂[n − 2] (5)

ŷ1[n] = x̂[n] − 2x̂[n − 2] + x̂[n − 4] (6)
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As pointed by Rabanni [19], the output of these derivatives is linearly combined as,

ŷ2[n] = 1.3ŷ0[n] + 1.1ŷ1[n] (7)

During differentiation of the signal, the high frequencies of the noise are also amplified.
These noises are smoothed by moving window average filter as

ŷ3[n] = 1

8

7∑

k=0

ŷ2[n − k] (8)

The smoothed signal actually represents the signal consisting of true QRS complex.
It is passed through nonlinear transformation, i.e., the Hilbert transform for forming
the envelope of the QRS complex.

ŷh[n] = H(ŷ3[n]) (9)

Here, the Hilbert transform is used so that single-sided threshold can be used for
detecting the R peaks. The peak of the envelope formed after Hilbert transform rep-
resents the location of R peak. This also reduces the complexity of finding the local
maxima. Figure 4 shows all the signals obtained at each step.

2.3 Peak-Finding Logic

To accurately detect the R peaks, the envelop formed after Hilbert transform (ŷh[n])
is further accentuated by nonlinear transform of the signal as

ŷ4[n] = 1

|ŷh[n]| ŷ
3
h [n] (10)
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where ŷ4[n] denotes cubic nonlinear transformed signal and is shown in Fig. 5. The
temporal location of R peaks is determined from the signal ŷ4[n]. The cubic nonlinear
transformation maintains the sign and amplifies the peaks of the signal ŷh[n] obtained
after Hilbert transform. The technique used here to detect the QRS complex from the
transformed signal is based on a feature signal obtained by counting the number of
zero crossings per segment. The feature signal must have low value during the QRS
complex and high value otherwise. Therefore, a signal is needed to have many number
of zero crossings during non-QRS segment and small number of zero crossings during
the QRS complex. The nonlinear transformed signal ŷ4[n] has high amplitude during
the QRS complex and low amplitude otherwise. In order to increase the zero crossings
during non-QRS segment, a high-frequency sequence ĥ[n] is added to the signal ŷ4[n].

ẑ[n] = ĥ[n] + ŷ4[n] (11)

The high-frequency sequence is calculated as,

ĥ[n] = (−1)nê[n] (12)

The amplitude of the high-frequency sequence ĥ[n] is calculated from the amplitude
of ŷ4[n] and is given as

ê[n] = λê[n − 1] + c(1 − λ) · abs(ŷ4[n]) (13)

where λ is forgetting factor, c ∈ [1, 4] and abs(·) is absolute operation. The frequency
of 0–25Hz is required; therefore, λ ∈ (0; 1).

The zero crossings in the signal ẑ[n] are determined as

k̂[n] = | sign(ẑ[n]) − sign(ẑ[n − 1])
2

| (14)

The numbers of zero crossings per segment of 120 ms are counted with the moving
window. This led to form a feature signal as

f̂ [n] = λd f̂ [n − 1] + (1 − λd)k̂[n] (15)

QRS detection is done by using adaptive threshold θ̂[n], which is calculated as in
(16) by first-order recursive filter, which is applied on the obtained feature signal.

θ̂ [n − 1] = λθ θ̂ [n − 1] + (1 − λθ ) f̂ [n] (16)

where λθ and λd are forgetting factors.

λθ ∈ (0; 1), λd ∈ (0; 1) (17)

The beginning point n1 and the end n2 of the event (search interval for locating QRS
complex) are taken when the feature signal falls below a adaptive threshold θ̂ [n] and
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Fig. 5 (i) Observed ECG signal. (ii) Output of nonlinear transform. (iii) Detected R peaks

rises above the threshold, respectively [12]. These n1 and n2 are the boundaries of the
search interval p[n] for temporal location of the QRS complex.

p[n] =
{
y4[n], n ∈ [n1, n2]
0, otherwise

}

Noisy signalmay havemultiple events; therefore, the distance between two detected
events is considered. If the distance between detected events is too small, i.e., around
80 ms, then they are combined into one. The beginning of the combined event is the
beginning of the first event, and the end of the combined event is the end of the last
event. Therefore, the R peak is at the location of the maximum in the search interval.
Figures 5 and 6 show the observed ECG signal and the detected R peaks using the
proposed algorithm for the record 100 and 203m, respectively, ofMIT-BIH arrhythmia
database. In Fig. 6, it can be seen that R peaks are accurately detected for the signal
having high-grade noise and premature ventricular complexes (PVC’s)

3 Results

The proposed R peak detection algorithm is validated using MIT-BIH arrhythmia
database, QT database and noise stress database. The proposed algorithm results in
significant improvement of R peak detection for ECG signals having various artifacts,
inter- and intrasubject variations in QRS complex morphology. The algorithm com-
pares the onset of the QRS candidate to a key file containing the locations of all the
valid QRS onsets. If the estimated onset falls within 88ms window of the actual onset,
it is counted as true positive and if it is outside the range, then it is counted as false
positive. The QRS complexes which are missed by the algorithm are counted as false
negative. The performance of the algorithm is assessed using four statistical measures
as,
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Fig. 6 (i) Observed ECG signal. (ii) Output of nonlinear transform. (iii) Detected R peaks

SensitivitySE = TP

TP + FN
(18)

Positivepredictivity + P = TP

TP + FP
(19)

Detectionaccuracy = TP

TP + FN + FP
(20)

Error rate = FP + FN

Total detectedbeats
(21)

where TP = number of true positives (QRS complex detected as QRS Complex),
FN = number of false negatives (QRS complex which have not been detected), FP =
number of false positives (non-QRS complex detected as QRS complex).

These four parameters are proposed as standard parameters to assess the perfor-
mance of the algorithm [7]. Sensitivity tells us the percentage of true beats that are
correctly detected by the algorithm, and positive predictivity tells us the percentage
of beat detection that is true beats [7].

The algorithm consists of few parameters, i.e., forgetting factors λ, λd and λθ ,
which are taken as 0.99, 0.97 and 0.99, respectively. Average sensitivity of 99.9% and
positive predictivity of 99.9% and average detection accuracy of 99.8% have been
achieved. The average error rate comes out to 0.2% for this algorithm. Table 2 shows
that the R peak detection of the records 104, 105 and 108, which are very noisy signals,
has been significantly improved by the proposed algorithm. The results obtained for
all the first channel ECG signals of MIT-BIH arrhythmia database are summarized in
Table 2. The record 108m has baseline wandering noise and abrupt changes in QRS
complexmorphology. Hence, the performance comparison for record 108mwith other
detectors reported in literature [6,8,9,12,13,20,22,23] is also shown in Table 3. It is
clear from Table 3 that we are able to achieve 100% accuracy for the record number
108m. The comparison of false negatives and false positives against the earlier work
reported in literature [7] for the specific records is shown inTables 4 and 5, respectively.
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Table 2 Performance of proposed algorithm on MIT-BIH arrhythmia Database

Signal
name (m)

Actual
beats

Detected
beats

TP FN FP Se (%) Per (%) Error (%) Accuracy (%)

100 2273 2271 2271 0 0 100.00 100.00 0 100

101 1865 1865 1865 0 2 100.00 99.89 0.1 99.9

102 2187 2186 2186 0 0 100.00 100.00 0 100

103 2084 2083 2083 0 0 100.00 100.00 0 100

104 2229 2224 2222 6 2 99.73 99.91 0.4 99.6

105 2572 2577 2571 4 8 99.84 99.69 0.5 99.5

106 2027 2026 2025 2 1 99.90 99.95 0.1 99.9

107 2137 2134 2133 1 0 99.95 100.00 0 100

108 1763 1761 1761 0 0 100.00 100.00 0 100

109 2532 2530 2530 1 0 99.96 100.00 0 100

111 2124 2122 2122 1 0 99.95 100.00 0 100

112 2539 2538 2537 0 1 100.00 99.96 0 100

113 1795 1794 1794 0 0 100.00 100.00 0 100

114 1879 1878 1878 0 0 100.00 100.00 0 100

115 1953 1952 1952 0 0 100.00 100.00 0 100

116 2412 2408 2404 6 4 99.75 99.83 0.4 99.6

117 1535 1534 1534 0 0 100.00 100.00 0 100

118 2278 2277 2277 0 0 100.00 100.00 0 100

119 1987 1988 1987 0 1 100.00 99.95 0.1 99.9

121 1863 1862 1862 0 0 100.00 100.00 0 100

122 2476 2474 2474 0 0 100.00 100.00 0 100

123 1518 1517 1516 0 1 100.00 99.93 0.1 99.9

124 1619 1618 1618 0 0 100.00 100.00 0 100

200 2601 2598 2597 3 1 99.88 99.96 0.2 99.8

201 1963 2002 1979 4 23 99.80 98.85 1.3 98.7

202 2136 2134 2132 3 2 99.86 99.91 0.2 99.8

203 2980 2964 2953 21 11 99.29 99.63 1.1 98.9

205 2656 2653 2653 2 0 99.92 100.00 0.1 99.9

207 1862 1862 1862 0 0 100.00 100.00 0 100

208 2955 2953 2953 2 0 99.93 100.00 0.1 99.9

209 3005 3006 3003 0 3 100.00 99.90 0.1 99.9

210 2650 2647 2645 8 6 99.70 99.77 0.5 99.5

212 2748 2747 2747 0 0 100.00 100.00 0 100

213 3251 3248 3248 1 0 99.97 100.00 0 100

214 2262 2260 2258 2 2 99.91 99.91 0.2 99.8

215 3363 3358 3358 3 0 99.91 100.00 0.1 99.9

217 2208 2207 2205 2 2 99.91 99.91 0.2 99.8

219 2154 2153 2153 0 0 100.00 100.00 0 100

220 2048 2046 2046 0 0 100.00 100.00 0 100
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Table 2 continued

Signal
name (m)

Actual
beats

Detected
beats

TP FN FP Se (%) Per (%) Error (%) Accuracy (%)

221 2427 2425 2425 1 0 99.96 100.00 0 100

222 2483 2482 2476 5 6 99.80 99.76 0.4 99.6

223 2605 2604 2604 0 0 100.00 100.00 0 100

228 2053 2052 2045 5 7 99.76 99.66 0.6 99.4

230 2256 2254 2254 0 0 100.00 100.00 0 100

231 1573 1570 1570 2 0 99.87 100.00 0.1 99.9

232 1780 1789 1774 5 15 99.72 99.16 1.1 98.9

233 3079 3074 3074 3 0 99.90 100.00 0.1 99.9

234 2753 2752 2752 0 0 100.00 100.00 0 100

Table 3 Comparison of record 108m with detectors available in the literature

Method FP FN Failed detection

Pan–Tompkins algorithm [8] 199 22 221

Using wavelet transform [13] 13 15 28

Using Coiflets wavelet [6] 2 62 64

Mathematical morphology [22] 10 2 12

Shannon energy envelope [20] 12 4 16

Empirical mode decomposition [9] 68 9 77

Using zero crossing counts [12] 32 269 301

S-transform and Shannon energy [23] 20 23 23

Proposed method 0 0 0

It can be easily seen that the proposed method achieved better performance in terms
of reduced number of false positive and false negative than other methods proposed
in the literature.

To study performancewith noise, the proposed algorithm is also validated by adding
noise to the ECG signal ofMIT-BIH arrhythmia database and also validated on signals
of noise stress database of physionet.org [15]. This was done to see the behavior
of the proposed algorithm with the signals highly corrupted with noise. The four
different noises for which study has been done are power line interference, electrode
motion artifact, baseline wandering interference and muscle artifact. The power line
interference has 60Hz pick up and harmonics, which is modeled as sinusoids and
combination of sinusoids. The amplitude for modeling power line interference is taken
50% of peak to peak ECG amplitude. Electrode motion noise is transient interference
that occurs due to loss of contact between the electrode and skin. Baseline wandering
occurs due to change in electrode skin impedance with electrode motion. Muscle
artifact occurs due to contractions of muscle which result in millivolt-level potentials.
Here, the power line interference is modeled and other three interferences are taken
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Table 4 Comparison of the number of false negative for records of MIT-BIH arrhythmia database

Signal (m) Proposed Ref. [12] Ref. [4] Ref. [8] Ref. [23]

101 0 2 3 3 1

105 4 8 17 22 22

108 0 4 5 22 23

114 0 0 0 17 2

115 0 1 2 0 0

200 3 0 8 3 4

201 4 0 102 47 25

202 3 0 2 4 1

205 2 0 7 2 3

207 0 0 8 4 13

208 2 8 19 14 3

209 0 0 5 1 1

212 0 9 5 0 0

Table 5 Comparison of the number of false positive for records of MIT-BIH arrhythmia database

Signal (m) Proposed Ref. [12] Ref. [4] Ref. [8] Ref. [23]

101 2 4 5 5 2

104 2 14 18 1 5

105 8 18 37 67 10

106 1 2 3 5 8

108 0 12 34 199 20

115 0 3 7 0 0

118 0 3 1 1 0

200 1 6 5 6 2

203 11 5 21 53 9

208 0 5 11 14 2

215 0 0 0 0 1

217 2 2 1 4 2

from the noise stress database of physionet.org which is added linearly to the ECG
signal. Each of four types of noise is added to an ECG signal of MIT-BIH arrhythmia
database by scaling at ten different levels. The signal-to-noise ratio at each scaling
level is calculated as,

SNRdB = 10log10

(
Psignal
Pnoise

)
(22)

where Psignal is signal power and Pnoise is noise power. The sensitivity and positive
predictivity are calculated for all the signals corrupted with noise scaled at different
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Fig. 7 Results with (i) noise stress database. (ii) Baseline wandering artifact at varying SNR
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Fig. 8 Results with (i) electrode motion artifact. (ii) Muscle artifact at varying SNR

levels. Further, the average sensitivity andpositive predictivity are calculated. Figures 7
and 8 show the plot of average sensitivity and positive predictivity w.r.t. SNR.

Figure 7(i) shows the results, the average sensitivity and positive predictivity
obtained for all signals of noise stress database. It is clear from the Fig. 7 that sen-
sitivity and positive predictivity increase with increase in SNR. The sensitivity and
positive predictivity obtained for noise stress database even at SNR of 0dB are 97.15
and 95.2%, respectively. Figure 7(ii) shows the result when baselinewandering artifact
is added. At SNR of 2dB, the sensitivity and positive predictivity obtained are 98.30
and 97.03%, respectively.

Figure 8(i) shows the behavior of the algorithm when electrode motion artifact is
added. The sensitivity and positive predictivity obtained with electrode motion artifact
at SNRof 2.5dB are 89.42 and 96.79%,which increaseswith increase in SNR.At SNR
of 36.5dB, the sensitivity and positive predictivity obtained are 99.38 and 99.84%,
respectively. Similarly, in Fig. 8(ii) when muscle artifact is added to signals of MIT-
BIH arrhythmia database, the sensitivity increases from 89.65 to 99.89% with SNR
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increase from 9 to 48.03dB, respectively. The positive predictivity increases from
91.88 to 99.86% with increase in SNR from 9 to 48.03dB. Even at 0 dB the results
obtained are pretty good for detection of R peaks.

4 Discussion

The approach used for detecting R peaks in this paper has given better results as
compared to results available in literature [2,3,6,7,13,14,18,21]. The sensitivity and
positive predictivity have been improved for detection of R peaks. This algorithm
is able to remove high grade of noise; this is tested by adding artificial noise. The
artificial noise added to the signal is power line interference, electrode motion artifact,
baseline wandering interference and muscle artifact. The algorithm works well for
normal and diseased signal. This algorithm is robust against amplitude variations of
the ECG signal and noise present in the signal.

5 Conclusion

This paper presents a novel technique of detecting R peaks by the combination of
wavelet transform, derivatives, Hilbert transform and adaptive thresholding which is
done by zero crossing method. This algorithm does not need any learning from the
previously detected R peaks. The proposed algorithm is able to detect R peaks with
high accuracy and is robust against noise. The detection of R peaks is not affected
by various artifacts and morphology of the ECG signal. This algorithm even works
well for signals which have wide QRS complex, negative R peaks and high level of
noise. The algorithm is able to achieve sensitivity of 99.9% and positive predictivity
of 99.9% which is well above the reported results.
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