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Abstract This paper is concerned with the robust H∞ control for a class of uncertain
singular time-delay systems via a novel sliding mode observer scheme. Firstly, a
particularly non-fragile observer is introduced to estimate the unmeasured states, and
a novel integral sliding surface function is presented. Then, a sufficient condition for the
admissibility and specified H∞ performance of the resultant sliding mode dynamics
of the closed-loop systems is derived in terms of linear matrix inequality. At last, the
finite-time reachability of the predesigned sliding surface is guaranteed by utilizing
the adaptive sliding mode control law from the initial time. An illustrative example is
provided to verify the potential and superiority of the method with comparisons.
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1 Introduction

Singular systems, also referred to as descriptor systems, implicit systems, or
differential–algebraic systems, have been recognized to describe the behavior of many
practical systems [3,9], since they can embody the intrinsic nature of the dynamics
and static modes, simultaneously. In the past decades, a lot of efforts concerning the
systems have been successfully made upon the premise of standard system theory
[22,27,35,38,41,42]. Besides, time-delay phenomenon is generally known as a key
source of the instability and poor performance in control systems. Thus, various types
of singular systems with time delay have been studied by many researchers, including
continuous-time systems and discrete-time ones. Control design and stability analy-
sis which is of great significance for singular time-delay systems (STS) have been
reported, e.g., stability and stabilization [2,11,37], H∞ control and filter [25,26,40],
and observer design [4,12,13].

Sliding mode control (SMC) has been known as an effective robust control strategy
due to its various attractive features such as rapid response and good transient per-
formance, particularly strong robustness against the uncertainty through the control
channel (i.e., the matched uncertainty [5,32]), and it has found to be widely applied
to many technical problems [30,43,44] and various complex systems [1,7,19,23,33].
As for the STS, the passivity analysis has been studied via SMC in [36], where an
integral-type sliding surface scheme has been provided in this excellent work. Further-
more, based on a novel integral sliding surface design, dissipativity issue for a class
of T–S fuzzy singular systems with nonlinear perturbation and time-varying delay has
been considered by [8]. However, as mentioned, most of the reports are obtained upon
the premise that all the system states are completely accessible.

On another research front, it has been approved that the state may not be totally
obtained or even not easy to be evaluated through the output measurement in many
practical systems. Up to now, by incorporating the merits of the observer into the SMC
effectively, observer-based SMC approach, also called sliding mode observer (SMO)
strategy [29], has been developed to solve the state estimation problems for a variety of
complex systems and engineering plants successfully, see [6,10,14–18,20,21,24,28,
34,39] and the references therein. To name a few, in [28], a class of Markovian jump
systems with quantization and actuator faults have been investigated by the SMO, and
state estimation for a type of uncertain Markovian jump singular systems has been
concerned via SMC in [34]. It is observed that, compared to the mature SMC theory
of singular systems on the basis of the full states measurement, the research on SMO
for singular systems has received less attention, which may be in its infancy. This is
the first motivation of the study.

It should be pointed out that the SMOdesign for a class ofMarkovian jump singular
systems with unmeasured states has been reported in [34]. Recently, the observer-
based H∞ SMC for a class of uncertain stochastic STS has been considered in [6].
Nevertheless, the uncertainties may often appear through the control channel, which
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is an intricate issue, but little research effort has been made for such systems. This
is the second motivation of the paper. As such, the observer-based control problem
of the STS may remain challenging and open, which finally makes us proceed to the
present study.

In this paper, the H∞ performance and admissibility for a class of uncertain STS
is investigated via a novel SMO scheme. The main contribution can be fourfold as
follows:

• A newly technical route of the system’s analysis is put forward. Generally, the
main thoughts formajority of the observer-based control systems are that: Stability
analysis is addressed through the original system and its observer such that the
error system can converge to the equilibrium state. However, the present route is
that: If the stability of the original system and the error system is first guaranteed,
then the observer states can tend to be stable therewith.

• A peculiar observer is introduced to estimate the unmeasured states, by which a
novel integral sliding surface is designed in such a way the resultant dynamics
during the sliding mode, i.e., sliding mode dynamics (SMDs), are well shown, and
the entire control scheme could be further boosted.

• A newly strict LMI criterion is provided, which leads to that the SMDs are admis-
sible with certain prescribed H∞ disturbance attenuation level.

• A novel adaptive controller is synthesized to suppress the unknown perturbation
through the control channel and guarantee the finite-time reachability of the sliding
surface since the initial moment, which keeps the desirable performance of the
closed-loop systems.

The rest of this paper is organized as follows. Some preliminaries are given in
Sect. 2. In Sect. 3, the main results of the observer-based SMC design are addressed.
A specific example is provided to support the effectiveness and superiority of the
method in Sect. 4. Conclusions are given in Sect. 5.

Notations: The notations used in this paper are standard. P > 0 means that matrix
P is positive definite; λM (P) denotes the maximum eigenvalue of P; the symmetric
elements of a symmetric matrix is denoted by “*”; “T” represents the transpose of a
vector or a matrix. sym{P} is denoted as P + PT. ‖ · ‖ denotes the Euclidean norm of
a vector or spectral norm of a matrix, diag{Q} represents a block-diagonal matrix Q,
and ‖ψ(t)‖d = sup−d≤t≤0‖ψ(t)‖ stands for the norm of a function ψ(t). L2[0,∞)

is the space of integral vectors over [0,∞).

2 Problem Formulation

Consider the following uncertain STS described by

⎧
⎪⎪⎨

⎪⎪⎩

Eẋ(t) = (A + �A(t))x(t) + (Ad + �Ad(t))x(t − d(t))
+ B(u(t) + f (t, x)) + Dv(t),

y(t) = Cx(t),
x(θ) = ψ(θ), θ ∈ [−d, 0]

(1)
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where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input signal, y(t) ∈
R p is the measured output signal, and v(t) ∈ Rl represents a set of exogenous
disturbance which belongs to L2[0,∞). ψ(θ) is a compatible vector-valued initial
function. A, Ad , B,C , and D are known real matrices, B is of full column rank.
E ∈ Rn×n may be singular, i.e., rank(E) = r ≤ n. d(t) is a time-varying function
satisfying 0 < d(t) ≤ d, and ḋ ≤ μ < 1.

Assumption 1 The structural uncertainties �A(t) and �Ad(t) are norm bounded,
i.e.,

[�A(t) �Ad(t)] = MF(t)[N Nd ],

where M, N and Nd are known constant matrices, and F(t) is an unknown matrix
function satisfying FT(t)F(t) ≤ I .

Assumption 2 The function f (t, x) represents the lumped perturbation of a physical
plant through the control channel, and it satisfies ‖ f (t, x)‖ ≤ α‖y(t)‖ [10], where
α > 0 is unknown, i.e., f (t, x)may be bounded, and the exact information is generally
not available in practice.

Before proceeding, we give a definition concerning the following system (2) and
some lemmas:

Eẋ(t) = Ax(t) + Adx(t − d(t)). (2)

Definition 1 [36] The system (2) is said to be

(a) regular if det(sE − A) is not identically zero;

(b) impulse free if deg(det(sE − A)) = rank(E);

(c) stable if, for any ε > 0, there exist a scalar δ(ε) > 0 such that, for any compatible
initial condition ψ(t) satisfying ‖ψ(t)‖d ≤ δ(ε), the solution x(t) of (2) satisfies
‖x(t)‖ < ε for t ≥ 0, and further, x(t) → 0 as t → ∞;

(d) asymptotically stable if the system (2) is stable, and furthermore, there is a scalar
α > 0 such that, for any compatible initial conditionψ(t) satisfying ‖ψ(t)‖d < α,
the solution x(t) → 0 as t → ∞;

(e) admissible, if it is regular, impulse free, and stable.

Lemma 1 [40] Suppose that piecewise continuous real squarematrices Z(t), X, Q >

0 satisfy that ZT(t)X + XTZ(t) + Q < 0 for all t . Then, the following hold:

(1) Z(t) and X are invertible;
(2) ‖Z−1(t)‖ ≥ δ for some δ > 0.

Lemma 2 [31] Let P ∈ Rn×n be symmetric such that ET
L PEL > 0 and Q ∈

R(n−r)×(n−r) is non-singular. Then, PE + RTQST is non-singular and its inverse
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is expressed as: (PE + RTQST)−1 = PET + SQR, where P ∈ Rn×n is a sym-
metric matrix and Q ∈ R(n−r)×(n−r) is a non-singular matrix with

Q = (STS)−1Q−1(RRT)−1, ET
RPER = (ET

L PEL)−1

where RT, S ∈ Rn×(n−r) are any matrices with full column rank and satisfy RE = 0
and ES = 0. E is decomposed as E = EL ET

R with EL , ER ∈ Rn×r are of full column
rank.

3 Main Results

In this section, a novel sliding mode observer (SMO) scheme is developed for the STS
(1), which includes the design of particular non-fragile observer and novel integral-
type sliding surface as well as the adaptive sliding mode controller.

3.1 Non-fragile Observer Design

The following state observer is designed to estimate the unmeasured system states

⎧
⎨

⎩

E ˙̂x(t) = Ax̂(t) + Ad x̂(t − d(t)) + (L + �L(t))[y(t) − Cx̂(t)],
ŷ(t) = Cx̂(t),
x̂(θ) = ψ̂(θ), θ ∈ [−d, 0]

(3)

where x̂(t) ∈ Rn represents the estimation of x(t), L ∈ Rn×p is the observer gain
to be designed later, and �L(t) is an additive gain variation satisfying ‖�L(t)‖ ≤ δ,
where δ > 0 is a constant, namely the observermay be affected by some factors [6,12].

Let the estimation error be e(t) = x(t) − x̂(t). Then, the error system can be
expressed by subtracting (3) from (1) as

⎧
⎪⎪⎨

⎪⎪⎩

Eė(t) = (A − LC − �L(t)C)e(t) + Ade(t − d(t))
+�A(t)x(t) + �Ad(t)x(t − d(t))
+ B(u(t) + f (t, x)) + Dv(t),

ye(t) = Ce(t)

(4)

where ye(t) denotes the output of the error system.

Remark 1 It is noted that the control input is generally utilized for conventional
observer designs (e.g., see [4,6,10,12,17,18,21,24,28,34,39]). To the best of the
authors’ knowledge, the existing SMO is developed with the so-called composite con-
troller in general, i.e., controller itself and its compensator (or called the discontinuous
output error injection term) are both required to satisfy the main goal. In this article,
the composite controller will be no longer needed for the SMO, and the convenience
is that: Control signal is only performed on the original system, and the actions of the
error system and the observer respond automatically. Thus, this simplifies the observer
design in some meaningful sense.
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3.2 Novel Integral Sliding Surface Design

Now, a novel integral sliding surface function is introduced as follows:

s(t) = G[Ee(t) − Ee(0)] + G[Ex̂(t) − Ex̂(0)]
−

∫ t

0
G(A + BK)x̂(θ)dθ, (5)

where matrix K is to be determined, and G ∈ Rm×n is a known matrix satisfying GB
is non-singular, and it is assumed thatG satisfiesGE = HCwith H given thereafter. In

fact, one type of the rank restrictions could be configured as rank

[
GE
C

]

= rank(C),

fromwhichmatrix H can be found to satisfy the equality constraint. Besides, a general
method for calculating the equality constraint will be given in Remark 5. In accordance
with the condition, it follows that the sliding surface function (5) becomes

s(t) = H [y(t) − ŷ(t)] − H [y(0) − ŷ(0)] + G[Ex̂(t) − Ex̂(0)]
−

∫ t

0
G(A + BK)x̂(θ)dθ.

Then, it is observed that the integral sliding surface will be available for the design.
In order to achieve the sliding motion, the equivalent controller will be developed

via the SMC theory [32], i.e., s(t) = 0 and ṡ(t) = 0 hold, simultaneously. So, it
follows from ṡ(t) = 0, i.e.,

ṡ(t) = GAe(t) + GAdx(t − d(t)) + G[�A(t)x(t) + �Ad(t)

·x(t − d(t))] + GB[u(t) + f (t, x)] + GDv(t) − GBKx̂(t)

= 0;

thus, the equivalent controller can be obtained by

ueq(t) = K x̂(t) − f (t, x) − (GB)−1G[Ae(t) + �A(t)x(t)

+ (Ad + �Ad(t))x(t − d(t)) + Dv(t)]. (6)

Then, substituting (6) into (1) results in the dynamical equation of the system (1)
during the sliding mode as

Eẋ(t) = (A + BK + BG�A(t))x(t) + BG(Ad + �Ad(t))

·x(t − d(t)) − (BK + BA)e(t) + DBv(t) (7)

where BG = I − B(GB)−1G, BA = B(GB)−1GA and DB = BGD.
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Similarly, based on (6) and (4), one can further get the associated dynamical equation
of the error system (4) during the sliding mode given by

Eė(t) = (AG − LC − BK − �L(t)C)e(t) + Ade(t − d(t))

+ (BK + BG�A(t))x(t) + (BG�Ad(t) − Bd)

·x(t − d(t)) + DBv(t) (8)

where AG = A − BA, Bd = B(GB)−1GAd .
Then, the sliding mode dynamics (SMDs) of the closed-loop systems can be shown

as
⎧
⎨

⎩

Eẋ(t) = AK (t)x(t) + Ad(t)x(t − d(t)) − (BK + BA)e(t) + DBv(t),
Eė(t) = AL(t)e(t) + Ade(t − d(t)) + (BK + BG�A(t))x(t)

+ (BG�Ad(t) − Bd)x(t − d(t)) + DBv(t)
(9)

where AK (t) = A + BK + BG�A(t), Ad(t) = BG(Ad + �Ad(t)), AL(t) = AG −
LC − BK − �L(t)C .

Remark 2 The main feature of the sliding surface which is worth mentioning is
that: Different from the existing forms such as [6,8,34,36], the error term Ee(t) is
introduced, which performs to avoid the difficulties caused by the perturbation (i.e.,
f (t, x)), as is seen from the derivative of the SMDs. The design could also be of benefit
to demonstrate one highlight of the SMC that the sliding motion may be insensitive
to all matched uncertainties.

Remark 3 As seen in chapter 3.1, the controlleru(t) appears in the error system (4).Via
the developed SMC in the sequel, the expected performance of the closed-loop systems
composed of (1), (3), and (4) will be shown by the SMDs (9), so as to achieve the
main goal. The analytical route of the stability differs from the existing SMO scheme,
please see the Introduction and correlated results, e.g., [6,10,17,18,21,24,28,34,39]
for more details.

Definition 2 The SMDs (9) are said to be admissiblewith H∞ disturbance attenuation
level γ , if the following two targets are satisfied:

T1. The SMDs are admissible with v(t) = 0;
T2. Under zero initial conditions, the H∞ performance measure below is held with

nonzero external disturbance v(t) ∈ L2[0,∞) and the prescribed disturbance
attenuation level γ > 0:

∫ ∞

0
yTe (t)ye(t)dt ≤ γ 2

∫ ∞

0
vT(t)v(t)dt. (10)

3.3 Performance Analysis of the Sliding Motion

In this part, sufficient conditions for the admissibility of the SMDs with H∞ distur-
bance attenuation level are addressed.
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Theorem 1 Consider the sliding surface function defined in (5) and the SMDs in (9).
Given a scalar γ > 0, if positive definite matrices P, Q1 and Q2, matrix P̃, positive
scalars ε1 and ε2 can be found to satisfy the following matrix inequalities:

P̃TE = ET P̃ ≥ 0, (11)

Θ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Θ1 Θ2 Θ4 0 P̃TDB P̃TBGM 0
∗ Θ3 −P̃TBd P̃TAd P̃TDB 0 P̃TBGM
∗ ∗ Θ5 0 0 0 0
∗ ∗ ∗ −(1 − μ)Q2 0 0 0
∗ ∗ ∗ ∗ −γ 2 I 0 0
∗ ∗ ∗ ∗ ∗ −ε1 I 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

(12)

where Θ1 = sym{P̃T(A + BK)} + Q1 + (ε1 + ε2)NTN ,Θ2 = −P̃T(BK + BA) +
(P̃TBK)T,Θ3 = sym{P̃T(AG − LC − BK)} + Q2 + P̃T P̃ + (δ2 + 1)CTC,Θ4 =
P̃TBG Ad+(ε1+ε2)NTNd ,Θ5 = −(1−μ)Q1+(ε1+ε2)NT

d Nd , P̃T = ETP+SQTR,
and RT, S ∈ Rn×(n−r) are any matrices with full column rank such that RE = 0 and
ES = 0, then the SMDs (9) are admissible with the H∞ disturbance attenuation level
γ , which implies the closed-loop systems are admissible with the H∞ disturbance
attenuation level γ under the developed scheme.

Proof Step 1: H∞ performance analysis. Choose the following Lyapunov function

V (t) = xT(t)ETPEx(t) +
∫ t

t−d(t)
xT(θ)Q1x(θ)dθ

+ eT(t)ETPEe(t) +
∫ t

t−d(t)
eT(θ)Q2e(θ)dθ.

By taking the derivative of V (t) by t , one has

V̇ (t) = xT(t)[ETPAK (t) + AT
K (t)PE + Q1]x(t) + 2xT(t)ETPAd(t)x(t − d(t))

− 2xT(t)ETP(BK + BA)e(t) + 2xT(t)ETPDBv(t) − (1 − ḋ(t))

·xT(t − d(t))Q1x(t − d(t)) + eT(t)[ETPAL(t) + AT
L(t)PE + Q2]e(t)

+ 2eT(t)ETPAde(t − d(t)) + 2eT(t)ETP[BK + BG�A(t)]x(t)
+ 2eT(t)ETP[BG�Ad(t) − Bd ]x(t − d(t))) + 2eT(t)ETPDBv(t)

− (1 − ḋ(t))eT(t − d(t))Q2e(t − d(t)). (13)

Note that RE = 0, it follows that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 = 2xT(t)SQTREẋ(t)
= 2xT(t)SQTR[AK (t)x(t)+Ad(t)x(t−d(t))−(BK+BA)e(t)+DBv(t)],

0 = 2eT(t)SQTREė(t)
= 2eT(t)SQTR{AL(t)e(t) + Ade(t − d(t)) + (BK + BG�A(t))x(t)

+(BG�Ad(t) − Bd)x(t − d(t)) + DBv(t)}.

(14)
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By combining (13) and (14) and denoting the matrix P̃T = ETP + SQTR, we get

yTe (t)ye(t) − γ 2vT(t)v(t) + V̇ (t)

= xT(t)[P̃TAK (t) + AT
K (t)P̃ + Q1]x(t) + 2xT(t)P̃TAd(t)x(t − d(t))

−2xT(t)P̃T(BK + BA)e(t) + 2xT(t)P̃TDBv(t) − (1 − ḋ(t))

·xT(t − d(t))Q1x(t − d(t)) + eT(t)[P̃TAL(t) + AT
L(t)P̃ + Q2

+CTC]e(t) + 2eT(t)P̃TAde(t − d(t)) + 2eT(t)P̃T[BK + BG

·�A(t)]x(t) + 2eT(t)P̃T[BG�Ad(t) − Bd ]x(t − d(t))) + 2eT(t)

·P̃TDBv(t) − (1 − ḋ(t))eT(t − d(t))Q2e(t − d(t)) − γ 2vT(t)v(t). (15)

Then, consider the following performance index

J =
∫ ∞

0
[yTe (t)ye(t) − γ 2vT(t)v(t)]dt.

To facilitate the result, (15) is renewed below

yTe (t)ye(t) − γ 2vT(t)v(t) + V̇ (t)

= xT(t)[sym{P̃T(A + BK)} + Q1]x(t) + 2xT(t)P̃TBG Adx(t − d(t))

−2xT(t)P̃T(BK + BA)e(t) + 2xT(t)P̃TDBv(t) + 2eT(t)P̃TAde(t − d(t))

+eT(t)[sym{P̃T(AG − LC − BK)} + Q2 + CTC]e(t) + 2eT(t)P̃TBKx(t)

−2eT(t)P̃TBdx(t − d(t)) + 2eT(t)P̃TDBv(t) − γ 2vT(t)v(t) − (1 − ḋ(t))

·xT(t − d(t))Q1x(t − d(t)) − (1 − ḋ(t))eT(t − d(t))Q2e(t − d(t))

+2xT(t)P̃TBG�A(t)x(t) + 2xT(t)P̃TBG�Ad(t)x(t − d(t))

−2eT(t)P̃T�L(t)Ce(t) + 2eT(t)P̃TBG�A(t)x(t)

+2eT(t)P̃TBG�Ad(t)x(t − d(t)). (16)

Moreover, the following inequalities are obtained

2xT(t)P̃TBG[�A(t)x(t) + �Ad(t)x(t − d(t))]
= 2xT(t)P̃TBGMF(t)[Nx(t) + Ndx(t − d(t))]
≤ ε−1

1 xT(t)P̃TBGMMTBT
G P̃x(t) + ε1[Nx(t) + Ndx(t − d(t))]T

·[Nx(t) + Ndx(t − d(t))], (17)

2eT(t)P̃TBG [�A(t)x(t) + �Ad(t)x(t − d(t))]
= 2eT(t)P̃TBGMF(t)[Nx(t) + Ndx(t − d(t))]
≤ ε−1

2 eT(t)P̃TBGMMTBT
G P̃e(t) + ε2[Nx(t) + Ndx(t − d(t))]T

·[Nx(t) + Ndx(t − d(t))]. (18)
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and

− 2eT(t)P̃T�L(t)Ce(t) ≤ 2δ‖eT(t)P̃T‖‖Ce(t)‖
≤ eT(t)P̃T P̃e(t) + δ2eT(t)CTCe(t). (19)

Thus, with the combination of (16)–(19), one has the following quadratic form

yTe (t)ye(t) − γ 2vT(t)v(t) + V̇ (t) ≤ ξT(t)Ξξ(t) (20)

where

ξT(t) = [xT(t) eT(t) xT(t − d(t)) eT(t − d(t)) vT(t)],

Ξ =

⎡

⎢
⎢
⎢
⎢
⎣

Θ1 Θ2 P̃TBG Ad 0 P̃TDB

∗ Θ3 −P̃TBd P̃TAd P̃TDB

∗ ∗ −(1 − μ)Q1 0 0
∗ ∗ ∗ −(1 − μ)Q2 0
∗ ∗ ∗ ∗ −γ 2 I

⎤

⎥
⎥
⎥
⎥
⎦

+ (ε1 + ε2)

⎡

⎢
⎢
⎢
⎢
⎣

NT

0
NT
d
0
0

⎤

⎥
⎥
⎥
⎥
⎦

[N 0 Nd 0 0].

By the Schur complement, (12) is equivalent to the inequality Ξ < 0. Thus, for all
ξ(t) 	= 0, it follows

yTe (t)ye(t) − γ 2vT(t)v(t) + V̇ (t) < 0. (21)

Hence, under the zero initial conditions, i.e., V (0) = 0, and consider that V (∞) ≥ 0,
the following can be given by integrating (21) with respect to t from 0 to ∞:

J =
∫ ∞

0
[yTe (t)ye(t) − γ 2vT(t)v(t) + V̇ (t)]dt + V (0) − V (∞)

≤
∫ ∞

0
[yTe (t)ye(t) − γ 2vT(t)v(t) + V̇ (t)]dt

=
∫ ∞

0
ξT(t)Ξξ(t)dt ≤ −λv

∫ ∞

0
‖v(t)‖2dt

where λv = λM (−Ξ) > 0, which ensures T2.
Step 2: Admissibility analysis. When v(t) = 0, we show the SMDs are regular and
impulse free. It is worth mentioning that the regularity and non-impulsiveness of the
SMDs could be proved if both the pair (E, AK (t)) and (E, AL(t)) are regular and
impulse free. Then, recalling (15), it follows that

ξT(t)Ωξ(t) ≤ ξT(t)Ξξ(t) < 0, for all ξ(t) 	= 0
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where Ω =

⎡

⎢
⎢
⎢
⎢
⎣

Ω1 Ω2 P̃TAd(t) 0 P̃TDB

∗ Ω3 P̃T(BG�Ad(t) − Bd) P̃TAd P̃TDB

∗ ∗ −(1 − μ)Q1 0 0
∗ ∗ ∗ −(1 − μ)Q2 0
∗ ∗ ∗ ∗ −γ 2 I

⎤

⎥
⎥
⎥
⎥
⎦

with Ω1 =

sym{P̃TAK (t)} + Q1,Ω2 = −P̃T(BK + BA) + (P̃TBK + P̃TBG�A(t))T,Ω3 =
sym{P̃TAL(t)} + Q2 + CTC , which implies Ω < 0. Since rank(E) = r , there exist

non-singular matrices U and V ∈ Rn×n such that UEV =
[
Ir 0
0 0

]

. Thus, it follows

RU−1 = R1[0 In−r ], where R1 ∈ R(n−r)×(n−r) is any non-singular matrix. In like
manner, one can define some matrix decomposition as follows:

U AK (t)V =
[
AK1(t) AK2(t)
AK3(t) AK4(t)

]

, U−TPUT =
[
P1 P2
PT
2 P3

]

,

U AL(t)V =
[
AL1(t) AL2(t)
AL3(t) AL4(t)

]

,

V TS =
[
S1
S2

]

,

V T Q1V =
[
Q11 Q12

QT
12 Q22

]

,

V TQ2V =
[
QV 11 QV 12

QT
V 12 QV 22

]

.

Due to Ω < 0, it is obtained that

[
sym{P̃TAK (t)} + Q1 Ω2

∗ sym{P̃TAL(t)} + Q2

]

< 0. (22)

Then, pre- and post-multiplying (22) by diag{V T, V T} and diag{V, V } yields
⎡

⎢
⎢
⎣

� � � �

� Λ1 � �

� � � �

� � � Λ2

⎤

⎥
⎥
⎦ < 0 (23)

whereΛ1 = sym{S2QTR1AK4(t)}+Q22,Λ2 = sym{S2 ·QTR1AL4(t)}+QV 22, “�′′
represents the term that is irrelevant to the subsequent proof. In view of (23) and
Lemma 1, it follows that both AK4(t) and AL4(t) are non-singular, thereby complet-
ing the proof of the regularity and non-impulsiveness of the SMDs. Also, it follows
that Q is non-singular. In the end, the asymptotic stability will be tested by virtue
of the Lyapunov stability theory. By invoking (20) with v(t) = 0, one can have
V̇ (t) ≤ ηT(t)Ση(t), where ηT(t) = [xT(t) eT(t) xT(t − d(t)) eT(t − d(t))], and
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Σ =

⎡

⎢
⎢
⎣

Σ1 Σ2 P̃TBG Ad 0
∗ Σ3 −P̃TBd P̃TAd

∗ ∗ −(1 − μ)Q1 0
∗ ∗ ∗ −(1 − μ)Q2

⎤

⎥
⎥
⎦ + (ε1 + ε2)

⎡

⎢
⎢
⎣

NT

0
NT
d
0

⎤

⎥
⎥
⎦ [N 0 Nd 0]

with
Σ1 = sym{P̃T(A + BK)} + Q1 + ε−1

1 P̃TBGMMTBT
G P̃,Σ2 = −P̃T(BK + BA) +

(P̃TBK)T,Σ3 = sym{P̃T(AG −LC−BK)}+ Q2 + ε−1
2 P̃TBGMMTBT

G P̃ + P̃T P̃ +
δ2CTC .
Notice that (12) also results in Σ < 0, and V̇ (t) < 0 (for all η(t) 	= 0), which
indicates the SMDs are asymptotically stable by Definition 1. Thus, T1 is satisfied,
thereby completing the proof. ��
Remark 4 The admissible criterion of the SMDs is provided by Theorem 1; however,
the formulation is not a linear program. It contains the matrix equality constraint in
(11), which may be a trouble in numerical computation. And the matrix P is not
explicitly expressed in Theorem 1, which may also result in some difficulty for the
selection of V (t) due to the unsolved P . Further, it may even lead to the resultant
parameters such as the gains K and L to be inaccurate. To this end, the following is
focused on solving the feasibility of the problem in terms of a strict LMI.

Theorem 2 Given a scalar γ > 0, the SMDs (9) are admissible with H∞ disturbance
attenuation level γ , if there exist positive definite matrices P, Q1, Q2, a non-singular
matrix Q, matrices X,Y,U and V , and scalars εi (i = 1, 2) such that the following
LMI holds:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π1 Π2 Π4 0 Π8 Π10 0 0
∗ Π3 Π5 Π7 Π9 0 Π11 Π12
∗ ∗ Π6 0 0 0 0 0
∗ ∗ ∗ −(1 − μ)Q2 0 0 0 0
∗ ∗ ∗ ∗ −γ 2 I 0 0 0
∗ ∗ ∗ ∗ ∗ −ε1 I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (24)

where Π1 = sym{(ETP + SQTR)A + ETX + SY } + Q1 + (ε1 + ε2)NTN ,Π2 =
−(ETP + SQTR)BA − (ETX + SY ) + (ETX + SY )T,Π3 = sym{(ETP +
SQTR)AG − (ETU + SV)C − (ETX + SY )} + Q2 + (δ2 + 1)CTC,Π4 = (ETP +
SQTR)BG Ad + (ε1 + ε2)NTNd ,Π5 = −(ETP + SQTR)Bd ,Π6 = −(1 − μ)Q2 +
(ε1+ε2)NT

d Nd ,Π7 = (ETP+SQTR)Ad ,Π8 = (ETP+SQTR)DB,Π9 = (ETP+
SQTR)DB,Π10 = (ETP + SQTR)BGM,Π11 = (ETP + SQTR)BGM,Π12 =
ETP + SQTR and RT, S ∈ Rn×(n−r) are any matrices with full column rank sat-
isfying RE = 0,ES = 0. Moreover, the gain matrices L and K can be given by
L = (ETP + SQTR)−1(ETU + SV) and K = B+(ETP + SQTR)−1(ETX + SY ),
respectively.

Proof In view of Theorem 1, it follows P̃ = PE + RTQST. Thus, (11) is obviously
true. In other words, if there exist positive definite matrices P, Q1 and Q2, a non-
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singular matrix Q, scalars εi (i = 1, 2) such that (12) can be satisfied, the SMDs
will be admissible with H∞ disturbance attenuation level γ . Decompose E as E =
EL ET

R where EL , ER ∈ Rn×r are of full column rank. From another perspective,
by Lemma 2, it follows that PE + RTQST is non-singular, and its inverse can be
represented by the form: (PE + RTQST)−1 = PET + SQR where P ∈ Rn×n

is a symmetric matrix and Q ∈ R(n−r)×(n−r) is a non-singular matrix. Define U =
PL , V = QTRL , X = PBK, and Y = QTRBK, then by the Schur complement, (12)
becomes (24), which is recognized as a strict LMI and can be solved by the MATLAB
software. The proof is completed. ��

Remark 5 Now, a general algorithm which aims to solve the LMI (24) subject to the
equality constraint GE = HC is presented. In brief, similar to the algorithm in [10],
the following minimization problem is outlined to solve the undetermined parameters
in Theorem 2 and the matrix H :

min σ, subject to

[−σ I (GE − HC)T

∗ −I

]

< 0 and (24).

It is seen that the design is converted into a minimization problem involving an LMI
and linear objective which may be solved by applying the MATLAB software. If σ is
equal to or tends to zero sufficiently small, the equality condition GE = HC can be
ensured. The verbatim argument is omitted here for brevity.

3.4 Adaptive Reaching Motion Controller Synthesis

In this section, the synthesis of an adaptive SMC law is considered, by which the
finite-time reachability of the sliding mode can be ensured.

Assumption 3 [33] Unknown scalar q > 0 can be found to satisfy the inequality:

‖x(t − d(t))‖ ≤ q‖x(t)‖. (25)

Since the system states x(t) are not completelymeasurable, the estimation error e(t)
may not be computable either, which is often the case in practical systems. However,
with the relationships among x(t), y(t), e(t), and ŷ(t), we assume that there exist
unknown scalars υi > 0 (i = 1, 2, 3) satisfying ‖x(t)‖ ≤ υ1‖y(t)‖ and ‖e(t)‖ ≤
υ2‖y(t)‖ + υ3‖ŷ(t)‖. At this point, unknown scalars li > 0 (i = 1, 2) can be found
such that the following estimation is satisfied based on the above discussions:

S = ‖GA‖‖e(t)‖ + ‖GAd‖‖x(t − d(t))‖ + ‖G�A(t)‖‖x(t)‖
+‖G�Ad(t)‖‖x(t − d(t))‖ + ‖GB‖‖ f (t, x)‖

≤ l1‖y(t)‖ + l2‖ŷ(t)‖, t ≥ 0 (26)

where l1 and l2 are unknown positive constants to be estimated.
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Notice that the estimation bounds l1 and l2 are not accessible in practical design.
Let l̂i (t) be the estimates of li with the errors being l̃i (t) = l̂i (t) − li (i = 1, 2). In the
position, an adaptive sliding mode controller is constructed as

u(t) =K x̂(t) − (GB)−1[l̂1(t)‖y(t)‖ + l̂2(t)‖ŷ(t)‖
+ ‖GD‖‖v(t)‖ + ρ]sgn(s(t))

(27)

with the associated updating laws designed by

˙̂l1(t) = c1‖y(t)‖‖s(t)‖ and ˙̂l2(t) = c2‖ŷ(t)‖‖s(t)‖,
where ci > 0 (i = 1, 2) are constants as the adaptive gains chosen by the designer,
and ρ > 0 is a small scalar.

Theorem 3 With the gain matrix K obtained in Theorem 2 and the integral sliding
surface function designed by (5), the finite-time reachability of the expected sliding
mode can be guaranteed, if the controller (27) is applied.

Proof Select a Lyapunov function

V̂ (t) = 0.5
[
sT(t)s(t) + c−1

1 l̃21(t) + c−1
2 l̃22(t)

]
. (28)

Differentiating V̂ (t) with respect to t yields

˙̂V (t) = sT(t)ṡ(t) + c−1
1 l̃1(t)

˙̃l1(t) + c−1
2 l̃2(t)

˙̃l2(t)
= sT(t){GAe(t) + GAdx(t − d(t)) + G[�A(t)x(t)

+�Ad(t)x(t − d(t))] + GB[u(t) + f (t, x)] + GDv(t)

−GBKx̂(t)} + c−1
1 l̃1(t)

˙̃l1(t) + c−1
2 l̃2(t)

˙̃l2(t). (29)

Taking (26) and (27) into consideration, (29) becomes

˙̂V (t) = sT(t){GAe(t) + GAdx(t − d(t)) + G[�A(t)x(t)

+�Ad(t)x(t − d(t)) + Dv(t)] − [l̂1(t)‖y(t)‖
+ l̂2(t)‖ŷ(t)‖ + ‖GD‖‖v(t)‖ + ρ]sgn(s(t))

+GBf(t, x)} + c−1
1 l̃1(t)

˙̃l1(t) + c−1
2 l̃2(t)

˙̃l2(t)
≤ ‖s(t)‖{‖GA‖‖e(t)‖ + ‖GAd‖‖x(t − d(t))‖

+‖G�A(t)‖‖x(t)‖ + ‖G�Ad(t)‖‖x(t − d(t))‖
+‖GD‖‖v(t)‖ + ‖GB‖‖ f (t, x)‖} − [l̂1(t)‖y(t)‖
+ l̂2(t)‖ŷ(t)‖ + ‖GD‖‖v(t)‖ + ρ]sT(t)sgn(s(t))

+ c−1
1 l̃1(t)

˙̃l1(t) + c−1
2 l̃2(t)

˙̃l2(t)
≤ ‖s(t)‖[l1‖y(t)‖ + l2‖ŷ(t)‖] − ‖s(t)‖[l̂1(t)‖y(t)‖

+ l̂2(t)‖ŷ(t)‖ + ρ] + c−1
1 l̃1(t)

˙̃l1(t) + c−1
2 l̃2(t)

˙̃l2(t).
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Substituting the designed adaptive laws results in

˙̂V (t) ≤ −ρ‖s(t)‖ < 0, i f s(t) 	= 0.

Notice that ˙̂li (t) = ˙̃li (t) > 0, it indicates that there exist an instant T ∗ such that

l̃i (t) > 0 for t > T ∗. Thus, one has c−1
i l̃i (t)

˙̃li (t) > 0 for t > T ∗. It follows that
sT(t)ṡ(t) < 0 for t > T ∗. Hence, the reaching condition of the sliding mode can
be satisfied. Furthermore, with the fact s(0) = 0, it follows the closed-loop systems
can be kept on the predesigned sliding surface in finite-time since the initial moment,
thereby completing the proof. ��
Remark 6 It should be mentioned that the external disturbance v(t) may be unknown
and bounded by ‖v(t)‖ ≤ κ , where κ > 0 is unknown. Then, the following steps are
provided to deal with such case.

(i) The estimation as follows can be ensured for unknown scalars li > 0 (i = 1, 2, 3)
that

X = ‖GA‖‖e(t)‖ + ‖GAd‖‖x(t − d(t))‖ + ‖G�A(t)‖‖x(t)‖
+‖G�Ad(t)‖‖x(t − d(t))‖ + ‖GD‖‖v(t)‖ + ‖GB‖‖ f (t, x)‖

≤ l1‖y(t)‖ + l2‖ŷ(t)‖ + l3, t ≥ 0

with the estimation l̂3(t) of l3 and its error being l̃3(t) = l̂3(t)− l3, and the updat-
ing law is designed as l̂3(t) = c3‖s(t)‖;

(ii) The adaptive controller can be synthesized as the following form

u(t) = K x̂(t) − (GB)−1[l̂1(t)‖y(t)‖ + l̂2(t)‖ŷ(t)‖
+ l̂3(t) + ρ]sgn(s(t)).

The concern is similar with the earlier discussion.

Remark 7 Anovel adaptive controller is presented for the STS, which does not depend
on the information of the delayed states, while the design in [6] is absolutely a memory
controller.And the unknownbounds li (i = 1, 2, 3) could bewell tracked, respectively,
which further ensures the desirable performance.

Remark 8 It is worth noting that the SMO strategy has been widely applied into many
practical aspects, e.g., power converters [14,16] and PEM fuel cell air-feed system
[15]. In this work, a novel SMO design scheme is presented for the STS, which may
be regarded as a meaningful expansion of the SMO approach for singular systems.
To this end, the design can be easily extended onto normal state-space systems (or
with time delay) as well. As such, the proposed approach may be anticipated and
challenging in future applications.
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4 Illustrative Example

In this section, a numerical example is presented to demonstrate the potential and
superiority of the developed scheme with comparisons.

Example 1 Let us consider the STS given by [12] with the data as follows:

E =
[
1 0
0 0

]

, A =
[
0.5 1
0 −1

]

, Ad =
[
0.5 0
−1 0.5

]

, B =
[
1
1

]

,

D =
[
0.2
0.3

]

,�L(t) =
[
0.1
0.1

]

sint · 0.1, M = N = Nd = 0,

Select C = [1 0], S = [0 1]T, R = ST, v(t) = e−0.1t sin(2t/3), δ = 0.025 , and
G = [1 1] so that H is easily obtained as H = 1. As is pointed out in [12], given
scalar γ = 1.0 and the derivative of the time-varying delay μ = 0.3, by solving the
LMI (24), the associated gain matrices are computed by

L = [
10.9951 0.2588

]T
, K = [−2.6730 0.1964

]
.

Also, as discussed in [12], when considering the system with a constant time delay
d = 0.36 (i.e., μ = 0), in like manner, one can get

L = [7.6855 0.5731]T , K = [−1.7329 0.0382] .

Therefore, the developed sliding surface function and adaptive SMC law are given by

s(t) = y(t) − ŷ(t) − [y(0) − ŷ(0)] + [1 0] [x̂(t) − x̂(0)]
−

∫ t

0
[−2.9659 0.0765] x̂(θ)dθ.

and

u(t) = [−1.7329 0.0382] x̂(t) − 0.5[l̂1(t)‖y(t)‖ + l̂2(t)‖ŷ(t)‖
+ 0.5‖v(t)‖ + 1.6]sgn(s(t)),

with the estimation l̂1(t) and l̂2(t) designed by the updating laws given below:

˙̂l1(t) = 2.5‖s(t)‖‖y(t)‖, ˙̂l2(t) = 2.0‖s(t)‖‖ŷ(t)‖.

Simulation results are provided in Figs. 1 and 2 under the initial conditions x(θ) =
[2.5 2.6871]T and x̂(θ) = [−1.5 2.2924]T, θ ∈ [−0.36, 0]. From the simulation, it
can be seen that the state responses are faster than that of [12], see Figure 1 in [12] for
detail, which also indicates the fast response of the SMO approach well.
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Furthermore, if the perturbation appears through the control channel, e.g., f (t, x) =
[sin2t + 1.5 − cost − 2]x(t), the correlated simulation results are shown in Figs. 3,
4, 5, 6, and 7 based on the proposed method; however, the result in [12] may be unable
to cope with the complex case, which may further imply the superiority of our design.
Among them, Figs. 3 and 4 show the responses of system state and the observer; the
sliding surface function and adaptive controller are plotted in Figs. 5 and 6; Fig. 7
depicts the adaptive estimations.

Besides the above discussions, we further make another comparison upon the basis
of the stability analysis of the system between the method of Ref. [13] and our’s. By
the stability result of the Theorem 3 in [13], we get matrix K̃ = [1.8488 1.1736];
thus, the controller gain matrix is obtained as K = [8.7287 1.2312]. In this way, the
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matrix L̃ in [13] can be given as L̃ = [85.2378 24.2038]T so that the observer gain
matrix is computed as L = [1.6062 0.7978]T. However, it should be pointed out
that the estimated state variable by [13] cannot be stabilized due to the perturbation
f (t, x) through the control channel, and the system states diverge rapidly, so we
reduce the simulation time to 5 s, rather than 15 s, see Figs. 8 and 9. Further, as is
seen from Figs. 3 and 4, the evolutions of the system states can be desirable, despite
the matched uncertainty, time delay, and external disturbance. Therefore, the SMO
scheme performs better than the method by [13] under some complicated conditions
in this paper.
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5 Conclusions

The robust H∞ control problem for a class of uncertain STS with unmeasured states
has been investigated by a novel SMO scheme in this paper. A simple observer has
been designed to estimate the unmeasured states, and a novel integral-type sliding
surface has been developed. Moreover, the resultant SMDs to be admissible with H∞
performance index have been ensured via a new LMI framework. Then, the sliding
mode phase has been satisfied by utilizing a novel adaptive SMC law from the initial
time. The validity and superiority of the proposed method have been verified via
an illustrative example. This may provide a selectable method to study the singular
systems in future research directions.
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