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Abstract Underdetermined blind source separation based on compressed sensing
(CS) has already been proven to be an effective mechanism from an experimental
viewpoint. In this study, we develop a theoretical result and show that, under a cer-
tain sparsity constraint for the restricted isometry property, the accuracy of CS when
retrieving sources is guaranteed. This theoretical result can be regarded as a general-
ization of the blocked polynomial deterministic matrix theory and has been confirmed
using numerical examples.

Keywords Underdetermined blind source separation · Compressed sensing ·
Restricted isometry property · Blocked matrix

1 Introduction

Underdetermined blind source separation (UBSS) is the process of restoring a set of
unknown source signals from their linear instantaneous mixture. The problem can be
described as follows:
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x(t) = As(t), t = 1, 2, . . . , L , (1)

where x(t) = [x1(t), x2(t), . . . , xM (t)]T and s(t) = [s1(t), s2(t), . . . , sN (t)]T
are the observed and unknown source signals, respectively, and t is the discrete time
sequence. A = (ai j )M×N ∈ RM×N represents an unknown mixing matrix assumed
to be row full rank, L is the length of the signals, and M < N � L . In UBSS,
identification of the mixing matrix and restoration of the sources are two distinct
problems. For linear memoryless mixture models (1), even if the mixing matrix is
perfectly known, there exist infinite solutions [10]. In addition, priors are necessary to
restore sources. Sparse signal representation is an effective method, requiring sources
that are sparse or can be decomposed into a combination of sparse components [15,21].
Sparsity of source signals implies that, in each columnof s, only a few significant values
(active sources) exist, whereas most of the other elements are almost zero (inactive
sources).

Compressed sensing (CS) is a new framework for signal recovery that has attracted
considerable interest over the past few years [6,23]. This framework assumes that the
signal is sparse or compressible.

The CS model can be described as follows:

y = �θ , (2)

where � denotes the M1 × N1 (M1 < N1) matrix known as the measurement matrix.
Although reconstruction of the signal θ from y is an ill-posed problem, prior knowledge
of signal sparsity allows recovery of θ from only M1 = O(K log N1) samples [2].

The search for a solution with minimal l0-norm, i.e., minimum number of nonzero
components, is a natural and straightforward reconstruction method. However, this l0-
norm minimization problem tends to become intractable as the dimension increases.
It is also very sensitive to noise, and cannot be used for practical applications [2].
To overcome these severe drawbacks in signal recovery, significant attention is given
to a family of algorithms that include thresholding [18], orthogonal matching pursuit
(OMP) [14], stagewise OMP (StOMP) [5], regularized OMP (ROMP) [12], compres-
sive sampling matching pursuit (CoSaMP) [11], subspace pursuit (SP) [21], basis
pursuit principle [19], and generalized OMP (gOMP) [16]. To recover sources suc-
cessfully, all of these approaches require that the measurement matrices � follow a
uniform uncertainty principle, where each submatrix of � has to be well designed to
satisfy the restricted isometry property (RIP) with a constant parameter [2,17]. Amea-
surement matrix � satisfies the RIP of order K if there exists a constant δK ∈ (0, 1)
such that

(1 − δK ) ‖ θ ‖22≤‖ �θ ‖22≤ (1 + δK ) ‖ θ ‖22, θ ∈ �K , (3)

for any K -sparse vector θ. In particular, the minimum of all constants δK satisfying
model (3) is called the restricted isometry constant, denoted by δK (�).

Various measurement matrices have been investigated in recent years. The first
family of measurement matrices consisted of the random Gaussian matrix, Bernoulli
matrix, sub-Gaussian matrix, and basis transformation [8]. Although these matrices
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each have their ownunique advantages, their commondrawback is that they are random
matrices. In source separation, themeasuring system is not normally under our control.

Beginning from the RIP conditions of model (2), the bound on δK (�) was given in
[1]. Then, the CS methods reported in [20,22] can be used to recover the sources effi-
ciently when the UBSS model is interleaved with the CS model. These methods have
demonstrated good performance when validated via numerical experiments. However,
use of CS methods in the UBSS model (1) is not clearly elucidated.

In 2007, a polynomial deterministic matrix method was proposed for compressed
sensing [3]. The method affords good reconstruction properties similar to the Gaus-
sian random matrix, but the number of measurements is inflexible [9]. Therefore, the
blocked polynomial deterministic matrix was constructed in [9]. However, when the
CS method is applied to the UBSS model, the measurement matrix does not meet the
requirements of a blocked polynomial deterministic matrix, i.e., that the elements be
either 0 or 1, rendering this method inapplicable to UBSS.

In this study, we extend the result from the blocked polynomial deterministic matrix
to a more general case without any restriction on the elements of the matrix. Conse-
quently, A is assumed to be known.

The remainder of this paper is organized as follows: In Sect. 2, we discuss the UBSS
and CS models, present the construction of the measurement matrix, and describe the
notations used herein. In Sect. 3, we illustrate the proof of a theorem that the measure-
ment matrix must satisfy. In Sect. 4, the proposed algorithm for sparse signal recovery
is presented. Section 5 presents the simulation results, and concluding remarks are
presented in Sect. 6.

2 UBSS and CS

2.1 Notations

The notations used in this study are as follows:

‖ · ‖p denotes the l p-norm.
#(�) denotes the number of elements in set �.

θi = [s1(i), s2(i), . . . , sN (i)]T, i = 1, 2, . . . , L .

�K denotes the set of all vectors s ∈ RN such that at most K coordinates of s are
nonzero.
�i ⊂ {(i − 1)N + 1, (i − 1)N + 2, . . . , i N } denotes the set corresponding to
�i and #(�i ) = Ki .
��i represents the M×Ki matrix formed by the columns of�i with indices from
�i .

2.2 Relationship between UBSS and CS

TheUBSSproblem can be formulated as a compressed sensingmodelwhen themixing
matrix A = (ai j )M×N is known.
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The relationship between UBSS and compressed sensing becomes evident if we
interleave observations and sources into vectors as follows:

y = [x1(1), . . . , xM (1), x1(2), . . . , xM (2), . . . , x1(L), . . . , xM (L)]T (4)

and

θ = [s1(1), . . . , sN (1), s1(2), . . . , sN (2), . . . , s1(L), . . . , sN (L)]T. (5)

Then, the mixing system in Eq. (1) can be expressed as

y = �θ . (6)

This is identical to the compressed sampling measurement equation

� =

⎛
⎜⎜⎜⎝

A 0 · · · 0
0 A · · · 0
...

...
. . .

...

0 0 · · · A

⎞
⎟⎟⎟⎠

ML×NL

.=

⎛
⎜⎜⎜⎝

�1 0 · · · 0
0 �2 · · · 0
...

...
. . .

...

0 0 · · · �L

⎞
⎟⎟⎟⎠ , (7)

where �i denotes the i-th matrix A in �.

2.3 Deterministic Construction of Matrix

To understand this property better, we first review some of the important results of the
compressed sensingmodel (2) using theRIP in [2,17]. Consider theM×#(�)matrices
�� formed by the columns of�with indices from�, where� ⊆ {1, 2, . . . , N1}. Then,
Eq. (3) shows that the Gramian matrices

B� = �T
���, #(�) = K (8)

are bounded on the l2-norm and are uniform for all � such that #(�) = K [3]. The
matrix B is nonnegative definite and symmetric, i.e., has eigenvalues in [1− δK , 1+
δK ]:

1 − δK ≤‖ B� ‖2≤ 1 + δK . (9)

A deterministic construction of matrices that satisfy the RIP is presented in [3].

Theorem 1 Let�0 be an M1×N1 matrix with columns vQ, Q ∈ Pr with the columns
ordered lexicographically with respect to the coefficients of the polynomials and M1 =
p2, N1 = pr+1. Then, the matrix � = 1√

p�0 satisfies the RIP with δ = (k−1)r
p for

any k <
p
r + 1, where Pr denotes the set of polynomials of degree ≤ r, (0 < r < p)

on finite fields, making any polynomial Q(x) = b0 + b1x + . . . + br xr ∈ Pr , where
b0, b1, . . . , br are the coefficients [3].



Circuits Syst Signal Process (2017) 36:4741–4755 4745

In this theorem, the size and value of � are fixed, which is not feasible for practical
applications. In the next section, we extend this theoretical result to the general case.
The size and value of � are more flexible, and this result can be applied to UBSS.

3 Theoretical Result for UBSS Based on CS

In UBSS, it is assumed that each signal s(t) ∈ RN , t = 1, 2, . . . , L can be sparsely
represented by K (usually K � N ) or fewer nonzero (significant) components. For
simplicity but without loss of generality, in this study, s(t) is considered to be sparse
in the time domain.

Here, three assumptions are presented:

(i) The columns of A are normalized, i.e.,
M∑
i=1

a2i j = 1, j = 1, 2, . . . , N , and any

M × M submatrix of the mixing matrix A is full rank [4,7].
(ii) The sparsity of θ, as defined in Eq. (5), is K , and the sparsity of si (t) is Ki , i =

1, 2, . . . , L , which implies that
L∑

i=1
Ki = K .

(iii) Let q = max
i∈{1,2,...,L}(Ki ) and � be the index set of arbitrarily chosen q columns

fromA. We suppose that
∑

i1,i2∈�,i1 	=i2

〈ai1 , ai2〉 < 1, where ak represents the k-th

column of A.

We now provide a deterministic construction of matrices that satisfy the RIP in
UBSS.

Theorem 2 Let � denote a matrix constructed according to Eq. (7) that satisfies
assumptions (i), (ii), and (iii). If

δi = (Ki − 1) max
k,h∈�i ,k 	=h

{D�(k, h)} < 1, (10)

where D�(k, h) is the k-th row and h-th column element of the Gramian matrix of
�� , which represents an ML × K matrix formed by the K columns of �, then matrix
� satisfies the RIP with δ = max

i=1,2,...,L
δi .

Proof The proof is given in the Appendix.

Remark 1 The RIP is a sufficient condition to guarantee that matrix� has good source
recovery performance.

Remark 2 The RIP is a condition on the spectral norm of matrices D� = �T
��� . We

have bounded the spectral norm by bounding the l1- and l∞-norms. Direct estimation
of the spectral norm may lead to a stronger result than that of the l1- and l∞-norms.
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4 Algorithm

In this section, we summarize the algorithm process, which involves two main steps.
First, it judges whether the measurement matrix satisfies the RIP based on Theorem 2,
then it uses the OMP algorithm to reconstruct the sources. The algorithm can be
outlined as follows:

5 Simulation Results

Two experiments were performed to evaluate the effect of the algorithm on the sepa-
ration performance relative to the shortest path method [21]. These two experiments
show the recovery capability in the time and frequency domains for different sizes.

To evaluate the reconstruction results, the signal-to-interference ratio (SIR) was
defined as a reconstruction index [7],
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Fig. 1 Three source signals s1, s2, s3

SIRi = 10 log10

⎛
⎜⎜⎜⎝

L∑
t=1

s2i (t)

L∑
t=1

(ŝi (t) − si (t))2

⎞
⎟⎟⎟⎠ , i = 1, 2, . . . , N , (11)

where si is the source signal and ŝi is the corresponding reconstructed signal. This
means that, the larger the SIR, the better the performance of the algorithm.

Experiment 1 M = 2, N = 3,max(ki ) = 2.

In this experiment, we considered a blind source separation scenario with M = 2
mixtures and N = 3 source signals s1, s2, s3, which means that the dimension of the
mixing matrix A is 2 × 3. Three sparse source signals were generated with length of
L = 128,max(Ki ) = 2. The waveforms of the three original signals are shown in
Fig. 1.

The mixing matrix is as follows:

A =
[
0.8192 0.6727 0.4657
0.5735 0.7399 0.8849

]
,

where A was randomly generated, normalized, and known when generated in the
experiment. The detailed process to generate the matrix was as follows: First, we
randomly generated a matrix A′ = (a′

i j )M×N , then we normalized matrix A′ to A =
(ai j )M×N s.t.

M∑
i=1

a2i j = 1, j = 1, 2, . . . , N . Note that any M × M submatrix of

the mixing matrix A is full rank.



4748 Circuits Syst Signal Process (2017) 36:4741–4755

Fig. 2 Waveforms of observed signals: a waveforms of observed signals x1, x2 based on Eq. (1), b wave-
form after transforming the observed sources into a column vector y

Figure 2a shows the waveform of the observed signals. The observed signals were
then interleaved into a columnvector as indicated inEq. (4). Thewaveform is displayed
in Fig. 2b.

According to Theorem 2, we computed ATA as follows:

G = ATA =
⎡
⎣
1.0000 0.9754 0.8890
0.9754 1.0000 0.9681
0.8890 0.9681 1.0000

⎤
⎦ .

Then, the off-diagonal entries D�(k, h) = G(k, h) < 1, k 	= h, such that

δi = (Ki − 1) max
k,h∈�i ,k 	=h

{D�(k, h)} = 0.9754 < 1.

Therefore, the original sources can be estimated by using an appropriate CS algorithm.
Figure 3a shows the separation results obtained by OMP. Then, the resultant single
vector was split into multiple separation vectors, which are displayed in Fig. 3b.

We performed 100 trials to evaluate the reconstruction results. The average SIRwas
used to evaluate the reconstruction errors. Table 1 records the average SIR compared
with the shortest path method, showing that UBSS based on OMP obtains results
similar to those of the shortest path method when the measurement matrix satisfies
Theorem 2.

Experiment 2 M = 3, N = 4, max(ki ) = 2.

In practical applications, not all signals are sparse in the time domain, but they are
sparse in transformed domains. In this experiment, we created four source signals,
namely s1, s2, s3, s4, that are not sparse in the time domain but are sparse in Fourier-
transformdomains s̃1, s̃2, s̃3, s̃4 with length L = 128, M = 3, N = 4, max(Ki )= 2.
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Fig. 3 Separation results: a separation results obtained by OMP (red dots original sources θ , blue circle
corresponding estimations θ̂ ), bwaveform after splitting the single vector θ̂ into multiple separation vectors
ŝ1, ŝ2, ŝ3. For color references in this figure, please refer to the online version of the paper (Color figure
online)

Table 1 Average SIR of sources and separation signals in experiment 1

Algorithm SIR1(s1, ŝ1) SIR2(s2, ŝ2) SIR3(s3, ŝ3)

Shortest path method 310.4159 315.5370 317.8050

OMP 326.2705 318.7403 319.1313

The mixing matrix is as follows:

A =
⎡
⎣
0.8256 0.3828 0.4857 0.4053
0.2008 0.7021 0.0197 0.5610
0.5273 0.6004 0.8739 0.7218

⎤
⎦ ,

which was randomly generated and normalized.
Fast Fourier transformation was applied to obtain a sparse representation of each

signal. The waveforms of the four original signals and their corresponding FFT coeffi-
cients are shown in Fig. 4. Here, we deal with the real and imaginary parts using
the OMP method. The inverse FFT method is then applied to the reconstructed
data comprising the real and imaginary parts of the separation vectors. Figure 4a
shows the source signals, Fig. 4b shows the spectrum of the sources with FFT, and
Fig. 4c and d depict the real and imaginary parts of the FFT domains of the sources,
respectively.

First, the real and imaginary parts of the FFT domains of the sources were inter-
leaved into a column as indicated by Eq. (5). Corresponding scatterplots are shown in
Fig. 5a, b.

Figure 6a shows thewaveform of the observed signals. Then, the real and imaginary
parts of the FFT domains of the observed signals were interleaved into a column vector
as indicated in Eq. (4). The waveform is displayed in Fig. 6b, c.
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Fig. 4 Source signals and FFT coefficients: a source signals, b amplitude spectrum of sources with FFT,
c real part of FFT domains of sources, and d imaginary part of FFT domains of sources. k stands for the
number of FFT points

Fig. 5 Interleaving real and imaginary parts of FFT domains of source signals into a column: a interleaving
the real parts of the FFT coefficients of sources into a column real(θ), b interleaving the imaginary parts
of the FFT coefficients of sources into a column imag(θ). k stands for the number of FFT points
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Fig. 6 Waveforms of observed signals and their real and imaginary parts of FFT domains: a the observed
signals x1, x2, x3, b interleaving the FFT coefficients of observed signals into vectors with real part real(y),
c interleaving the FFT coefficients of observed signals into vectors with imaginary part imag(y). k stands
for the number of FFT points

According to Theorem 2, we computed ATA as follows:

G = ATA =

⎡
⎢⎢⎣
1.0000 7736 0.8658 0.8279
0.7736 1.0000 0.7245 0.9824
0.8658 0.7245 1.0000 0.8387
0.8279 0.9824 0.8387 1.0000

⎤
⎥⎥⎦ .

Then,

δi = (Ki − 1) max
k,h∈�i ,k 	=h

{D�(k, h)} = 0.9824 < 1.

Therefore, the real and imaginary parts of the FFT domains of the sources can be
exactly reconstructed by using the OMP algorithm. Figure 7a and b present the sepa-
ration results for the real and imaginary parts, respectively. All sparse representations
were reconstructed properly.

The single vector was split into multiple separation vectors. Finally, the inverse
FFT method was applied to the reconstructed data comprising the real and imaginary
parts of the separation vectors, and the four original signals were recovered. The final
results are shown in Fig. 8.
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Fig. 7 Separation results using the OMP method for real and imaginary parts of FFT domains of observed
signals: a separation results for real parts (red dots real parts real(θ) of original sources, blue circle
corresponding real parts real(θ̂ ) of estimations),b separation results for imaginary parts (red dots imaginary
parts imag(θ) of original sources, blue circle corresponding imaginary parts imag(θ̂ ) of estimations). k
stands for the number of FFT points. For color references in this figure, please refer to the online version
of the paper (Color figure online)

Fig. 8 Recovered signals and their FFT spectrum: a recovered signals ŝ1, ŝ2, ŝ3, ŝ4, b amplitude spectrum
˜̂s1, ˜̂s2, ˜̂s3, ˜̂s4 of the recovered signals with FFT. k stands for the number of FFT points

Table 2 Average SIR of sources and separation signals in experiment 2

Algorithm SIR1(s1, ŝ1) SIR2(s2, ŝ2) SIR3(s3, ŝ3) SIR4(s4, ŝ4)

Shortest path method 145.2400 131.8626 108.7379 139.1085

OMP 145.8967 144.9157 144.1111 142.2850

After 100 trials, the average SIR relative to that obtained using the shortest path
method is recorded in Table 2, showing that UBSS based on OMP produced iden-
tical results for both the proposed method and the shortest path method when the
measurement matrices satisfy Theorem 2.
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6 Conclusions

Separation of underdetermined mixtures is usually addressed in the framework of
sparse signal representation. In recent years, compressed sensing theory has been
adopted for signals that permit a sparse representation. The major contribution of this
paper is the extension of a recent theoretical result. Numerical experiments demon-
strate the separation performance of the proposed theory. The result can be directly
extended to higher-dimensional as well as dependent source separation.

However, there is a limitation to the proposed theory: The linear transform used to
make the sources sparse and the maximum sparsity of all the blocks must be known
a priori. Extending the proposed results to a more general case (such as when the
separation of convolutive mixtures or the sparsity is unknown) is left for future work.

Acknowledgements This work was partially supported by the Natural Science Foundation of China under
Grant No. 61601417. The authors would like to thank the anonymous reviewers for their thorough reading
of the paper and patient feedback.

Appendix: Proof of Theorem 2

From Eq. (5), the length and sparsity of signal θ are NL and K , respectively. � ∈
{1, 2, . . . , NL} and #(�) = K . Without loss of generality, we assume that the
source signals s are sparse in the time domain, then the sparsity of θi is Ki . Then, the
Gramian matrix can be written as follows:

D� = �T
��� =

⎛
⎜⎜⎜⎝

��1 0 · · · 0
0 ��2 · · · 0
...

...
. . .

...

0 0 · · · ��L

⎞
⎟⎟⎟⎠

T

K×ML

⎛
⎜⎜⎜⎝

��1 0 · · · 0
0 ��2 · · · 0
...

...
. . .

...

0 0 · · · ��L

⎞
⎟⎟⎟⎠

ML×K

=

⎛
⎜⎜⎜⎝

�T
�1

��1 0 · · · 0
0 �T

�2
��2 · · · 0

...
...

. . .
...

0 0 · · · �T
�L

��L

⎞
⎟⎟⎟⎠

K×K

.=

⎛
⎜⎜⎜⎝

D�1 0 · · · 0
0 D�2 · · · 0
...

...
. . .

...

0 0 · · · D�L

⎞
⎟⎟⎟⎠ , (12)

where D�i = �T
�i

��i ; That is,

D�(k, h) = 〈��(·, k),��(·, h)〉 =
ML∑
j=1

��( j, k)��( j, h). (13)
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From Eq. (12), we have

(i) when k, h ∈ �i

(a) if k = h, then D�(k, k) = 1;

(b) if k 	= h,D�(k, h) =
ML∑
j=1

��( j, k)��( j, h) = 〈ak′ , ah′ 〉.
(ii) when k ∈ �i , h ∈ � j , i 	= j, D�(k, h) = 0.

Because any off-diagonal entry ofD� is less than max
k 	=h

{D�(k, h)}, the off-diagonal
entries in any row or column of D� have sum

δi
.= (Ki − 1) max

k,h∈�i ,k 	=h
{D�(k, h)}. If δi < 1 (14)

then

Ki = δi

max
k,h∈�i ,k 	=h

{D�(k, h)} + 1. (15)

Let δ = max
i=1,2,...,L

δi < 1, then

K =
L∑

i=1

Ki =
L∑

i=1

⎛
⎝ δi

max
k,h∈�i ,k 	=h

{D�(k, h)} + 1

⎞
⎠

≤
L∑

i=1

⎛
⎝ δ

max
k,h∈�i ,k 	=h

{D�(k, h)} + 1

⎞
⎠. (16)

Hence, we write

D� = I + B�, (17)

where I is a unit matrix and

‖ B� ‖p≤ δ, p = 1 or p = ∞. (18)

As B� is a symmetric matrix, by interpolation of operators, we obtain that

‖ B� ‖2= ρ(B�) ≤‖ B� ‖p≤ δ, p = 1 or p = ∞, (19)

where ρ(B�) denote the spectral norm of B� . Since ‖ A + B ‖2≤‖ A ‖2 + ‖ B ‖2
for any matrices A and B [13], it follows that

‖ D� ‖2≤ 1 + δ, ‖ D−1
� ‖2≤ (1 − δ)−1. (20)

Therefore,D� has eigenvalues in [1−δ, 1+δ]. Therefore, we have proved that matrix
� satisfies the RIP with δ = max

i=1,2,...,L
δi .
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