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Abstract This paper proposes a new approach of parameterizing the excitation signal
for improving the quality of HMM-based speech synthesis system. The proposed
method tries to model the excitation or residual signal by segregating the regions
of the residual signal based on their perceptual importance. Initially, a study on the
characteristics of the residual signal around glottal closure instant (GCI) is performed
using principal component analysis (PCA). Based on the present study, and from the
previous literature (Adiga and Prasanna in Proceedings of Interspeech, pp 1677–1681,
2013; Cabral in Proceedings of Interspeech, pp 1082–1086, 2013), it is concluded that
the segment of the residual signal around GCI which carries perceptually important
information is considered as the deterministic component and the remaining part of
the residual signal is considered as the noise component. The deterministic component
is compactly represented using PCA coefficients (with about 95% accuracy), and the
noise component is parameterized in terms of spectral and amplitude envelopes. The
proposed excitation modeling approach is incorporated in the HMM-based speech
synthesis system. Subjective evaluation results show a significant improvement of
quality for both female andmale speakers’ speech synthesized by the proposedmethod,
compared to three existing excitation modeling methods. Accurate parameterization
of the segment of the residual signal around GCI resulted in the improvement of the
quality of the synthesized speech. Synthesized speech samples of the proposed and
existing source models are made available online at http://www.sit.iitkgp.ernet.in/
~ksrao/parametric-hts/pcd-hts.html.
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1 Introduction

A text-to-speech (TTS) synthesis system converts a given text to corresponding speech
output [26,43]. Nowadays, TTS technology has been extensively used in several
consumer applications such as speech-to-speech translation systems, mobile phones,
household devices, assistive aids for visually challenged people, navigation and per-
sonal guidance gadgets [18,27,35]. HiddenMarkovmodel (HMM)-based TTS system
has become a very good choice in these applications because of flexibility, reduced
memory footprint and high performance with reduced computational resources [43].
In HMM-based speech synthesizer, speech is modeled based on source–filter repre-
sentation [34]. The source refers to the excitation signal produced due to the vibration
of vocal folds while the filter refers to the sequence of time-varying resonators formed
by the vocal tract. The vocal tract filter and excitation signal are parameterized and
modeled by HMMs in a unified framework. Even though much research has been
carried out in recent years, the quality of synthesized speech still seems to have been
degraded by two factors, namely (i) buzziness caused due to improper parameterization
of the excitation signal and (ii)muffledness caused by over-smoothing of the generated
parameters due to statistical modeling. This paper addresses the first issue and aims at
developing an efficient method for representing and modeling the excitation signal.

In the literature, several excitation or source modeling approaches have been pro-
posed for improving the quality of HMM-based speech synthesis system (HTS). One
of the initial approaches to model the excitation was reported by Yoshimura et al.
[45]. It consists of modeling the excitation parameters used in mixed excitation linear
prediction (MELP) [23] algorithm by HMMs. During synthesis, the generated exci-
tation parameters were used to construct the mixed excitation in the same way as in
MELP algorithm. Later, Zen et al. [47] have usedmixed excitation approach for speech
transformation and representation using adaptive interpolation of the weighted spec-
trum (STRAIGHT) [16] to the HTS. They modeled F0 and aperiodicity parameters by
HMMs inorder to enable the generationof excitation signal during synthesis stage [47].
An approach in which the excitation signal is constructed by state-dependent filtering
of pulse trains and white noise sequences is proposed in [21]. During training, filters
and pulse trains are jointly optimized through a procedure that resembles analysis-
by-synthesis speech coding algorithms. Wen et al. [44] proposed the pitch-scaled
spectrum-based method to derive the periodic and aperiodic parts of the excitation
signal. The periodic spectrum is compressed to reduce the dimensionality, and the
aperiodic measure is fitted to a sigmoid function for integration into HTS. In [3],
Liljencrants-Fant (LF) model is proposed for modeling the glottal source signal in
HTS. The LF parameters are modeled by HMMs, and during synthesis, the generated
LF parameters are used to control the shape of the glottal pulse. Raitio et al. [36] pro-
posed an approach of generating the excitation signal by modifying a single natural
instance of glottal flow pulse according to the source parameters generated from the
HMM. The glottal flow pulse is obtained by iterative adaptive glottal inverse filtering
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[2]. Uniform concatenation excitation model is proposed in [4] to generate the exci-
tation signal in both voiced and unvoiced speech. This model generates the residual
signal by concatenating two consecutive segments. The first segment is a part original
residual waveform around the pitch mark and the second segment is modeled by the
parameters of amplitude envelope and energy of the residual waveform.

Instead of using the parameters derived from statistical models, a hybrid approach
was proposed which utilize the real excitation segments for generating the excitation
signal [7,8,11,12,37]. In [7,8], the hybrid sourcemodels are proposedwhich generated
the excitation signal by selecting suitable residual frames from the codebook based on
target residual specification.Raitio et al. [37] utilized the unit selectionmethod to select
appropriate glottal source pulses from the database based on target and concatenation
costs. The selected glottal source pulses are used to construct the excitation signal.
Drugman et al. [11] proposed a hybrid approach based on deterministic plus stochastic
model (DSM). The excitation signal is divided into two bands delimited by amaximum
voiced frequency. The deterministic component is the first eigenvector obtained by
principal component analysis (PCA) of the residual frames. The stochastic component
is the spectrum and the amplitude envelope modulated white Gaussian noise. The
spectrum and the amplitude envelopes are obtained from high-pass filtered residual
frames. Instead of using fixed maximum voiced frequency, DSM-based source model
is enhanced by using time-varying maximum voiced frequency [12].

Some of the recently proposed excitation modeling methods (both parametric and
hybrid) perform pitch-synchronous analysis andmodel the pitch-synchronous residual
frames of excitation signal [4,11,12,37]. Thesemethods have shown a better quality of
synthesized speech than the traditional way of modeling excitation signal using mixed
excitation approach [45,47]. In this work, a new excitation modeling method is pro-
posedwhere the pitch-synchronous residual frames are decomposed into deterministic
and noise components in the time domain. In the proposed method, the deterministic
component is parameterized by using PCA coefficients. Even though the proposed
and DSM-based source model utilize PCA for parameterization, there exist certain
basic differences between the two approaches. The DSM divides the spectrum of
the residual frame in two parts, namely low-frequency (termed as the deterministic
component) and high-frequency parts (termed as the noise component). Here, PCA is
performed on the entire length of the residual frame. The authors of the DSM explored
different number of eigenvectors for the excitation generation and concluded that by
increasing the number of eigenvectors, significant improvement in the quality synthe-
sis is not observed. Hence, only the first eigenvector is considered for the representing
the deterministic component. The proposed method try to model the residual frames
based on their perceptual significance. In [1,4], it is observed that in the entire length
of the residual frame, the segment around GCI carries important information related
to the perception of speech. Based on this motivation, the proposed method performed
PCA on the residual frames. From the analysis, it is observed that the segment of
the residual frame around GCI which is perceptually important contributes to the
major portion of the residual frame. This segment of the residual frame around GCI is
considered as the deterministic component, and the remaining segment of the resid-
ual frame is considered as the noise component. Another distinctive attribute of the
proposed method is that the deterministic component is accurately represented using
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PCA coefficients (about 95% accuracy). The other existing methods (including DSM
source model) parameterize the residual frames by using PCA coefficients with up to
60–70% accuracy [9,10]. In this paper, the terms source, excitation and residual are
used interchangeably.

This paper is organized as follows. Section 2 describes the proposed excitation
modeling approach. The steps involved in the synthesis of speech using the proposed
excitation model are explained in Sect. 3. Section 4 provides the description of HMM-
based speech synthesis system with the proposed excitation model. Evaluation of the
proposed method is provided in Sect. 5. Section 6 concludes the present work and
presents some guidelines for the future work.

2 Modeling of Deterministic and Noise Components of Excitation Signal
in Time Domain

The excitation signal is obtained by inverse filtering the speech signal. The fil-
ter parameters model the vocal tract transfer function. The excitation signal is
pitch-synchronously decomposed into a number of residual frames. The number of
pitch-synchronous residual frames varies from one phone to other. Adjacent pitch-
synchronous residual frames exhibit strong correlation [46]. On close observation, the
shapes of adjacent residual frames around glottal closure instant (GCI) are very much
similar. Most of the existing approaches parameterize the entire residual frame by
considering either the time-domain or frequency-domain representation of the signal
[8,11,36]. They do not parameterize the residual frames based on its perceptual signif-
icance. In [1,4], it is observed that in the entire residual frame, the region around GCI
carries important information related to the perceptual characteristics of the voiced
speech [1,4].Motivated by this observation, to further analyze the characteristics of the
residual signal around GCI, principal component analysis is performed on the pitch-
synchronous residual frames [29]. For analysis, 10,000 residual frames extracted from
SLT speaker of CMU Arctic database [5] are considered. PCA is carried out on the
database sampled at 16kHz. The residual frame (x) can be reconstructed by PCA as
follows:

x̃ =
N∑

n=1

αnun + x̄ (1)

where N denotes the number of eigenvectors and x̄ is the sample mean of x. un
is the eigenvector of the covariance matrix

∑
x = E{xxT} and αn is the coefficient

associated with un . It is assumed that the eigenvectors are ordered on the eigenvalues
λ1 > λ2 > · · · > λN . For compact representation, only first N ′ < N eigenvectors
or principal components are used which results in N ′ PCA coefficients. The principal
components represent the directions of the largest variance in the signal space. With
different number of eigenvectors (N ′ = 5, 10, 15, 20 and 25), PCA coefficients are
computed. Using different number of eigenvectors and PCA coefficients, the residual
frames are reconstructed and their variation are analyzed.

Original residual frame and residual frames reconstructed using first 5, 10, 15, 20
and 25 eigenvectors are shown in Fig. 1. From the figure, it can be observed that by
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Fig. 1 a Original residual frame. Residual frame reconstructed using b 5, c 10, d 15, e 20 and f 25
eigenvectors

Fig. 2 Evaluation of cumulative
relative dispersion (CRD) as a
function of number of
eigenvectors for SLT speaker.
Total number of
eigenvectors=200

considering lower-order eigenvectors (5 and 10), only the region around GCI (middle
portion of the residual frame) is reconstructed. Finer details present at other regions are
captured, as the order of eigenvectors is increased. Evaluation of cumulative relative
dispersion (CRD) for the different number of eigenvectors is shown in Fig. 2. CRD
is defined as the ratio of variance represented by the first M eigenvectors to the total
variance. From Fig. 2, it can be seen that about 59% of the variance is represented by
the first 20 eigenvectors which mainly corresponds to the region around GCI of the
residual frame. To represent the remaining part of the residual frame, 100 higher-order
eigenvectors are required. The region around GCI represents most of the variance and
hence can be regarded as dominant part of the residual frame. Drugman et al. [9,11],
have shown that the segment of the residual signal around GCI is closely related to
LF model [3].

Based on the above observation, the residual signal can be divided into two parts.
The first part is the small segment of the residual signal around GCI which is percep-
tually significant, and the second part is the remaining segment of the residual signal.
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Fig. 3 a Deterministic and b
noise components extracted
from the residual frame given in
Fig. 1a

(a)

(b)

The segment of residual signal around GCI is considered to have equal length on either
side of GCI. To ensure smooth continuity at the joining points, the small segment of
the residual frame around GCI is Hanning windowed. The Hanning windowed seg-
ment was subtracted from the residual frame to obtain the second part. The first part
can be predicted from a small number of eigenvectors (about 20), and hence, it can
be considered as the deterministic component of the residual frame. The second part
(i.e., other than the deterministic component) requires a large number of eigenvectors
(about 100) for accurate estimation, and hence, it can be considered as the noise com-
ponent of the residual frame. Figure 3 shows the deterministic and noise components
extracted from the residual frame shown in Fig. 1a.

2.1 Proposed Excitation Model

The proposed excitation model represents the excitation signal as deterministic and
noise components of the residual signal. The flow diagram indicating different steps
in the proposed excitation modeling is shown in Fig. 4. First, energy is extracted
from every frame of the excitation signal. Then, the pitch-synchronous analysis is
performed on the excitation signal leading to a set of residual frames that are syn-
chronous with the GCI and whose length is set to two pitch periods (described in
Sect. 2.2). From the pitch-synchronous residual frames, the deterministic and noise
components are computed by using the proposed approach. The deterministic compo-
nent is accurately represented using 20 PCA coefficients (explained in Sect. 2.3), and
the noise component is parameterized in terms of spectral and amplitude envelopes
(explained in Sect. 2.4). Harmonic to noise ratio (HNR) is computed as the ratio
of the energy of deterministic and noise components. The modeling of the HNR
ensures that the energy of the deterministic and noise components are properly fixed
without any error. Energy, PCA coefficients, HNR, spectral and amplitude envelopes
are considered as the excitation parameters. At the time of synthesis, the determin-
istic component waveform is reconstructed from the generated PCA coefficients,
and the noise component is obtained by imposing the target spectral and ampli-
tude envelopes on the white Gaussian noise. The deterministic and noise components
are pitch-synchronously overlap-added to generate the excitation signal (described in
Sect. 3).



3656 Circuits Syst Signal Process (2017) 36:3650–3673

Fig. 4 Flowchart indicating the
sequence of steps in the
proposed excitation modeling

2.2 Generation of Pitch-Synchronous Residual Frames

The pitch-synchronous residual frames are extracted from the excitation signal using
the knowledge of GCIs. Using GCIs, the boundaries of pitch cycles are marked on
the excitation signal. GCIs are estimated from the speech signal using zero-frequency
filtering (ZFF) method [25]. The main reason for choosing the ZFF method is that
it has good identification rate and accuracy. Using GCI positions as anchor points,
two-pitch period long residual signals are extracted, and they are Hanning windowed.
During extraction residual frames, only those residual frames are extracted which are
having GCI at the centre of the residual frame and whose GCI coincides with the
peak of the residual frame. This ensures the selection of the residual frames with
correctly detected GCIs and the rejection of the residual frames with the wrongly
detected GCIs. The extracted residual signals are normalized both in pitch period and
energy. The pitch periods of the residual frames are normalized to the maximum pitch
period of the speaker. The energy of the residual frame is normalized by fixing the
total energy to 1. These operations make the residual signals comparable so that they
can be analyzed under a common framework. GCI centered two-pitch period long,
and Hanning windowed residual signals are viewed as the pitch-synchronous residual
frames. Figure 5a–c shows the segment of the speech signal, its corresponding residual
signal and an example of extracted pitch-synchronous residual frame, respectively. The
locations of GCIs are shown by downward arrows in Fig. 5b.

2.3 Parameterization of Deterministic Component

Before parameterizing the deterministic component, the length of the deterministic
component (L), i.e., the length of the segment of residual signal around GCI as shown
in Fig. 3a should be fixed. The length should be appropriately chosen such that the
deterministic component can be accurately represented with M number of eigen-
vectors. First, by varying the length L from 2 to twice the normalized pitch period
(in the number of samples) in steps of 2 samples, the deterministic components are
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(a)

(b)

(c)

Fig. 5 a Speech signal, b residual signal and c pitch-synchronous residual frame. The locations of GCIs
are shown by downward arrows

extracted from the residual frames. Here, 10,000 residual frames from SLT speaker
are considered. By considering the deterministic components of every length L , PCA
is performed. For every L , the CRD value is computed for M number of eigenvec-
tors. The largest possible L which results in the CRD value ≥95% is considered as
the appropriate length of the deterministic component. Choosing L with CRD value
≥95% ensures accurate representation of the deterministic component.

Before finding the appropriate length of the deterministic component, the number of
eigenvectors M used for representing the deterministic component should be fixed. By
varyingM from 1 to 200, the length of the deterministic component is computedwhich
results in the CRD value ≥95%. Increasing the value of M results in the subsequent
increase in the value of L and vice versa. If M is chosen very small, the length L will
also be very small. This may not exactly capture the region around GCI and results in
the reduced quality of speech. If M is chosen very large, then the complexity of model
increases and more data is required to capture the actual distribution. For M = 20,
the length of the deterministic component is observed to be optimal (about one-third
the length of the residual frame). Hence, in this study, M is fixed to 20.

With M = 20, CRD values computed for the different lengths of the deterministic
components are shown inFig. 6. TheCRDvalue is close to 100%for the smaller lengths
of the deterministic components. From the figure, it can be observed that the largest
possible L with CRD value ≥95% is 56. With L = 56, the deterministic components
are extracted from the residual frames of SLT speaker and PCA is performed. Each
deterministic component is compactly represented by using 20 PCA coefficients. The
deterministic component waveform mean vector and the first three eigenvectors are
shown in Fig. 7. The mean vector captures the average shape of the deterministic
component waveform, and other components model the rising and decaying patterns
just before and after GCI. With the number of eigenvectors M fixed to 20, the length
of the deterministic component is computed separately for every speaker. Generally,
the length of the deterministic component is higher for male speakers (due to higher
pitch period) compared to female speakers.
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Fig. 6 Cumulative relative
dispersion (CRD) values
computed for the different
lengths of the deterministic
component (L) for SLT speaker

(a)

(b)

(c)

(d)

Fig. 7 a Mean vector and b, c, d first three eigenvectors of the deterministic component

2.4 Parameterization of Noise Component

The noise component is parameterized in terms of its spectral and amplitude envelopes.
The spectral envelope of the noise component is estimated by using linear predictive
coding (LPC). A typical criterion to select the order of the LPC analysis is to use 1
complex pole per each kHz of the total bandwidth (equal to half the sample rate) plus
2–4 additional poles [14,22]. For the sampling frequency of 16kHz, 10–14 poles are
typically used for LPC analysis. Hence, in this work, the order of LPC is chosen to be
10. The LPC coefficients are converted to line spectrum frequency (LSF) coefficients.
The LSFs have better quantization properties and result in low spectral distortion than
the conventional LPC coefficients [31,39]. The amplitude envelope (a(n)) is obtained
by filtering the absolute value of noise component (u(n)) with a moving average filter
of order 2N + 1. N is chosen to be 8. The amplitude envelope is given by:

a(n) = 1

(2N + 1)

N∑

k=−N

|u(n − k)|. (2)
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Table 1 Source features and the
number of parameters

Features Parameters per frame

Pitch 1

Energy 1

HNR 1

PCA coefficeints 20

Noise spectrum 10

Noise amplitude envelope 15

Normalization of the envelope is performed by setting the maximum value to 1. This
method of amplitude envelope estimation was previously performed by Pantazis et
al. [32]. Due to smoothening by the moving average filter, the amplitude envelope
shows slow variation. The overall shape of the amplitude envelope is represented by
a small number of samples. In our case, the amplitude envelope is represented by
downsampling it into 15 samples. If the amplitude envelope of the noise component is
notmodeled alongwith the spectral envelope, then the noise component is not properly
fused into the deterministic component. This can lead to the perception of background
noise in the synthesized speech [24,40].

PCA coefficients, spectral and amplitude envelopes of the noise component and
HNR are computed for every pitch-synchronous residual frame. As it is convenient
to model the parameters at the frame size of 25ms with the frame shift of 5ms, the
parameters extracted from pitch-synchronous residual frames present in the frame are
averaged and assigned as the parameters of that frame. In the case of unvoiced speech,
except energy of excitation signal, all other excitation parameters are set to zero. The
source features considered in this work are given in Table 1. The source features are
modeled under the framework of HMM (discussed in Sect. 4).

3 Speech Synthesis Using the Proposed Excitation Model

During synthesis, MGC coefficients, F0 including voicing decision and excitation
parameters are generated from HMMs using constrained maximum likelihood algo-
rithm [42]. The block diagram showing different synthesis stages are shown in Fig. 8.
In the figure, parameters generated by the HMMs are shown in italics. The excitation
signal is generated separately for voiced and unvoiced frames. For voiced frame, the
deterministic component of the residual frame is obtained from the linear combina-
tion of eigenvectors and target PCA coefficients. The deterministic component is zero
padded on either side such that its length is twice the normalized pitch period. The
zero padded deterministic component is resampled to twice the target pitch period.
The noise component of the residual frame is constructed using white Gaussian noise.
First, white Gaussian noise is resampled to twice the target pitch period. Then, the
target spectral envelope generated from the HMM is imposed on the resampled white
Gaussian noise. The target spectral envelope is the all-pole model of noise represented
by LSF coefficients. The LSFs are converted to LPCs (aks). An IIR filter is constructed
which filters the white noise signal to obtain the desired target spectrum. The transfer
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Fig. 8 Block diagram showing different stages in synthesis. Parameters generated from the HMM are
shown in italics

function of IIR filter is given by

H(z) = 1

(1 − G(z))
(3)

where G(z) = ∑p
k=1 akz

−k is the FIR filter obtained from the LPCs of target spectral
envelope. The target amplitude envelope (a(n)) generated by the HMM is imposed on
the IIR filtered noise signal. The target amplitude envelope which is represented by 15
samples is upsampled to the required target pitch period. The amplitude envelope of the
IIR filtered noise signal is also computed. The target envelope is imposed on the IIR fil-
tered noise signal by compensating the difference between two envelopes. The energy
of the spectrum and amplitude envelope modified noise signal is changed according to
the generated HNR. Both deterministic and noise components are superimposed and
then overlap-added to generate the excitation signal. The energy of excitation signal
is modified according to the energy measure generated from the HMM. For unvoiced
speech, white noise whose energy is modified according to the generated energy mea-
sure is used as the excitation signal. The resulting excitation signal is given as input to
theMel-generalized log spectrum approximation (MGLSA) filter, controlled byMGC
coefficients to generate speech.

In order to understand the perceptual significance of excitation parameters (HNR,
noise spectral and amplitude envelopes) on the synthesis quality, the excitation signal
is reconstructed by adding the deterministic component with the noise component
which is incrementally modified by using each of the excitation parameters. Using the
reconstructed excitation signal, the speech signal is reconstructed (analysis–synthesis
framework). Figure 9 shows the natural speech, excitation signal, synthesized speech
and corresponding excitation signals constructed by adding the deterministic com-
ponent with the noise component which is incrementally modified using different
excitation parameters. Figure 9d shows the excitation signal constructed by using
only deterministic components. In our source model, the deterministic component is
considered to be a small segment around GCI. Hence, in the figure, we can observe
nonzero amplitude values around GCI and other regions of excitation signal are set
to zero values. In Fig. 9f, the excitation signal is generated by adding the determin-
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(b)

(a)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 9 Illustration of synthesized speech and excitation signals constructed by adding the deterministic
component with the noise component which is incrementally modified using different excitation parameters
such as HNR, noise spectral and amplitude envelopes. a Natural speech, b excitation signal, synthesized
speech and excitation signal c, d by using only deterministic component, e, f by using deterministic com-
ponent and noise component generated using only HNR, g, h by using deterministic component, and noise
component generated using HNR and noise spectral envelope, i, j by using deterministic component, and
noise component generated using HNR, noise spectral and amplitude envelopes

istic component with the noise component which is constructed by using only HNR
parameter. Here, to construct the noise component, the energy of white Gaussian noise
is modified according to the HNR value. From Fig. 9f, we can observe that the zero
values present in Fig. 9d are filled with nonzero noise values. In Fig. 9h, the excitation
signal is generated by adding the deterministic component with the noise component
which is obtained by using HNR and spectral envelope. Upon imposing the spec-
tral envelope on the noise component, we can see slight variations in the shapes of
the excitation signal (particularly around GCI). Figure 9j shows the excitation signal
constructed by adding the deterministic component with the noise component which
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is constructed by using HNR, spectral and amplitude envelopes. Upon imposing the
amplitude envelope on the noise component, we can observe variations in the enve-
lope of every cycle of the excitation signal. We noticed that the secondary excitations
are becoming prominently visible after imposing the amplitude envelope on the noise
component. On the whole from Fig. 9, it can be noticed that upon adding each of the
excitation parameters, the reconstructed speech and excitation signals are observed to
be close to the natural speech and excitation signals. We performed informal listening
tests on ten speech utterances synthesized by incrementally adding each of the exci-
tation parameters. From informal listening tests, it is observed that by adding each of
excitation parameters, the quality of synthesized speech is increased. Among different
versions, the speech synthesized by using the excitation signal obtained by combining
the deterministic component with the noise component which is generated usingHNR,
noise spectral and amplitude envelopes is close to natural speech.

4 HMM-Based Speech Synthesis System with the Proposed Excitation
Model

The goal of the proposed speech synthesis system is to produce high-quality synthetic
speech. The general block diagram of HMM-based speech synthesis system including
the proposed excitation model is shown in Fig. 10. The system consists of two main
modules: training and synthesis. The HMM-based speech synthesizer is implemented
using publicly available HTS toolkit [13].

In the training part, spectrum or vocal tract part and F0 are estimated from speech
utterance present in the database.Mel-generalized cepstrum (MGC) parameters which
represent the vocal tract part are extracted from the speech utterance. Thirty-fourth-
orderMGCcoefficients are extractedwith the parameter valuesα =0.42 (Fs = 16kHz)
and γ = −1/3 [48]. In the literature, HMM-based speech synthesis systems are devel-
oped with the different orders of MGC coefficients such as 24 [33], 30 [12], 34 [6]
and 39 [20]. In [47], Zen et al. have concluded that by increasing the order of MGC
coefficients, a small improvement in the quality of synthesis can be observed. In this
work, we consider MGC order = 34, as it is considered to be moderate (neither too low
nor high for 16 kHz) in the context of HMM-based speech synthesis. F0 estimation
with voicing decision is performed using the recently proposed method based on the
strength of instants of significant excitation [28]. The excitation signal is obtained by
inverse filtering using the MGLSA filter. The excitation signal is modeled using the
proposed time-domain deterministic plus noise model approach. Using the proposed
source model, set of excitation parameters, namely PCA coefficients, HNR, spectral
and amplitude envelopes are estimated. Even though F0 values are also part of excita-
tion parameters, to differentiate between the proposed excitation parameters and the
F0 values generated from the previous method, both parameters are shown as sepa-
rately obtained from different blocks.MGC coefficients, F0, and excitation parameters
are modeled using multi-stream HMMs. Except F0, all parameters are modeled by the
continuous probability density HMMs (CD-HMM). The F0 patterns are modeled by
an HMM based on the multi-space probability distribution (MSD-HMM). The MSD-
HMM consists of a continuous mixture HMM to model one-dimensional continuous
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Fig. 10 Block diagram of HMM-based speech synthesis system including proposed excitation model

F0 values that describe voiced region and a discrete HMM to model discrete sym-
bols that represent unvoiced regions. The proposed excitation parameters can also be
modeled using MSD-HMM, but in this work CD-HMM was used, and the parame-
ters generated for the unvoiced region are simply discarded. We have also examined
modeling the proposed excitation parameters by using MSD-HMM. But, we have
not observed any noticeable difference in the synthesized speech by modeling the
proposed excitation parameters using CD-HMM and MSD-HMM. The HMMs used
in this work consist five emitting states. The output probabilities of each state are
modeled using a single Gaussian distribution with diagonal covariance. The temporal
structure of the speech is modeled by state duration densities of HMMs. The state
durations of each phoneme HMM are modeled using a single Gaussian distribution
with diagonal covariance.

First, using the phonetic labels having time alignment information, the monophone
HMMs are trained using the segmentalK-means and expectation–maximization (EM)
algorithm. The monophone HMMs are converted into context-dependent HMMs, and
the model parameters are reestimated again. Decision tree-based context clustering
technique [30,38] is applied to context-dependent HMMs. The question set consists
of a standard list of 53 positional and contextual features provided in basic HTS
implementation [13]. At each leaf node of the decision tree, the model parameters are
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tied and reestimated again. In the proposed system, only MGC coefficients and F0
streams were considered during the alignment step of reestimation; weights of other
streams are set to zero.

During synthesis, the input text is converted into a sequence of context-dependent
phoneme labels. According to the label sequence, a sentence HMM is constructed by
concatenating context-dependent HMMs. Then, a sequence of parameters is generated
from the sentence HMM. To alleviate the problem of over-smoothing of generated
parameters due to statistical processing, the global variance technique is used [41].
From the generated source parameters, the excitation signal is constructed. Speech
waveform is synthesized using the generated MGC coefficients and the excitation
signal.

5 Evaluation

The proposed method is evaluated using two female (SLT and CLB) and two male
(AWB and KSP) speakers from CMU Arctic speech database [5]. The training set of
each of the speaker consists of about 1100 phonetically balanced English utterances.
The duration of the training set is about 56, 64, 79 and 59min for SLT, CLB, AWB
and KSP speakers, respectively. All experiments carried out in this work use the
speech database sampled at 16kHz. Utilizing 16kHz sampling rate can preserve up
to 8kHz speech bandwidth which is sufficient to preserve most of the spectral energy.
In the literature, many speech synthesis systems developed with 16kHz sampling rate
can produce pleasant and intelligible synthetic speech [11,36]. Twenty sentences that
were not part of training data were used for evaluation purpose. Subjective evaluation
is conducted with 20 research scholars in the age group of 23–35 years. The subjects
have sufficient speech knowledge for proper assessment of the speech signals, as all
of them have taken a full semester course on speech technology. Each of the subjects
was given a pilot test about the perception of speech signals by playing samples of
synthesized speech files. Once they were comfortable with judging, they were allowed
to take the tests. The tests were conducted in the laboratory environment by playing
the speech signals through headphones.

The quality of synthesized speech from the proposed method is compared with
three existing excitation modeling methods, namely pulse-HTS, STRAIGHT-HTS
[47] and DSM-HTS [11]. Pulse-HTS is known for its simple excitation scheme, and
it is mostly used as a reference for testing the proposed methods. In pulse-HTS, a
sequence of pulses positioned according to the generated pitch is used as the excitation
signal. STRAIGHT-HTS [47] is one of the most widely used methods for high-quality
speech synthesis and uses mixed excitation parametric approach for source modeling.
STRAIGHT-HTS uses TANDEM STRAIGHT method [17] as the source model. In
this source model, the excitation signal consists of a sequence of impulses and noise
components weighted by band-pass filtered aperiodicity parameters. The source codes
of this model are obtained from the authors of STRAIGHTmethod. DSM-HTS [11] is
one of the recently proposed popular approaches which models the pitch-synchronous
residual frames based on the deterministic plus stochastic model. In this work, two
versions of DSM-HTS are used for evaluation. In the first version, only the first eigen-
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Table 2 Scores for the CMOS
test

Score Subjective perception

3 Much better

2 Better

1 Slightly better

0 About the same

−1 Slightly worse

−2 Worse

−3 Much worse

vector is used as the deterministic component. The excitation signal is constructed by
modifying the deterministic component and the average energy envelope of the noise
component according to the generated pitch. In the second version, the determinis-
tic component of every residual frame is represented using 20 PCA coefficients. At
the time of training, PCA coefficients are modeled using HMMs. During synthesis,
the deterministic component is obtained from the PCA coefficients generated from
HMMs, and the noise component is obtained by resampling the average noise energy
envelope according to the generated pitch. Two versions of DSM-HTS, namely (1)
single eigenvector and (2) 20 eigenvectors are compared with the proposed source
model. Before evaluation, the energies of synthesized speech signals are normalized
to the same level.

Subjective evaluation is performed using two measures, namely comparative mean
opinion scores (CMOS) and preference tests. In CMOS, subjects were asked to listen
to two versions, namely speech synthesized from the proposed method and other from
the existing methods. Two versions were randomly shuffled to avoid the bias toward
any specific method. Subjects were asked to grade the overall preference on a 7-point
scale. The7-point scale used to rank the preferencebetweenpairs of synthesized speech
samples is shown in Table 2. A positive score indicates that the proposed method is
preferred over other method, and negative score implies the opposite. In preference
tests, subjects were asked to give the preference between a pair of synthesized speech
utterances. The subjects had the option either to prefer one of the synthesized speech
utterances or to prefer both as equal.

CMOS scores with 95% confidence intervals and preference scores are provided
in Figs. 11 and 12, respectively. On comparing the proposed method with the pulse-
HTS, it can be observed that the CMOS scores are varying between 1.1–1.5 and
more than 60% of the subjects preferred the proposed method for both male and
female speakers. This indicates that the quality of speech synthesized by the proposed
method is clearly better than the speech synthesized by the pulse-HTS. The subjects
noticed that the speech synthesized from the pulse-HTS is artificial and unnatural.
The excitation signals generated using the combination of deterministic and noise
components are much better than the sequence of pulses.

On comparison of the proposed method with the STRAIGHT-HTS, it can be
observed that the CMOS scores vary between 0.4–0.7, and the subjects preferred
the proposed method for about 40% of cases and preferred the STRAIGHT-HTS for
about 28% of cases. Both measures indicate that the proposed method is better than
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Fig. 11 CMOS scores with 95% confidence intervals obtained by comparing the proposed method with
the existing methods

Fig. 12 Preference scores obtained by comparing the proposed method with the existing methods

STRAIGHT-HTS. The STRAIGHT vocoder uses the mixed excitation parameters to
model and generate the voice source signal. In the proposed method, the deterministic
component or the segment of residual signal around GCI, which is important for the
perception of speech is accurately represented. Hence, the generated excitation signal
is close to the natural source signal.

Regarding the comparison of the proposed method with the two versions of DSM-
HTS, it can be observed that the CMOS scores are varying in the range of 0.1–0.4 and
the subjects preferred the proposed method for about 35% of cases and preferred the
DSM-HTS for about 30% of cases. Both measures show that the proposed method is
slightly better than the DSM-HTS. In the DSM-HTS, the overall residual frame is gen-
erated using either single or 20 eigenvectors. Among two versions of the DSM-HTS,
the speech synthesized using 20 eigenvectors has higher quality. The main reason for
this due to the utilization of 20 PCA coefficients for the generation of the deterministic
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 13 a Natural speech, b excitation signal, c speech synthesized by pulse-based source model, d exci-
tation signal constructed by pulse-based source model, e speech synthesized by STRAIGHT source model,
f excitation signal constructed by STRAIGHT source model, g speech synthesized by DSM-based source
model, h excitation signal constructed by DSM-based source model, i speech synthesized by proposed
source model and j excitation signal constructed by proposed source model

component in every cycle of the residual frame. Utilization of 20 PCA coefficients
can result in the reconstruction of about 60% (from Fig. 2) of the residual frame.
But in the proposed method, the segment of the residual frame around GCI which is
perceptually important is accurately (about 95%) generated for every residual frame.
Accurate generation of the segment of the residual frame around GCI results in the
incorporation of characteristics of real voice source in the excitation signal. Synthe-
sized speech samples of the proposed and existing source models are made available
online at http://www.sit.iitkgp.ernet.in/~ksrao/parametric-hts/pcd-hts.html.

http://www.sit.iitkgp.ernet.in/~ksrao/parametric-hts/pcd-hts.html
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In order to analyze the effectiveness of excitation models without any influence
from statistical models, natural excitation signal is modeled using four source mod-
els, namely (1) pulse, (2) STRAIGHT, (3) DSM and (4) proposed method. Using
natural spectrum, F0 and excitation signals constructed from four source models, the
speech signals are synthesized. Figure 13 shows the natural speech, excitation sig-
nal, synthesized speech and corresponding excitation signals constructed from four
source modeling methods. In every source model, after constructing the excitation
signal, the energy contour is modified according to the target energy envelope. As
energy is modified, the peak amplitude values in the excitation signal are varying in
Fig. 13. In pulse-based source model, the sequence of pulses positioned according to
pitch period is used as the excitation signal. As the energy of the excitation signal is
modified according to the target energy envelope, the amplitudes of pulse excitation
are varying in Fig. 13d. In addition to this, the excitation signal generated from the
pulse-based source model (Fig. 13d) is having nonzero amplitude values only at GCIs.
This kind of excitation signal is an imprecise approximation of natural excitation sig-
nal (Fig. 13b). From the excitation signal generated from STRAIGHT source model
(Fig. 13f), it can be observed that in addition to nonzero amplitude values at GCIs,
small amount noise is also present aroundGCIs. On comparing this signal with the nat-
ural excitation signal, significant differences can be observed in the waveform shapes
of each pitch cycle. The excitation signal constructed from DSM-based source model
(Fig. 13h) is closer to natural excitation compared to pulse and STRAIGHT source
models. In DSM-based source model, the excitation signal is constructed by using sin-
gle instance of deterministic component and noise component. The single instance of
deterministic component and noise component is repeated for all cycles of excitation
signal. The noise component is obtained by imposing average spectral and amplitude
envelopes on the white Gaussian noise. As noise component is obtained from average
spectral and amplitude envelopes, the excitation signal appears to be smoothly vary-
ing. Since single instance of deterministic component and noise component is used,
cycle-to-cycle variations occurring in the natural excitation signal are not present in
the excitation signal of the DSM-based source model. But in the proposed method, the
excitation signal is uniquely constructed for every cycle of pitch-synchronous residual
frame. This results in the incorporation of natural variation of the excitation signal. The
excitation signal constructed from the proposed method (Fig. 13j) is very much closer
to the natural excitation signal (Fig. 13b) compared to three other source models. The
speech waveform produced by the proposed source model (Fig. 13i) is also very close
to the natural speech waveform (Fig. 13a) compared to three other source models.

To understand the significance of segregating the regions of the residual frames
based on their perceptual importance, instead of considering only the region around
GCI, the entire length of the residual frame is considered as the deterministic compo-
nent. The deterministic component is represented using 20 PCAcoefficients. The noise
component is obtained by subtracting the deterministic component from the residual
frame. The deterministic and noise components are parameterized and modeled using
the steps described in Sect. 2. The proposedmethodwhich considers the entire residual
frame as the deterministic component (proposedmethod 2) is comparedwith proposed
method which considers the region around GCI as the deterministic component (pro-
posed method 1) and DSM-HTS (20 eigenvectors). Proposed method 1 is the original
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Fig. 14 CMOS scores with
95% confidence intervals
obtained by comparing the
proposed method 2 with the
proposed method 1 and
DSM-HTS (20 eigenvectors)

Fig. 15 Preference scores
obtained by comparing the
proposed method 2 with the
proposed method 1 and
DSM-HTS (20 eigenvectors)

proposed work, and the proposed method 2 is a variation of the proposed method 1.
Here, proposed method 2 is compared with the DSM-HTS (20 eigenvectors) as both
methods are closely related. CMOS and preference scores are used for comparison.
In CMOS score, a positive score indicates proposed method 2 is better than other
methods, and negative score indicated the opposite. Figures 14 and 15 provide the
CMOS and preference scores, respectively. On comparison of proposed method 2
with DSM-HTS (20 eigenvectors), it can be observed that the proposed method 2 is
slightly better. From the CMOS and preference scores, it can be concluded that the
proposed method 1 is better than the proposed method 2. Segregating the regions of
residual frame based on the perceptual importance has resulted in the improvement of
the quality of synthesis.

In addition to subjective evaluation, objective evaluation of the quality of the syn-
thesized speech is performed. The speech is synthesized using analysis–synthesis
framework, where each of the speech utterances is parameterized using the proposed
(both proposed method 1 and proposed method 2) and existing source modeling meth-
ods and using the parameters, the speech signal is reconstructed. Ten speech utterances
synthesized from each of the source models are used for objective evaluation. The
objective evaluation is carried out using the perceptual measure, ITU-T Rec. P.862
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Fig. 16 PESQ values obtained for the proposed and existing source modeling methods

Perceptual Evaluation of Speech Quality (PESQ) [15,19]. The PESQ is specifically
designed for the assessment of speech quality of the narrow-band telephone networks
and speech codecs. In PESQ, audible difference between the reference and test signals
is computed. In the context of speech synthesis, the reference signal is the natural
speech waveform, and the test signal is the synthesized speech utterance from one
of the source models. For a pair of speech utterances, the PESQ is a single value in
the range −1 to 4.5. If PESQ value is closer to 4.5, then the synthesized speech is
perceptually closer to the corresponding natural speech waveform. If the PESQ value
is closer-1, then the synthesized speech is perceptually degraded compared to the cor-
responding natural speech waveform. The PESQ values obtained by comparing the
natural speech utterances with the synthesized speech utterances of the proposed and
existing source modeling methods are shown in Fig. 16. From Fig. 16, it can observed
that the PESQ scores of the proposed method 2 and DSM-HTS (20 eigenvectors) are
very close. The main reason for this is that both the proposed method 2 and DSM-HTS
(20 eigenvectors) are conceptually very close. In both proposed method 2 and DSM-
HTS (20 eigenvectors), the entire length of the residual frame is represented using 20
eigenvectors. From the figure, it can be observed that the proposed method 1 which is
the original proposed work has the highest PESQ values compared to all other source
models. This objectively proves that the proposed method 1 is perceptually better than
other existing source models.

6 Conclusion

This paper proposes a parametric approach of modeling the excitation signal for
improving the quality ofHTS.Analysis of characteristics of the residual frames around
GCI is performed using PCA. Based on the analysis, the segment of the residual frame
around GCI is considered as deterministic component and the remaining part of the
residual frame is considered as the noise component. The deterministic components are
accurately modeled using PCA coefficients. The noise components are parameterized
in terms of spectral and amplitude envelopes. During synthesis, the deterministic and
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noise components are reconstructed from the parameters generated fromHMMs. Both
subjective and objective evaluation results indicated that the quality of the proposed
method is considerably better compared to existing excitation modeling methods. In
this work, PCA is performed by considering the residual frames of all phones. Instead,
PCA can be performed on the residual frames of every phone and improvement in the
quality of synthesized speech can be analyzed. The relation between time-domain and
frequency-domain decomposition of excitation signal can also be analyzed.
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