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Abstract In this paper, finite-time stability (FTS) and finite-time boundedness (FTB)
are investigated for a class of switched linear systems with large delay period and
input disturbances. The limitation of the frequency and the maximum ratio of large
delay period are used to guarantee the properties of FTS and FTB. By constructing a
piecewise Lyapunov functional with large delay integral terms, sufficient conditions
that can guarantee the FTS and FTB are developed in the form of linear matrix inequal-
ities. Two numerical examples are provided to demonstrate the effectiveness of the
proposed results.

Keywords Finite-time stability · Finite-time boundedness · Switched system · Large
delay period · Piecewise Lyapunov functional

1 Introduction

Switched system is an important class of hybrid dynamical systems. The primary
motivation for studying switched system is from its numerous applications in control
of mechanical systems, such as aircraft and air traffic control, automotive industry and
many other fields [9,14,15]. Many valuable results on switched systems have been
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developed in the last few decades. Most of the existing results related to stability of
switched linear systems focus on the Lyapunov asymptotic stability which is defined
over an infinite-time interval [1,2,4,5,15,22,27]. However, in many practical applica-
tions, the main concern is the behavior of the system over a fixed time interval. Some
early literature related to FTS and FTB can be found in [10,13,17,21]. The FTS prob-
lems have attracted scholars’ attention again in recent years such as [6,7,12,16] and
[23–26]. In addition, time-delay phenomena are commonly encountered in various
engineering systems, which may degrade the system performance, cause oscillation
and even lead to instability [3]. As a result, many research efforts have been devoted
to the study of finite-time control for switched linear systems with delay [3,20].

Note that the aforementioned results are mainly concerned with small delay sys-
tems. The study of FTS and FTB problems for switched systems which include both
small and large delay subsystems is few focused on, even for the linear cases. Ref-
erence [19] is the first work to study the stability of a single linear system which is
with large delay period, and the concepts of the length rate and the frequency of large
delay period were introduced. Inspired by this, we wish to use the related method
proposed in [19] to switched linear delayed systems which consist of both stable and
unstable subsystems. To achieve this goal, several problems need to be solved. (1) How
to choose Lyapunov functional to eliminate the influence of large delay? (2) How to
realize the unity of the Lyapunov functional between the large delay subsystems and
small delay one? (3) How to seek switching signal and calculate the ratio at each
switching point?

The main task of the paper is to solve the above three problems. The first problem
is solved primarily by constructing a new piecewise Lyapunov functional with large
delay integral terms (LDITs) to eliminate the influence of large delay. For the second
problem, a uniform Lyapunov functional was constructed for both stable and unstable
subsystems, though the LDITs are not necessary for stable subsystems. Under the
restriction on the maximum ratio between the running time of LDP and SDP, the third
problem is effectively solved by introducing some LDITs to the piecewise Lyapunov
functional candidate. The adding of LDITs makes the third problem solvable and does
not increase the conservativeness of the criterion.

This paper is organized as follows: Sect. 2 gives someuseful preliminaries. Section 3
provides the analysis of FTB and FTS for switched linear systems with large delay
period, following two simulation examples in Sect. 4. Section 5 concludes this paper.

Notation Throughout this paper, the notations are standard. R+ stands for the set of all
the nonnegative real numbers. P > 0 denotes a positive definite matrix, and ∗ denotes
the symmetric term in a symmetric matrix. I = {0, 1, 2, . . . , L} where L > 1 is the
number of subsystems. Ω = {Ri , i ∈ I} denotes a set of positive definite matrices.
λmax(P) and λmin(P) denote the maximum and minimum eigenvalues of symmetric
matrix P , respectively. N is used to denote an integer set {0, 1, 2, . . .}.

2 Preliminaries

Consider a class of continuous switched linear systems with time-varying delay in a
fixed finite-time interval [0, T ]
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ẋ(t) = Aσ(t)x(t) + Adσ(t)x(t − dσ(t)(t)) + Dσ(t)ω(t),

x(t) = ϕ(t), t ∈ [−h3, 0), (1)

where the state vector x(t) ∈ Rn , the input disturbance ω(t) ∈ Rm and

∫ T

0
ωT(t)ω(t)dt ≤ dω, dω ≥ 0. (2)

Aσ(t), Adσ(t) and Dσ(t) are known real constant matrices of appropriate dimensions.
ϕ(t) : [−h3, 0] → Rn is a continuous initial function in which h3 > 0 is constant.
dσ(t)(t) denotes the time-varying delay satisfying

0 ≤ h1 ≤ dσ(t)(t) ≤ h3, ḋσ(t)(t) ≤ d < 1. (3)

The switching signal σ(t) : [0, T ] → I is a piecewise constant function. It is assumed
that the system switching is dependent on time. If t ∈ [tk, tk+1), we say that the σ(tk)th
subsystem is active in the running time of tk+1−tk , in which tk stands for the switching
instant for k ∈ N . For simplicity, it is assumed t0 = 0.

To facilitate the upcoming control design, two assumptions imposed on system (1)
are given as follows.

Assumption 1 Switched system (1) is FTB if dσ(t)(t) satisfies h1 ≤ dσ(t)(t) ≤ h2 <

h3 for ∀t ∈ [0, T ]. Otherwise it is not FTB if h2 < dσ(t)(t) ≤ h3 for ∀t ∈ [0, T ].
Assumption 2 Switched system (1) with ω(t) ≡ 0 is FTS if dσ(t)(t) satisfies h1 ≤
dσ(t)(t) ≤ h2 < h3 for ∀t ∈ [0, T ]. Otherwise it is not FTS if h2 < dσ(t)(t) ≤ h3 for
∀t ∈ [0, T ].
Definition 1 [19] Time interval [T1, T2) is called large delay period (LDP) if for
∀t ∈ [T1, T2), h2 < dσ(t) ≤ h3 holds. And it is called small delay period (SDP) if for
∀t ∈ [T1, T2), h1 ≤ dσ(t) ≤ h2 holds.

Throughout this paper, we allow both the large delay and the small delay subsystems
to coexist in system (1). The set of small delay subsystems are denoted by Is =
{0, 2, 4, . . . , L−1}. In this case, when t ∈ [t2k, t2k+1), σ(t) ∈ Is and h1 ≤ dσ(t) ≤ h2.
The set of large delay subsystems are indicated by Il = {1, 3, 5, . . . , L}. When t ∈
[t2k+1, t2k+2), σ(t) ∈ Il and h2 < dσ(t) ≤ h3 hold. The running time of LDP and SDP
is defined as Tl(0,t) and Ts(0,t), respectively. Let Nσ (0, t) denote the switching times
within a finite-time interval [0, t], while Nl(0, t) and Ns(0, t) indicate the switching
times of LDP and SDP, respectively.

Definition 2 [25] Given a positive constant η, the switching signal σ(t) in a finite
interval [0, Tf ] is said to possess a property of maximum ratio η between the running
time of LDP and SDP, if Tl(0,t)

Ts(0,t)
≤ η hold for any t ∈ [0, Tf ]. Such a property is called

MRRT η and expressed as ση for simplicity.

Definition 3 [19] For any T2 > T1 ≥ 0, Ff(T1, T2) = Nl(T1,T2)
T2−T1

is referred to the
frequency of LDP in the time interval [T1, T2).
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Definition 4 Given positive constants Tf , c1 < c2 and dω ≥ 0, system (1) is extended
finite-time boundedness with respect to (c1, c2,Ω, Tf , ση, dω), if
supt∈[−h3,0]{xT(t)Rση(t)x(t), ẋT(t)Rση(t) ẋ(t)} ≤ c1 	⇒ xT(t)Rση(t)x(t) ≤ c2 for
any t ∈ [0, Tf ].
Definition 5 [25] Given positive constants Tf and c1 < c2, system (1) with
disturbance ω(t) ≡ 0 is extended FTS with respect to (c1, c2,Ω, Tf , ση), if
supt∈[−h3,0]{xT(t)Rση(t)x(t), ẋT(t)Rση(t) ẋ(t)} ≤ c1 	⇒ xT(t)Rση(t)x(t) ≤ c2 for
any t ∈ [0, Tf ].
Remark 1 System (1) includes finite-time unbounded subsystems, due to the effect of
large delay dσ(t)(t), σ(t) ∈ Il. Although system (1) can be unbounded if LDP appears
in the whole fixed time interval [0, T ], it can still be FTBwhen LDP and SDP alternate
appears with a property of MRRT η. In the present paper, we give a restriction on the
maximum length ratio of LDP and the frequency of LDP by which to obtain the FTB
and FTS conditions.

3 Stability and Boundedness Analysis

Consider the following time-delay switched systems

ẋ(t) = Aσ(t)x(t) + Adσ(t)x(t − dσ(t)(t)) + Dσ(t)ω(t),

x(t) = ϕ(t), t ∈ [−h2, 0], (4)

in which σ(t) ∈ Is, h1 ≤ dσ(t)(t) ≤ h2 and all the other parameters are the same
with system (1). To analyze system (4), the Lyapunov functional candidate is chosen
as follows

V1σ(t)(t) =
7∑

i=1

V i
1σ(t)(t), (5)

where

V 1
1σ(t)(t) = xT(t)P1σ(t)x(t),

V 2
1σ(t)(t) =

∫ T

t−dσ(t)

eα1σ(t)(s−t)xT(s)Q1σ(t)x(s)ds,

V 3
1σ(t)(t) =

∫ t−h1

t−h2
eα1σ(t)(s−t)xT(s)Q2σ(t)x(s)ds,

V 4
1σ(t)(t) =

∫ t−h2

t−h3
eα1σ(t)(s−t)xT(s)Q3σ(t)x(s)ds,

V 5
1σ(t)(t) =

∫ 0

−h2

∫ T

t+θ

eα1σ(t)(s−t) ẋT(s)W1σ(t) ẋ(s)dsdθ,
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V 6
1σ(t)(t) =

∫ −h1

−h2

∫ T

t+θ

eα1σ(t)(s−t) ẋT(s)W2σ(t) ẋ(s)dsdθ,

V 7
1σ(t)(t) =

∫ −h2

−h3

∫ T

t+θ

eα1σ(t)(s−t) ẋT(s)W3σ(t) ẋ(s)dsdθ,

with P1σ(t), Qiσ(t),Wiσ(t), i = 1, 2, 3 are determined positive definite matrices. In
this section, two lemmas which play important roles in the coming FTB and FTS
analysis are developed as follows.

Lemma 1 Let T > 0, σ (t) = p ∈ Is, α1p ≥ 0, h3 > h2 > h1 ≥ 0 and d < 1.
If there exist positive definite matrices P1p, Qip,Wip, (i = 1, 2, 3) which satisfy the
following linear matrix inequality

Ξ1p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
1p

∑
2p 0 e−α1ph2

h2
W1p 0

∑
3p

∗ ∑
4p 0 0 0

∑
5p

0 0
∑

6p
e−α1ph2

h12
W2p 0 0

∗ 0 ∗ ∑
7p

e−α1ph3

h23
W3p 0

0 0 0 ∗ ∑
8p 0

∗ ∗ 0 0 0
∑

9p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (6)

where

∑
1p

= P1p Ap + AT
p P1p + Q1p + α1p P1p − e−α1ph2

h2
W1p + AT

pΔ1p Ap,

∑
2p

= P1p Adp + AT
pΔ1p Adp,

∑
3p

= P1pDp + AT
pΔ1pDp,

∑
4p

= −(1 − d)e−α1ph2Q1p + AT
dpΔ1p Adp,

∑
5p

= AT
dpΔ1pDp,

∑
6p

= e−α1ph1Q2p − e−α1ph2

h12
W2p,

∑
7p

= e−α1ph2(Q3p − Q2p) − e−α1ph2

h2
W1p − e−α1ph2

h12
W2p − e−α1ph3

h23
W3p,

∑
8p

= −e−α1ph3Q3p − e−α1ph3

h23
W3p,

∑
9p

= DT
pΔ1pDp − Sp,

Δ1p = h2W1p + h12W2p + h23W3p, h12 = h2 − h1, h23 = h3 − h2,
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then, for ∀t ∈ [t2k, t2k+1), one has

V1σ(t)(t) ≤ e−α1σ(t2k )(t−t2k )V1σ(t2k )(x(t2k))

+
∫ T

t2k
e−α1σ(t2k )(t−s)ωT(s)Sσ(t2k )ω(s)ds. (7)

Proof By computing the time derivative of (5) along the trajectory of system (4), it is
obtained

V̇ 1
1p(t) = xT(t)

(
P1p Ap + AT

p P1p
)
x(t) + xT(t)

(
P1p Adp

)
x
(
t − dp(t)

)

+xT
(
t − dp(t)

) (
AT
dp P1p

)
x(t) + xT(t)

(
P1pDp

)
ω(t)

+ωT(t)
(
DT

p P1p
)
x(t), (8)

V̇ 2
1p(t) ≤ −α1pV

2
1p(t) + xT(t)Q1px(t)

−(1 − d)e−α1ph2xT
(
t − dp(t)

)
Q1px

(
t − dp(t)

)
, (9)

V̇ 3
1p(t) = −α1pV

3
1p(t) + e−α1ph1xT (t − h1) Q2px (t − h1)

−e−α1ph2xT (t − h2) Q2px (t − h2) , (10)

V̇ 4
1p(t) = −α1pV

4
1p(t) + e−α1ph2xT (t − h2) Q3px (t − h2)

−e−α1ph3xT (t − h3) Q3px (t − h3) , (11)

V̇ 5
1p(t) ≤ −α1pV

5
1p(t) + h2 ẋ

T(t)W1p ẋ(t) − e−α1ph2

∫ T

t−h2
ẋT(s)W1p ẋ(s)ds. (12)

Moreover, with Jensen’s inequality [8], we get

V̇ 5
1p(t) ≤ −α1pV

5
1p(t) + h2 ẋ

T(t)W1p ẋ(t)

−e−α1ph2

h2
[x(t) − x(t − h2)]

T W1p [x(t) − x(t − h2)] . (13)

Similar to the proof of (13), one has

V̇ 6
1p(t) ≤ −α1pV

6
1p(t) + h12 ẋ

T(t)W2p ẋ(t)

−e−α1ph2

h12
[x(t − h1) − x(t − h2)]

T W2p [x(t − h1) − x(t − h2)] , (14)

V̇ 7
1p(t) ≤ −α1pV

7
1p(t) + h23 ẋ

T(t)W3p ẋ(t)

−e−α1ph3

h23
[x(t − h2) − x(t − h3)]

T W3p [x(t − h2) − x(t − h3)] . (15)

Consequently, if inequality (6) holds, (5) and (8)–(15) immediately lead to the
following inequality

V̇1p(t) + α1pV1p(t) − ωT(t)Spω(t) ≤ ζT
p (t)Ξ1pζp(t) < 0, (16)
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in which ζp(t)=
[
xT(t), xT(t−dp(t)), xT(t − h1), xT(t − h2), xT(t − h3), ωT(t)

]T
.

By integrating (16) from t2k to t , inequality (7) follows readily. ��

Remark 2 Lemma 1 discusses small delay subsystems of system (1). For the small
delay case, all LDITs contained h3 are not needed in the traditional constructions of
Lyapunov functional [11,18,23], while these LDITs are necessary for the Lyapunov
functional of Lemma 2 which will be discussed in Remark 3.

Next, consider the following system

ẋ(t) = Aσ(t)x(t) + Adσ(t)x(t − dσ(t)(t)) + Dσ(t)ω(t),

x(t) = ϕ(t), t ∈ [−h3, 0), (17)

where σ(t) ∈ Il, h2 < dσ(t) ≤ h3. For system (17), with the help of determined
positive definite matrices P2σ(t), Qiσ(t),Wiσ(t) for i = 4, 5, 6, choose the Lyapunov
functional as

V2σ(t)(t) =
7∑

i=1

V i
2σ(t)(t), (18)

where

V 1
2σ(t)(t) = xT(t)P2σ(t)x(t),

V 2
2σ(t)(t) =

∫ T

t−dσ(t)

eα2σ(t)(t−s)xT(s)Q4σ(t)x(s)ds,

V 3
2σ(t)(t) =

∫ t−h1

t−h2
eα2σ(t)(t−s)xT(s)Q5σ(t)x(s)ds,

V 4
2σ(t)(t) =

∫ t−h2

t−h3
eα2σ(t)(t−s)xT(s)Q6σ(t)x(s)ds,

V 5
2σ(t)(t) =

∫ 0

−h2

∫ T

t+θ

eα2σ(t)(t−s) ẋT(s)W4σ(t) ẋ(s)dsdθ,

V 6
2σ(t)(t) =

∫ −h1

−h2

∫ T

t+θ

eα2σ(t)(t−s) ẋT(s)W5σ(t) ẋ(s)dsdθ,

V 7
2σ(t)(t) =

∫ −h2

−h3

∫ T

t+θ

eα2σ(t)(t−s) ẋT(s)W6σ(t) ẋ(s)dsdθ.

Based on the Lyapunov functional specified by (18), the following lemma is achieved.

Lemma 2 Let T > 0, σ (t) = q ∈ Il, α2q ≥ 0, h3 > h2 > h1 ≥ 0 and d < 1.
If there exist positive definite matrices P2q , Qiq ,Wiq , (i = 4, 5, 6), which satisfy the
following linear matrix inequality
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Ξ2q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
1q

∑
2q 0 W4q

h2
0

∑
3q

*
∑

4q 0 0 0
∑

5q

0 0
∑

6q
eα2q h1W5q

h12
0 0

* 0 *
∑

7q
eα2q h2W6q

h23
0

0 0 0 *
∑

8q 0
* * 0 0 0

∑
9q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (19)

where

∑
1q

= P2q Aq + AT
q P2q + Q4q − α2q P2q − W4q

h2
+ AT

qΔ2q Aq ,

∑
2q

= P2q Adq + AT
qΔ2q Adq ,

∑
3q

= P2q Dq + AT
qΔ2q Dq ,∑

4q
= −(1 − d)eα2qh3Q4q + AT

dqΔ2q Adq ,

∑
5q

= AT
dqΔ2q Dq ,

∑
6q

= eα2qh1Q5q − eα2qh1

h12
W5q ,

∑
7q

= −eα2qh2(Q5q − Q6q) − W4q

h2
− eα2qh1W5q

h12
− eα2qh2W6q

h12
,

∑
8q

= −eα2qh3Q6q − eα2qh2W6q

h23
,

∑
9q

= DT
q Δ2q Dq − Sq ,

Δ2q = h2W4q + h12W5q + h23W6q , h12 = h2 − h1, h23 = h3 − h2,

then, for ∀t ∈ [t2k+1, t2k+2), one has

V2σ(t)(t) ≤ eα2σ(t2k+1)(t−t2k+1)V2σ(t2k+1)(x(t2k+1))

+
∫ T

t2k+1

eα2σ(t2k+1)(t−s)
ωT(s)Sσ(t2k+1)ω(s)ds. (20)

Proof The proof of Lemma 2 is similar to that of the Lemma 1. ��

Remark 3 Lemma 2 discusses large delay subsystems of system (1). In order to get
the delay bound h3 in LMI (19), LDITs are introduced in (18). The LDITs V 4

1σ(t) and

V 7
1σ(t) defined in V1σ(t) are also necessary. In fact, these terms make the corresponding

integral parts in V1σ(t) and V2σ(t) with the same integral. Hence, these terms are critical
to make the ratio between V1σ(t) and V2σ(t) easily calculated at each switching point.

Theorem 1 Consider the continuous time-delay switched system (1), for given pos-
itive constants c1, c2, T, dω, α1p, α2q , p ∈ Is, q ∈ Il. If there exist positive definite
matrices P1p, Qip,Wip(i = 1, 2, 3), P1q , Qiq ,Wiq(i = 4, 5, 6) satisfying LMI (6)
and (19), then under switching signals (S), system (1) is extended FTB with respect to
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(c1, c2,Ω, T, ση, dω) where

c2 = cec0T

min

{
λmin

{
R

− 1
2

σ(t)P1σ(t)R
− 1

2
σ(t)

}
, λmin

{
R

− 1
2

σ(t)P2σ(t)R
− 1

2
σ(t)

}} ,

c0 = α + (ηα2M − α1m)

1 + η
, c = Λc1 + λ8dω,

Λ = λ1 + (λ2 + λ5)h2 + e−α1mh1(λ3 + λ6)h12 + e−α1mh2(λ4 + λ7)h23,

λ1 = λmax

(
R

− 1
2

σ(0)P1σ(0)R
− 1

2
σ(0)

)
, λ2 = λmax

(
R

− 1
2

σ(0)Q1σ(0)R
− 1

2
σ(0)

)
,

λ3 = λmax

(
R

− 1
2

σ(0)Q2σ(0)R
− 1

2
σ(0)

)
, λ4 = λmax

(
R

− 1
2

σ(0)Q3σ(0)R
− 1

2
σ(0)

)
,

λ5 = λmax

(
R

− 1
2

σ(0)W1σ(0)R
− 1

2
σ(0)

)
, λ6 = λmax

(
R

− 1
2

σ(0)W2σ(0)R
− 1

2
σ(0)

)
,

λ7 = λmax

(
R

− 1
2

σ(0)W3σ(0)R
− 1

2
σ(0)

)
, λ8 = λmax

(
Sσ(t)

)
, α1M = max

{
α1σ(t)

}
,

α2M = max
{
α2σ(t)

}
, α1m = min

{
α1σ(t)

}
, α2m = min

{
α2σ(t)

}
.

Therein, the switching signals (S) should satisfy the following properties:

Tl(0,t)
Ts(0,t)

≤ η, Ff(0, t) ≤ α

ln(μ2
Mμ)

, α > 0, ∀t ∈ [0, T ], (21)

Plm ≤ μm Phn, Qim ≤ μmQ jn, Wim ≤ μmWjn,

μ = e(α1M+α2M )h3, μm ≥ 1, μM = max{μm},
∀l, h ∈ {1, 2},∀{i, j}or{ j, i} = {(1, 4), (2, 5), (3, 6)},m, n ∈ I. (22)

Proof Construct piecewise Lyapunov functional candidate as follows

Vσ(t)(t) =
{
V1σ(t)(t), t ∈ [t2k, t2k+1),

V2σ(t)(t), t ∈ [t2k+1, t2k+2), k ∈ N ,
(23)

where V1σ(t)(t) and V2σ(t)(t) are defined in (5) and (18), respectively. From (22) and
(23), it is easy to see that the switching point satisfies

V1σ(ti ) ≤ μi V2σ(t−i ), ∀σ(ti ) = p ∈ Is, σ (t−i ) = q ∈ Il, i ∈ N ,

V2σ(t j ) ≤ μμ j V1σ(t−j ), ∀σ(t j ) = q ∈ Il, σ (t−j ) = p ∈ Is, j ∈ N . (24)
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Consider the piecewise Lyapunov functional (23), from Lemmas 1 and 2, it yields

Vσ(t)(t) ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e−α1σ(t2k )(t−t2k )V1σ(t2k )(x(t2k))

+ ∫ T
t2k
e−α1σ(t2k )(t−s)ωT(s)Sσ(t2k )ω(s)ds, t ∈ [t2k, t2k+1),

eα2σ(t2k+1)(t−t2k+1)V2σ(t2k+1)(x(t2k+1))

+ ∫ t
t2k+1

eα2σ(t2k+1)(t−s)
ωT(s)Sσ(t2k+1)ω(s)ds, t ∈ [t2k+1, t2k+2).

(25)

Without loss of generality, we assume t ∈ [t2k+1, t2k+2), k ≥ 0, σ (t) ∈ Il. Based on
(23) and (24), along the trajectory of system (1), it derives

Vσ(t)(t) ≤ μμ2k+1e
α2σ(t2k+1)(t−t2k+1)V1σ(t−2k+1)

(x(t−2k+1))

+
∫ t

t2k+1

eα2σ(t2k+1)(t−s)
ωT(s)Sσ(t2k+1)ω(s)ds

≤ exp(Nl(0, t) lnμ + Nσ (0, t) lnμM + α2MTl(0,t) − α1mTs(0,t))V1σ(0)(0)

+λmax(Sσ(t))

∫ t

0
exp(Nl(0, t) lnμ + Nσ (0, t) lnμM + α2MTl(0,s)

−α1mTs(0,s))ω
T(s)ω(s)ds. (26)

In view of (21) and Nσ (0, t) ≤ 2Nl(0, t), it is easy to see that

Nl(0, t) lnμ + Nσ (0, t) lnμM + α2MTl(0,t) − α1mTs(0,t)

≤ (α + (ηα2M − α1m)

1 + η
)t = c0t. (27)

Then, from (26) and (27), it holds

Vσ(t)(t) ≤ ec0t V1σ(0)(0) + λmax(Sσ(t))e
c0t dω. (28)

By virtue of the form of Lyapunov functional and the condition of Theorem 1, one
has

V1σ(0)(0) ≤
[
λ1 + (λ2 + λ5)h2 + e−α1mh1(λ3 + λ6)h12 + e−α1mh2(λ4 + λ7)h23

]

× sup
t∈[−h3,0]

{
xT(t)Rσ(t)x(t), ẋ

T(t)Rσ(t) ẋ(t)
}

= Λc1. (29)

Substituting (29) into (28) yields

Vσ(t)(t) ≤ ec0tΛc1 + λ8e
c0t dω = cec0t . (30)
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Noting that V1σ(t)(t) ≥ xT(t)P1σ(t)x(t) and V2σ(t)(t) ≥ xT(t)P2σ(t)x(t), hence

xT(t)Rσ(t)x(t) ≤ c2. (31)

This completes the proof of Theorem 1. ��
When the input disturbance ω(t) vanishes, we have another main result in this paper.

Theorem 2 Consider the continuous time-delay switched system (1) with ω(t) ≡ 0,
where the parameters are the same with Theorem 1. If there exist positive definite
matrices P1p, Qip,Wip, (i = 1, 2, 3), P1q , Qiq ,Wiq , (i = 4, 5, 6) satisfying LMI
(32) and (33) (all the parameters are defined in Lemmas 1 and 2 with Dp = Dq = 0)

Ξ ′
1p =

⎡
⎢⎢⎢⎢⎢⎢⎣

∑
1p

∑
2p 0 e−α1ph2

h2
W1p 0

*
∑

4p 0 0 0

0 0
∑

6p
e−α1ph2

h12
W2p 0

* 0 *
∑

7p
e−α1ph3

h23
W3p

0 0 0 *
∑

8p

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (32)

Ξ ′
2q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑
1q

∑
2q 0

W4q
h2

0
*

∑
4q 0 0 0

0 0
∑

6q
eα2q h1W5q

h12
0

* 0 *
∑

7q
eα2q h2W6q

h23
0 0 0 *

∑
8q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (33)

then, under the same switching signals (S) with Theorem 1, system (1) is extended
FTS with respect to (c1, c2,Ω, T, ση), where

c = c1 ∗
[
λ1 + (λ2 + λ5)h2 + e−α1mh1(λ3 + λ6)h12 + e−α1mh2(λ4 + λ7)h23

]
.

Proof According to Theorem 1, the conclusion is easy to get by letting ω(t) ≡ 0. ��

4 Simulation Examples

Example 1 Consider continuous time-delay system (1) with two subsystems

ẋ(t) =
[−0.2 0

0 −0.9

]
x(t) +

[−0.1 0
−0.1 −0.1

]
x(t − d1(t)) +

[
1, 0
0, 1

]
ω(t),

x(t) = [1, 2]T, t ∈ [−h2, 0], (34)

ẋ(t) =
[
0.5 −1.5
0.7 0.3

]
x(t) +

[−0.05 −0.05
−0.03 0

]
x(t − d2(t)) +

[
1, 0
0, 1

]
ω(t),

x(t) = [0, 1]T, t ∈ [−h3, 0], (35)
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Fig. 2 The switching signals
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where d1(t) = 0.2 + 0.1 ∗ sin(t), d2(t) = 0.6 + 0.3 ∗ sin(t) and ω(t) =
[0.01 ∗ sin(t), 0.02 ∗ cos(2t + 1)]T. A straightforward calculation obtains h1 = 0.1,
h2 = 0.3, h3 = 0.9 and d = 0.3. The simulation parameters are given as
c1 = 5, T = 10, R = I and dω = 0.1. In this example, (34) denotes a small delay
subsystem 1 and (35) indicates a large delay subsystem 2. Figure 1a, b shows that the
subsystems 1 and 2 are bounded and unbounded in time interval [0,10], respectively.

For α1 = 0.01, α2 = 0.02, α = 0.21, μM = 1.21, η = 0.1764, we obtain P1 =[
1.4086 −0.2167

−0.2167 1.9320

]
, P2 =

[
0.1243 0.1251
0.1251 0.2139

]
, λ1 = 2.01, λ2 = 1.0301, λ3 =

0.5867, λ4 = 0.8197, λ5 = 0.9878, λ6 = 0.6164, λ7 = 1.6026, λ8 = 2.8358 and
c2 = 34.1407. Given switching signals as shown in Fig. 2, we can see from Fig. 3 that
the switched system is bounded in finite-time [0, 10].
Example 2 [11] Consider system (1) with

A1 = A2 =
[−2 0

0 −0.9

]
, Ad1 = Ad2 =

[−1 0
−1 −1

]
, ω(t) = 0. (36)

For the case of 0 ≤ d1(t) ≤ 1.6, d = 0.5 and T = 50, Table 1 shows all the bounds of
Tl(0,t)
Ts(0,t)

, Ff(0, t) and maximum allowed delay bound (MADB). It is worth pointing out
that MADB obtained in [11] is only 2.04, while our method can achieve the MADB



3628 Circuits Syst Signal Process (2017) 36:3616–3629

Fig. 3 XTRX under switching
signals
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Table 1 The bounds of
Tl(0,t)
Ts(0,t)

, Ff (0, t) and MADB for 0 ≤ d1(t) ≤ 1.6 and d = 0.5

d2(t) 1.6 ≤ d2(t) ≤ 8 1.6 ≤ d2(t) ≤ 15

The bound of
Tl(0,t)
Ts(0,t)

0.1538 0.1432

The bound of Ff (0, t) 0.0125 0.0067

MADB 8 15

as high as 15. Hence, the method proposed in this paper can provide a large MADB
compared with the exiting methods.

5 Conclusions

FTB and FTS have been investigated in this paper for a class of switched linear systems
with large delay period. Though the subsystems with large delay may be finite-time
unbounded, with the help of an appropriate switching signal, the FTB and FTS are
still guaranteed under the restriction on frequency and maximum ratio of LDP. By
introducing a piecewise Lyapunov functional with large delay integral terms, the LMI
conditions are given with the help of Jensen’s inequality. Two numerical examples
demonstrate the effectiveness of the proposed method.
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