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Abstract Super-resolution (SR) algorithms are widely used to overcome the hard-
ware limitations of the low-cost image acquisition devices. In this paper, we present
a single image SR (SISR) approach in wavelet domain, which simultaneously pre-
serves the contrast and edge information. Our algorithm uses the notion of geometric
duality to generate the initial estimation of unknown high-resolution (HR) image,
by applying covariance-based interpolation. State-of-the-art wavelet techniques for
SISR provide resolution enhancement by replacing the low-frequency subband with
the input low-resolution image. This leads to non-uniform illumination in the super-
resolved image. The proposedmethod exploits singular value decomposition to correct
the low-frequency subband, as obtained via stationary wavelet transform (SWT). The
modified low-frequency subband and the high-frequency subband images are sub-
jected to Lanczos interpolation. The interpolated subbands are filtered by employing
diffusion-based shock filter, which operates in the dual dominant modes. All the fil-
tered subband images are fused to generate the final HR image, by applying inverse
SWT. Our experimental analysis has demonstrated the superiority of the proposed
method in preserving the edges with uniform illumination.
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1 Introduction

High-resolution (HR) images are always desired in many fields, such as medical
image analysis [37], high-definition televisions [33], remote sensing [29] and video
surveillance [14]. Super-resolution (SR) algorithms aim to generate an image with
higher resolution than the imaging device. Classical methods for SR produce a HR
image using multiple degraded low-resolution (LR) images with subpixel alignments
between them [15,27]. In practice multiframe SR techniques are NP-hard due to
the unknown registration parameters, inadequate number of LR images and unsta-
ble motions between the LR frames [15,32]. On the other hand, single image SR
(SISR) techniques generate a HR image using single subsampled LR image. These
algorithms can be grouped into three categories, namely interpolation techniques,
machine learning approaches and wavelet-based techniques.

Nearest neighbor, bilinear and bicubic interpolation methods are the simple
approaches for SR, but always produce blurred images with ringing and jagged arti-
facts. Li and Orchard [23] addressed this problem by using the local covariances of
an LR image. In Ref. [34], the missing pixels are interpolated in two mutually orthog-
onal directions and these two estimates are adaptively fused into a single HR image
using a local window. Zhang and Wu [36] introduced block-based computation of the
unknown pixels by employing autoregressive model. Jing and Wu [22] proposed a
different interpolation approach based on the inverse distance weighting method, by
introducing a new intensity distance measure. However, the above interpolation meth-
ods are used for low computational complexity but not for the performance. Besides,
the interpolation techniques are confined to a maximum scaling factor 2 alone.

Machine learning-based SISR approach is a better way to overcome the limita-
tions of interpolation techniques. Most of these algorithms divide the image plane
into number of small patches. Prior to the SR reconstruction process, there is a train-
ing procedure involved between several HR example image patches and their LR
counter parts. Here, SR algorithms rely on the a priori term obtained from the training
activity. In the past few years, dictionary learning and sparsity priors are successfully
employed in many SISR algorithms. Fadili et al. [11] developed an expectation maxi-
mization frame work for image upscaling and image inpainting, where a sparsity prior
is enforced on SR reconstruction. This approach proved successful for image inpaint-
ing than interpolation. In Ref. [33], a compact dictionary pair is learned for improving
the speed of training process.

Dong et al. [8–10] further developed example-based techniques by proposing cen-
tralized sparse representation and autoregressive model. In addition, Dong et al. [7]
used the advantage of self-repeating patterns in natural images bymodeling each sparse
coefficient as a non-local Gaussian scale mixture with simultaneous sparse coding.
He et al. [16] addressed the dictionary learning problem by suggesting a beta process
model in a Bayesian frame work. But, the sparsity invariance assumption restricts
the idea to the nonzero locations of sparse representation vector. Peleg and Elad [26]
solved this issue by implementing a statistical prediction model on the LR-HR sparse
representation vectors. Thismodelmakes no sparsity invariance assumption.However,
it is difficult to achieve similar LR-HR sparse representations in practice. So, a strong
regularization technique was used recently in [21,31] by developing a sparse support
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regression algorithm from the dictionaries. In addition, Jiang et al. [21] attempted to
preserve the geometric structures of HR examples rather than their LR counterparts
to avoid the aliasing effect. Recently, an interesting improvement is proposed in [20]
for face SR. In addition to the LR patches, HR patch reconstruction component is
introduced in the objective function. Most of these machine learning techniques yield
better results, but the training step with large database increases the computation time
remarkably. In addition, these techniques are limited to a factor 3 enlargement.

On the other hand, wavelet-based SISR techniques play a vital role in super-
resolving the images. These techniques also provide significant results by employing
self-similarities among the neighboring pixels in the subbands. Recently, many algo-
rithms have been proposed in wavelet domain [3–6,17]. In Ref. [5], a resolution
enhancement scheme is proposed by employing discrete wavelet transform (DWT)
and stationary wavelet transform (SWT). Chavez-Roman and Ponomaryov [4] used
sparse mixing estimators to improve the DWT low-frequency subband. This method
provides better resultswithmultiple edge preserving stages.Many otherwavelet-based
techniques, such as lifting wavelet transform (LWT) [6], dual-tree complex wavelet
transform (DTCWT) [3] and undecimated DTCWT [17], are also proposed in the con-
text of SR. Similar to the machine learning algorithms, wavelet-based SR techniques
also provide superior results. Our work is motivated by the impressive performance of
[5], even at large magnification factors. Besides, the computational simplicity enables
numerous signal and image processing applications.

In this correspondence, we present a new wavelet-based SISR algorithm. We esti-
mate the initial HR image by implementing covariance-based interpolation algorithm
on the input LR image [30]. The initial HR estimate is used in the next stages of our
method.We explore the singular value decomposition (SVD) of the initial HR estimate
and the low-frequency subband, to generate a new subband. SWT which is adopted
in our algorithm for subband decomposition has promising directionality and shift
invariance when compared to the traditional wavelet decomposition. All subbands are
enhanced by applying the complex diffusion-based shock filter (DBSF). The dual-
mode operation of DBSF simultaneously enhances and denoises the subband images
[28]. In addition, the nearest neighbor interpolation (NNI) process incorporates the
lost edge information into the subband images.

This paper is structured as follows. In Sect. 2, the covariance-based interpolation
algorithm is presented. Section3 describes theDBSF operation in detail. The proposed
algorithm is illustrated in Sect. 4. Various experimental results are evaluated in Sect. 5,
and finally Sect. 6 concludes this paper.

2 Interpolation Using Local Covariance Estimates

In order to overcome the undesired artifacts of plain linear interpolation techniques,
we employ covariance-based interpolation algorithm in our proposal to estimate the
initialHR image. The algorithmuses the basic idea of geometric regularity to obtain the
linear interpolation coefficients with minimal mean square error [23,30]. If Y [2m, 2n]
denotes the LR image and Y [m, n] denotes the enlarged HR image, then the basic
fourth-order interpolation is given as follows [35]:
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Fig. 1 Insight into the geometric regularity between LR and HR covariances

Y [2m + 1, 2n + 1] =
∑

i, j∈[0,1]
w[2i + j] Y [2(m + i), 2(n + j)], (1)

where w = [w0, w1, w2, w3] represents the optimal linear interpolation coefficient
vector.

In general, the linear interpolation is performed in two consecutive steps. Since,
the unknown pixels on the HR grid are categorized into two groups, namely Y [2m +
1, 2n + 1] and Y [m, n] (m + n = odd) as shown in Fig. 1. First, the missing pixels
Y [2m + 1, 2n + 1] are computed from Y [2m, 2n] by solving Eq. (1). Second, the rest
unknown part Y [m, n] (m + n = odd) can be obtained from Y [m, n] (m + n = even)
in a similar fashion. However, the two unknown pixel groups Y [2m + 1, 2n + 1] and
Y [m, n] (m + n = odd) have similar geometric dualities, which are isomorphic up to
a scaling factor of

√
2 and a rotation of 45◦ [22]. Due to this fact the first group of

pixels Y [2m + 1, 2n + 1] are only considered in Eq. (1).
The linear interpolation coefficients can be computed from the covariances at higher

resolution, based on the assumption that natural images aremodeled by local stationary
Gaussian process. Thus, from classical Wiener filter theory [19]:

w = Q̃
−1
q̃, (2)

where Q̃ = [Q̃i j ] and q̃ = [̃qi ], 0 ≤ i, j ≤ 3 are the covariances at higher resolution.
Now, the challenge is obtaining the HR covariances when we have only the LR

image. This is where geometric duality comes into picture. It links the HR and LR
covariances by coupling a pair of pixels along the same direction, and still they are
at distinct resolution as shown in Fig. 1. Let x denotes the sampling distance. The

normalized covariance is given by Q̃(x) ∼ e
−x2

2σ2 . Similarly, if d and 2d are the HR
and LR sampling distances, then they are related by a quadratic function Q̃(d) =
Q̃

1
4 (2d). At higher resolution, the sampling distance, d → 0 such thatQ(d) � Q(2d).

Therefore, the HR covariances can be replaced by the corresponding LR covariances.
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The LR covariancesQ,q can be computed by taking a N × N local window of the
input LR image. Thus, from traditional covariance approach [19]

Q = 1

N 2D
TD and q = 1

N
DTb, (3)

where b is data vector and D is a 4 × N 2 data matrix whose columns are the four
diagonal neighbors of the elements of the data vector.

By solving Eqs. (1), (2) and (3), the missing pixels on the interlacing lattice are
obtained. The interpolated image is used in the next stages of our proposed algorithm.

3 Diffusion-Based Shock Filter (DBSF)

Shock filter was proposed byOsher and Rudin [25], which has a wide range of applica-
tions in image enhancement and deblurring.We employ shockfilter in our algorithm, to
denoise the estimated high-frequency subbands. Besides, the low-frequency subband
is also enhanced by operating the shock filter in the edge preserving mode.

Let Y [m, n] be an input image. The shock filter considers it as a time-varying
function Y (m, n, k) with k as the time index. Mathematically, shock filter can be
evaluated as

Yk = − sign(Yρρ)|∇Y |, (4)

where Yk denotes the first-order time derivative of the function Y (m, n, k), Yρρ repre-
sents the second derivative of input image with respect to ρ direction, and ∇Y is the
corresponding gradient.

This filter fails to preserve edge information, and also it is highly sensitive to noise.
The method in [12] addressed these issues by introducing a linear diffusion term to
the basic shock filter.

Yk = − sign(Yρρ)|∇Y | + λYηη, (5)

where λ > 0 is aweight of the linear diffusion term and η is the direction perpendicular
to ∇Y .

To ensure sharp edges in the output image, the above DBSF can be generalized to
complex values [13] with several applications to spectral analysis, as

Yk = − 2

π
arctan

(
δ Im

(Y
θ

))
|∇Y | + λ̃Yρρ + λYηη, (6)

where the parameter δ provides control over the slope at zero crossings. λ ∈ R and
λ̃ ∈ C are the scalar diffusion weights and θ = arg(̃λ).

This complex diffusion-based shock filter can be used for image enhancement by
following thefirst term inEq. (6) and also for imagedenoising as a result of the diffusion
term.When the diffusion weights are small, the regularized term is suppressed and the
process approximates to edge preserving shock filter. For large weights, the diffusion
term plays a vital role, resulting a denoising shock filter.
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Fig. 2 Block diagram of the proposed SR image generation algorithm

4 Proposed SR Technique

The proposed method can be represented as a block diagram shown in Fig. 2. Initially,
we compute the local covariances of the known LR image. Then, the fourth-order
interpolation is applied on the input LR image to generate an initial estimate of the
unknown HR image. This can be done by exploiting geometric duality between LR
covariances andHRcovariances as shown inFig. 1. The covariance-based interpolation
process improves the visual quality of the interpolated LR image, but increased com-
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putational complexity should be addressed. In order to reduce the computational time,
we apply covariance-based interpolation process only to the edge pixels and plain
bicubic interpolation to the pixels in smooth regions. Thus, a trade-off is obtained
between computational complexity and subjective quality. This mixed interpolation
scheme gives favorable outcome when the desired enlargement factor is 2 or less.
It is capable of preserving the geometric structures around the edges in an image.
In addition, the smoothing effect and ringing artifacts are also minimized. This can
not be achieved using traditional interpolation methods. However, the performance
of covariance-based interpolation degrades rapidly for higher scaling factors. But
HR images with large magnification factors are highly essential to meet the growing
demands. So, we further process this initial HR estimate in wavelet domain to add
more high-frequency details.

In this correspondence,we chooseSWTfor subbanddecompositionof the initialHR
estimate. SWTdivides an image into four different subbands, termed as approximation
YA, horizontal YH, vertical YV and diagonal YD coefficients, respectively. Here, the
translation invariance property of SWT allows the subband images to have same size
as the initial HR estimate. The high-frequency subbands YH, YV and YD carry the
edge information of the interpolated LR image. But the low-frequency subband YA
contains no edge details; instead, it has the valid illumination information. The SVD
of an image holds illumination information, and thus, changing the singular values
directly affects the contrast of the edges. The subbands YH, YV and YD do not contain
any illumination information. Hence, we apply SVD to the initial HR estimate Y0 and
the YA subband only.

Y0 = U1Σ1V1
T and YA = U2Σ2V2

T , (7)

where U1, V1 and U2, V2 are the unitary matrices of the initial HR estimate and the
low-frequency subband, respectively. Σ1,Σ2 are the corresponding singular value
matrices, whose diagonal elements are the singular values in the decreasing order.

To preserve the contrast information in the super-resolved image, we modify the
low-frequency subband using the initial HR estimate by computing the illumination
constant as

ζ = 1

ν

max(Σ1)

max(Σ2)
, (8)

where ν is the normalization parameter.
Now, the new low-frequency subband is reconstructed as

Y A = U2Σ2V2
T , (9)

whereΣ2 = ζ Σ2 is the corrected singular valuematrix of the low-frequency subband.
To obtain resolution enhancement with the desired magnification factor, the

improved low-frequency subband YA and all the high-frequency subbands YH,YV
and YD are upscaled using Lanczos kernel. Next, we have applied the DBSF on the
interpolated subband images by choosing appropriate diffusion weights. As discussed
in Sect. 3, small diffusionweights ensure edge enhancement as dominant mode. On the
contrary, large diffusion weights provide image denoising as dominant mode. Thus,
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we apply enhancement mode shock filter on the low-frequency subband, as it suffers
from poor edge information. Similarly, the denoising mode shock filter is used to cater
for the artifacts induced by the Lanczos interpolation in the high-frequency subbands.

Apart from YA subband, all other subbands contain isolated high-frequency com-
ponents. In order to preserve the edge information, we employ an edge extraction
stage using the high-frequency subbands YH, YV and YD. The extracted edge details
are first interpolated using NNI procedure and then added to the high-frequency sub-
bands [4]. The NNI process alters the intensity values in agreement with the closest
neighbor pixels. This process incorporates additional high-frequency information into
the subband images. The edge details are computed as,

E =
√
Y 2
H + Y 2

V + Y 2
D . (10)

Finally, all the estimated subbands are combined by applying inverse SWT process.
It can be observed that the edge extraction step and the interpolation of SWT subbands
effectively preserve the edge information. Besides, the initial HR estimation using
local covariances and the SVD-based low-frequency subband modification improves
the visual quality of the super-resolved image.

5 Experimental Results

To demonstrate the effectiveness of the proposed method over the existing techniques,
10 distinct LR test images are used for comparison. Both gray scale images (Lena,
Mandrill, Barbara and Lake) and color images (Biker, Boat, House, Kid, Plane and
Statue) are involved. In all our experiments, the SR reconstruction process is directly
applied to gray scale images. On the other hand, color images are expressed usingRGB
colormodel.But,most of the edge information is present in the luminance channel of an
image. Besides, humans are more sensitive to the variations in the luminance channel
than to the variations in the color channels. We separate the luminance channel from
the given RGB color image by employing YCbCr color model. The SR reconstruction

Fig. 3 Ground truth images from left to rightand top to bottom: Lena, Mandrill, Barbara, Lake, Biker,
Boat, House, Kid, Plane and Statue
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Table 3 Average run times (in seconds) of different SR methods for β = 4 enlargement

Method Bicubic DFDF [34] SME [24]
time 0.42 26.73 399.05

SCSR [33] SPM-SR [26] DWT [2] DWT-SWT [5]

644.07 33.25 1.27 1.26

DWT-Sparse [4] LWT [1] DTCWT-NLM [18] Our method

74.37 1.227 10.31 21.25

Fig. 4 Cropped portions from Lena image by different SR methods for β = 3 enlargement: a original
image, b SME [24], c SCSR [33], d SPM-SR [26], e DWT [2], f DWT-SWT [5], g DWT-Sparse [4], h
LWT [1], i DTCWT-NLM [18] and j proposed method

process is applied only to the Y component, while the Cb and Cr components are
upscaled using Lanczos interpolation.

Theground truth images used for comparison are shown inFig. 3. In our simulations,
the LR test images are generated by directly downsampling the ground truth images
with a scaling factor of β and then super-resolved back using various SR methods.
To perform the covariance-based interpolation, we differentiate the edge pixels by
choosing gray level threshold th = 8. The covariances of the input LR image are
estimated using local window of size N = 9.

In this paper, we used Bior 1.1 wavelet functions for SWT subband decomposition.
The enhancement mode shock filter is operated on the low-frequency subband with
λ = 0.01, λ̃ = 0.3 and δ = 0.5. Similarly, the denoising mode shock filter is operated
on high-frequency subbands by choosing λ = 0.9, λ̃ = 0.5 and δ = 0.1. The proposed
SR approach and the existing methods are tested using MATLAB 2013b software on
Intel(R) Core(TM) i3-2350M CPU with 2.30GHZ and 4GB RAM system.

Conventional methods, viz bicubic interpolation (bicubic), direction filtering and
data fusion (DFDF) [34], sparse-adaptive mixing estimators (SME) [24], sparse
coding-based SR (SCSR) [33], statistical prediction model (SPM-SR) [26] and state-
of-the-art methods, such as SR based on wavelet domain interpolation (DWT) [2],
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Fig. 5 Reconstructed images of Lena,Mandrill and Statue by different SRmethods for β = 4 enlargement:
a original image, b SME [24], c SCSR [33], d SPM-SR [26], e DWT [2], f DWT-SWT [5], g DWT-Sparse
[4], h LWT [1], i DTCWT-NLM [18] and j proposed method
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Fig. 6 Reconstructed images of Kid by different SR methods for β = 4 enlargement: a original image, b
SME [24], c SCSR [33], d SPM-SR [26], e DWT [2], f DWT-SWT [5], g DWT-Sparse [4], h LWT [1], i
DTCWT-NLM [18] and j proposed method

resolution enhancement using DWT and SWT (DWT-SWT) [5], SR using DWT and
sparse representation (DWT-Sparse) [4], LWT and SWT (LWT) [1], DTCWT and
non-local means filter (DTCWT-NLM) [18], are used for the comparison purpose.
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Fig. 7 Reconstructed images of Plane by different SR methods for β = 4 enlargement: a original image,
b SME [24], c SCSR [33], d SPM-SR [26], e DWT [2], f DWT-SWT [5], g DWT-Sparse [4], h LWT [1], i
DTCWT-NLM [18] and j proposed method

Peak signal-to-noise ratio (PSNR) and structured similarity index measure (SSIM)
are used to quantitatively asses the super-resolved images. These comparisons are
listed in Tables1 and 2 for β = 3 and β = 4, respectively. From these tables, it
can be noticed that the proposed method achieves highest average PSNR and SSIM
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Fig. 8 SR results of the proposed method for different scaling factors using Biker image. a, b LR-SR result
for β = 2, c, d LR-SR result for β = 3, e, f LR-SR result for β = 4 and g original image

values. Besides, our method is simple and has moderate execution times. In Table3,
we present the average run times of different SR methods for β = 4 enlargement. It is
noticed that Bicubic, DWT [2], DWT-SWT [5], LWT [1] methods can be implemented
in less than 5 seconds. The average run time of the proposed method is comparable to
DFDF [34], SPM-SR [26], DTCWT-NLM [18], whereas SME [24], SCSR [33] and
DWT-Sparse [4] methods consume much time.

In Figs. 4, 5, 6, 7 and 8, a comparative analysis of different SR methods is carried
out in terms of subjective visual quality. Figure4 shows the SR results of cropped
Lena for β = 3, and Figs. 5, 6 and 7 show the SR results of Lena, Mandril, Statue, Kid
and Plane for β = 4. As illustrated in these figures, SME [24], SCSR [33], SPM-SR
[26] methods produce blurred edge details and dotted artifacts (e.g., brim of Lena’s
hat in Fig. 4c, d). The wavelet-based methods [2,4,5,18] preserve edge information
to some extent. However, these methods result in non-uniform illumination in various
image regions (e.g., Lena’s hair in Fig. 5e, i). This is mainly because of the direct
replacement of low-frequency subband with the input LR image. With SVD-based
correction, the proposed method (Figs. 4j, 5j, 6j and 7j) can preserve the contrast.
Besides, the edge preservation using the high-frequency subbands generates sharp
edges in the SR image. Figure8 shows the reconstructed SR results of the proposed
method for different scaling factors. We can observe that the proposed method yields
better visual quality even at large scaling factors. From these tables and figures, it can
be noticed that the proposed technique overperforms the conventional and state-of-
the-art SR techniques qualitatively as well as quantitatively.

6 Conclusion

A novel cost-effective approach for SISR has been discussed in this paper. Compared
to the conventional and state-of-the-art SR methods, our approach has an advantage in
terms of preserving the contrast. This is achieved by correcting the SWT low-frequency
subband, by employing the SVD. Besides, we do not require any training database for
SR reconstruction. The initial HR estimation using covariance-based interpolation and
refinement of SWT subbands byDBSF effectively preserves the edge information. The
proposed algorithm overperforms the existing SR methods to produce super-resolved
image with higher visual quality. Thus, our approach generates HR images using
low-cost image acquisition devices, which minimizes the hardware cost significantly.
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