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Abstract Code divisionmultiple access (CDMA) is a channel access method adopted
by various radio technologies worldwide. In particular, CDMA is used as an access
method in many mobile standards such as CDMA2000 and WCDMA. We address
the problem of blind multiuser equalization in the wideband CDMA systems in the
noisymultipath propagation environment. Herein, we propose three new blind receiver
schemes based on variations of independent component analysis within several filter-
ing structures. These adaptive blind CDMA receivers do not require knowledge of
the propagation parameters or spreading code sequences of the users—they primarily
exploit the natural assumption of statistical independence among the symbol signals.
We also develop three semi-blind adaptive detectors by incorporating new adaptive
methods into the standard Rake receiver structure. Extensive comparative case studies
based on bit error rate performance are carried out as a function of (i) the number of
users, (ii) the number of symbols per user, and (iii) the signal-to-noise ratio. The con-
ventional detectors include the baseline linear minimum mean squared error detector.
The results show that the proposed methods outperform other detectors in estimating
the symbol signals from the received mixed CDMA signals. Moreover, the new blind
detectors mitigate the multiaccess interference in CDMA.
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1 Introduction

Code division multiple access (CDMA) is a channel access method ubiquitously used
in various modalities and platforms worldwide. It is based on spread spectrum tech-
nology as is found, e.g., in third-generation (3G) cellular telephony, terrestrial and
satellite communications systems, and indoor wireless networks [7,25,30]. Although,
LTE (4G) is utilized by several cellular companies inside and outside the USA, their
networks are still not fully built, and LTE coverage is still not universal. Thus, most
of the older 2G and 3G systems are ubiquitous and exist in parallel with the newer
4G systems worldwide. In the USA, companies such as AT&T and T-mobile use
GSM/WCDMA/HSPA while Verizon, Sprint, and MetroPCS use CDMA2000/EV-
DO [9]. Moreover, the newer LTE wireless interface is incompatible with the 2G and
3G networks, so that it must be operated on a separate wireless spectrum. While 4G
technology is intended to eventually replace the 3G technologies, it is now evident
that it will take some time before LTE coverage is fully developed and widely adopted
even in the developed countries [9].

As with any radio communication system, CDMA-based systems also suffer from
various types of interferences. Specifically, they suffer from (i) an internal multiple
access interference (MAI) due to the non-ideal cross-correlations among the users
spreading sequences, (ii) narrow-band inter-symbol interference (ISI), and (iii) back-
ground noise at the receiver. These drawbacks affect the performance of a CDMA
system. The conventional detectors most frequently utilized to counteract CDMA
interference is based on second-order statistics. In highly loaded systems, conventional
detectors are not considered a suitable choice.Most of the conventional detectors suffer
from external interference sources and treat all interferences as a lumped background
noise. In CDMA-based systems, however, the primary source of interference is MAI.
This has motivated the development of numerous interference rejection techniques to
overcome the MAI and the near-far problem in conventional receivers [10,30]. Sev-
eral state-of-the-art approaches have been proposed in the literature to overcome this
challenge, e.g., using pilot signals and training [12,33].

In CDMA-based systems, multiuser detection is desirable in order to enhance chan-
nel capacity andmitigateMAI [10,11,14–19].Multiuser detection has been introduced
to obtain an optimum multiuser detector for multi-Gaussian channels in [29–31].
Several suboptimal detectors have also been proposed in [6–8], to overcome the com-
putational complexity in realizing optimal detectors. In [20–25,35], training pilot
sequence techniques have been used to present suboptimal detectors, namely an adap-
tive linear detector and a zero-forcing detector.

Wang and Poor [28–30] proposed the blind minimum mean square error (MMSE)
and the blind decorrelating detectors. The suboptimal detector based on the linear
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minimum mean square error (LMMSE) method has been described in [21]. In [1–
9,13], adaptive blind detectors were proposed based on incorporating the minimum
output energy with constrained optimization methods. Several subspace approaches
were proposed in the literature, e.g., in [10–12,18–30,36,37]. In [36], several types of
group-blind linear detectors were proposed in order to enhance the performance for
the uplink and downlink channels. The key idea of these detectors is to take advantage
of the cross-correlation matrix which was constructed by exploiting the correlation
between successive samples of received signals. These detectors, however, are too
complex to be practically implemented, especially at themobile unit.Also, they require
information regarding signal timing and the spreading codes of all users.

The aforementioned techniques periodically require the base station to send a train-
ing sequence that must be known by the mobile receiver in order to enable the latter to
estimate the parameters of the channel propagation model. These parameters attempt
to capture the multiple reflections of the radio waves due to obstacles, e.g., buildings,
cars, and trees. Furthermore, according to [15,23], it has been reported that 20% of
the bandwidth in GSM, and up to 40% in UMTS CDMA, is devoted to the training
sequence. In spite of the good performance of the training sequence techniques, the
cost tends to be significantly large in terms of bandwidth. Adaptive signal processing
techniques, on the other hand, provide more efficient methods for CDMA systems in
the presence of high dynamic conditions as a result of the receiver mobility, the short
channel codes, and the fortuitous channel access. In particular, the desire to ensure
a high communication rate has made blind adaptive techniques a hot topic, driven
by their potential to eliminate/reduce training sessions. Moreover, blind techniques
help recover symbol signals in other situations e.g., (i) eavesdropping, where using
the training sequence is not available, and (ii) tracking, when the receiver fails to
keep the desired user locked in track. It is also noted that the underlying user symbol
sequences are reasonably assumed to be statistically independent. Therefore, statis-
tical independence, or near independence, is a key assumption that makes a CDMA
system suitable for the blind techniques, e.g., using information maximization [30] or
minimum mutual information [27]. In [11,16–19], typical CDMA-based systems are
represented bywide stationary slowly fadingmultipath environment and are expressed
by a linear multichannel convolution model. Thus, the received signals in a CDMA
mobile can be considered as signals generated by the linear convolutivemodel of statis-
tically independent components of independent users as shown in [27,31–36,36,37].
The adaptive LMMSE detector has been originally proposed to overcome the need
for complex matrix inversion operations [19]; however, it still requires the spreading
codes of all users. While the LMMSE detector maybe suitable to be deployed at the
base station, as computational resources are usually abundant, it is less practical to
be deployed at the mobile receiver as computational resources are scarcer. In that
context, blind techniques are crucial tools for estimating multiple symbol sequences
at the mobile units of a communication system using only the received wireless data
and without any knowledge of the user spreading codes.

This paper aims at recovering the source symbol sequences from the linear convo-
lutive received mixture without any knowledge of the user short channelizing codes
and in the absence of explicit channel identification. In essence, the paper proposes
new improved blind adaptive detections, based on the state space approach [26,27],
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using the natural gradient method for multipath channels of CDMA-based systems.
Three update laws are derived for various filtering structures, and then, three adaptive
blind CDMA detectors are introduced for more effective MAI, ISI suppression, and
symbol estimation. The second contribution of the paper is three semi-blind adaptive
stochastic gradient algorithms fused into the conventional Rake receiver. Specifically,
we fuse algorithms based on, respectively, FastICA, RobustICA, and principle compo-
nent analysis (PCA). Furthermore, higher-order statistics (HOS) are exploited in order
to make the proposed methods robust and secure against incomplete cross-correlation
and the near-far problem in conventional detectors [23]. Extensive Monte Carlo sim-
ulations have been carried out to verify and evaluate the effectiveness of the proposed
methods in estimating the users symbols. In summary, we provide metric comparisons
in the bit error rate (BER) as a function of (i) the number of users, (ii) the number of
symbols per user, and (iii) the signal-to-noise ratio (SNR). The comparisons include the
proposed methods with existing and conventional ones in terms of BER performance
and computational complexity.

Wenow set the notation used throughout the paper. Lowercase letters denote scalars,
bold lowercase letters denote vectors, and bold uppercase letters denote matrices.
Moreover, the following symbols are used:

• (·)T refers to the transpose operator;
• (·)H refers to the Hermitian transpose operator;
• trace (·) refers to the trace operator;
• j = √−1 refers to the imaginary symbol;
• diag (·) refers to the standard diagonal of a matrix;
• Diag (·) refers to the diagonal of a block matrix, where elements may be block
matrices themselves;

• sgn (·) refers to the sign operator;
• E[·] refers to the statistical expectation operator.

The remainder of the paper is organized as follows. In Sect. 2, brief descriptions and
derivations of synchronous CDMA signal models in multipath fading are presented.
The conventional Rake receiver model is described in Sect. 3. Section 4 is dedicated to
the derivation of adaptive update laws and to the proposed new detection schemes. The
comparative simulations with summary results and conclusions are given in Sects. 5
and 6, respectively.

2 CDMA Signal Model

We now briefly present two signal models for a CDMA-based system using one
layer of channel spreading codes. Specifically, we describe the DS–CDMA signal and
WCDMA signal models in a typical synchronous CDMA system usually employed,
e.g., for cellphones, indoor ATM, and certain ad hoc wireless networks [9,30].
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Fig. 1 Signal generation model for a typical QPSK DS–CDMA system

2.1 A DS–CDMA Receiver Signal Model

In a DS–CDMA system, several users share the medium simultaneously by using
unique individualized code signatures.We refer to Fig. 1 for a typical system schematic
block diagram. In this paper, we assume the data transmission to be quaternary phase-
shift keying (QPSK). At the mobile unit receiver, assume a total of K active users in
an L multipath environment and M transmitted symbols during the observation frame
time. The simplest downlink received signal model r(t) at the time sample t over a
single symbol interval is given by [29]

r (t) =
M∑

m=1

K∑

k=1

L−1∑

l=0

αlmbk,msk (t − mTb − dlTc) + n (t) (1)

where

– l, k, and m are path, user, and symbol indices, respectively.
– αlm is the path gain—in the downlink model the path gain is assumed to be the
same among users because all users’ signals are transmitted together. Thus, the
path gain αlm and propagation delay factor dl do not depend on the user k.

– bk,m is the kth user m symbol.
– sk (·) is the kth user spreading code (chip sequence).
– dl is the propagation delay factor.
– t, Tb, Tc are time, symbol duration, and chip duration, respectively.
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– n (t) is the channel additive white Gaussian noise (AWGN) with zero mean and
covariance equals q.

The system is assumed to be time-invariant, over a small duration, which means
that the channel parameters are much slower than the frequency of transmitted symbol
data. Let us assume thatG is the number of chips per symbol, K is the number of users,
and L is the number of paths. Thus, the scalar form of Eq. (1) can be transformed to
a vector form [27,29] as:

r = HSb + n (2)

where r is a received (G1)-dimensional vector signal; H is a (G1) x G matrix with
G1 ≥ G + L − 1, which represents the multipath propagation coefficients; S is a
G x K block diagonal matrix; b is a K -dimensional vector, which represents the users
data symbols; and n is the (G1)-dimensional channel noise vector with covariance
matrix, say,Q. This standardized model of received signals has been used in deriving
the conventional detectors, e.g.,match filter, Rake filter, blindLMMSE, and other blind
detectors [29]. We shall use it in our development as well. In addition, an alternative
two-tap symbol signal model is given in [36]:

rn = H0bn + H1bn−1 + nn = H̄b̄n + nn (3)

where

• rn is the total received user’s signal vector;
• H0 = [h1, . . . ,hk] is the signature matrix of the current symbol vectors of all
users including MAI, specifically,

hk =

⎡

⎢⎢⎢⎢⎢⎢⎣

0
hk (0)

.

.

.

hk (G − Dl − 1)

⎤

⎥⎥⎥⎥⎥⎥⎦
(4)

• H1 = [
h̄1, . . . , h̄k

]
is the signature matrix of the previous symbol vectors of all

users including ISI, where

hk =

⎡

⎢⎢⎢⎢⎢⎢⎣

hk (G − Dl)

.

.

.

hk (G + L − 1)
0

⎤

⎥⎥⎥⎥⎥⎥⎦
(5)

Dl ∈ {0, 1, . . . ,G − 1} is the delay in chip periods.
• H̄ = [ H0 H1] is the signature matrix of all users;
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• bn = [b1 (n) , . . . , bK (n)]T are the current symbols of all users;
• bn−1 = [b1 (n − 1) , . . . , bK (n − 1)]T are the previous symbols of all users;

• b̄n = [
bTn , bTn−1

]T
are the augmented two-tap symbols of all users;

• nn = [n (nG) , . . . ,n (nG + G − 1)]T is the independent white composite
Gaussian noise vector. We defer further details to [27,29].

In the asynchronous uplink CDMA systems, one can assume that the columns ofH0
and H1 are mutually independent. Therefore, H̄ is a full-rank matrix, whereas for the
synchronous downlink CDMA communication, H̄ is full rank with some restrictions.
The main focus in this paper is on the synchronous downlink CDMA communica-
tion system, although our proposed algorithms work well in the uplink asynchronous
CDMA systems [18,36].

2.2 WCDMA Receiver Signal Model

One difference between a WCDMA system and a DS–CDMA system is the presence
of scrambling codes. The main cause of the MAI inWCDMA systems is the intra-cell
multiple user signals sharing the same multipath channels. Figure 2 depicts a block
diagram that shows the additional code scrambling before transmission through the
air interface. In Fig. 2, DPDCH stands for dedicated physical data channel which is
a term adopted in universal mobile telecommunications systems (UMTS) and a S/P
block stands for serial to parallel converter. Consequently, the basic received signal
model r(t) is given by [27]:

r (t) =
M∑

m=1

K∑

k=1

L∑

l=0

αlmbk,mck (t − dlTc) sk (t − mTb − dlTc) + n (t) (6)

where in addition to the previous parameters, one adds ck (t) ∈ {±1 ± j}, the complex
cell-specific scrambling sequences. The remaining variables are defined in Eq. (1).
The received signal at the mobile unit is passed through a chip-matched filter and
sampled at the chip rate. The received discrete vector r in this case can be expressed
as [3,27,28,36].

r = HCSb + n (7)

where C is the G × G complex diagonal scrambling matrix with CCH = IG×G and
the remaining variables are defined similarly as in (2). The form of C is given by:

C = diag(c1 c2, . . . , cG ) (8)

where ci ∈ {±1 ± j} ∀ 1 ≤ i ≤ G
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Fig. 2 Signal generation based on the proposed 3GPP UMTS FDD standard

3 Conventional Blind Linear Multiuser Detectors

We briefly describe the baseline conventional linear multiuser detectors such as the
match filter (MF), the Rake receiver, and the LMMSE detector in multipath environ-
ments. For further details, see [25,30].

3.1 Single User Detector (SUD)

The SUD is a standard MF detector which exploits the user’s code signature to pro-
vide an estimate of the user’s symbol sequence from the received data. This detector
completely ignores the presence of MAI due to other users. One can express the MF
detector for the ith user in the DS–CDMA system as follows:

bDi,MF = SHi r (9)

where Si = Diag (s̄i, s̄i, . . . , s̄i), s̄i = [0 0, . . . , si . . . 0]. si is the ith user’s signature
code, r is the received discrete signal vector, and bDi,MF is the estimated DS–CDMA
ith symbol vector.
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3.2 Rake Detector

Perhaps, the most popular linear user detection is the Rake detector, which consists
of multiple parallel chip-delayed SUD fingers. In this paper, we implement the Rake
detectorwith the estimated knownchannel gain coefficients, but not the channel delays.
One can express the Rake detector for the DS–CDMA system mathematically as
follows:

bDi,Rake = SHi H
Hr (10)

whereH represents the estimated channel matrix, and bDi,Rake is the estimated ith user’s
symbol vector.

3.3 LMMSE Detector

Conventional linear detectors based on the least square (LS), zero-force (ZF), and
BLUE algorithms [25] perform poorly especially in the presence of colored noise.
The LMMSE detector, however, is considered to be one of the best linear detectors
for DS–CDMA systems. Mathematically, one can express the LMMSE as follows:

bDi,LMMSE = SHi H
H
(
σ 2HHH + Q

)−1
r (11)

where
(
σ 2HHH + Q

) = R = E
[
rrH

]
is the autocorrelation of the received data at

the mobile unit and σ 2 is the average power of the received signal. There are several
drawbacks in the implementation of the LMMSE receiver. The main drawback is that
the computation of the autocorrelation R is very expensive. If possible, one may use
eigenstructure decomposition instead of inverting the autocorrelationmatrixR directly
to obtain

bWi,LMMSE = SHi H
H

(
VsD−1

s VH
s

)
r (12)

where Vs is the estimated eigenvector matrix of the autocorrelation matrix R and Ds
is the corresponding diagonal eigenvalue matrix. Additionally, one can use adaptive
algorithms to estimate the LMMSE user’s symbols as in [21].

4 The Proposed Adaptive Blind Detection Schemes

In this section, we introduce new blind detection strategies for the filtering structures.
We propose three blind multiuser detectors based on (i) a feed-forward structure, (ii)
a feedback structure I, and (iii) a feedback structure II, as in [27]. These filtering
structures are depicted in Figs. 3, 4, and 5, respectively.

To that end, one recalls the discrete received signal model (3), namely

rn = H0bn + H1bn−1 + nn
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The aim here is to detect the symbol vector bn from the received data vector rn, over
the discrete index n, under the following assumptions:

• AS1 the G1 × K matrices H0 and H1 are of full column rank.
• AS2 the symbol signal vector series,bn, have statistically independent components
and are identically distributed (i.i.d).

• AS3 the additive noise vectornn is white, Gaussian, and independent of the symbol
source signals.

• AS4 the power of the transmitted symbol signals are normalized to be unity.
• AS5 themaximum lag in the entiremultipath channels is smaller than the spreading
gain G of the CDMA codes.

• AS6 the CDMA system is not over-saturated, which means the number of users
(K ) is less than the number of the spreading gain (G).

• AS7 the channel is assumed to be a slowly fading wide sense stationary.

For methodical convenience, each detector algorithm involves two steps: first, a
preprocessing stage, and second, the (matrix) rotation stage based on the filtering
structures. In the next subsection, we will present the common preprocessing stage
(i.e., whitening processes), and then, we will derive each of the three algorithms based
on each filtering structure in individual subsections.

4.1 Step 1: Preprocessing (i.e., Data Whitening)

The outcomeof this step is that the symbol signals are detected up to a unitary rotational
matrix. This step uses second-order statistics (SOS) in order to normalize the variance
(or power) of the received discrete signal vector. It may also be used to eliminate
redundancy in the data based on PCA. Under assumptions AS1–AS4, the G1 × G1
covariance matrix, say (Cov), of the noiseless received discrete signal vector can be
expressed as

Cov = E
[
rnrHn

]
− qIG1 (13)

We will now consider the two-tap signal model. Then we may generalize it using
induction techniques. Under assumptions AS1–AS7, substituting rn from Eq. (3) into
(13) results in the following covariance matrix:

Cov = H0E
[
bnbHn

]
H0

H + H1E
[
bn−1bHn−1

]
H1

H

Cov = H0H0
H + H1H1

H = [H0 H1 ] [H0 H1]H (14)

Observe that under AS2, E
[
bnbHn

] = IK and E
[
bn−1bHn−1

] = IK. Without loss of
generality, we shall briefly proceed with the basic algebraic procedure by adopting
the eigenstructure decomposition for the symmetric square matrix Cov and use it to
obtain a singular value decomposition for the combined matrix [H0 H1] Thus, let

Cov = VDVH (15)
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where V is a G1xG1 matrix of orthogonal eigenvectors satisfying

VVH = VHV = IG1 (16)

and D is the corresponding G1xG1 diagonal eigenmatrix containing its eigenvalue
entries along the diagonal. Thus, from (14), the G1xK H0 and H1 matrices can be
represented, respectively, as

H0 = V0�0U0
H

H1 = V1�1U1
H (17)

where V0 and V1 are composed of orderly non-overlapping columns of the G1xG1
unitarymatrixV.U0 andU1 are constant but unknownKxK right singular value unitary
matrices with U0U0

H = U1U1
H = IK, and �0 and �1 are the appropriate G1xK

singular value matrices. We note that the whitening or algebraic PCA procedure can
(i) estimate the noise power in Eq. (13) and (ii) reduce the whitened signal dimension
to the signal subspace, in this case K . Now, we process the received data to obtain the
(whitened) data; specifically, we define:

rwn = �+VHrn (18)

where the KxG1matrix�+ denotes the pseudo-inverse of the singular value matrices.
One simplifies (18) to eventually obtain:

rwn = U0
Hbn + U1

Hbn−1 +
(
�+VH

)
nn (19)

Thus, the whitening step renders the whitened data expressed in (18) or (19) as
having a reduced dimension to the symbol space and a covariance matrix equal to the
identity. That is E

[
rwn r

wH
n

] = IK.
Note that, after the preprocessing step, the detection of the symbol signal b̂n reduces

to determining or compensating for the unknown K ×K (rotation) unitarymatricesU0
and U1. Next, we proceed with the development and derivations of the three proposed
adaptive filtering structures, based on (i) feed-forward structure (FF), (ii) feedback
structure I (FB-I), and (iii) feedback structure II (FB-II) [26,27].

Remark For the purposes of the adaptive filtering to be discussed next, we shall relabel
these unknown (but fixed) unitary matrices as the starred values for the environment.
Specifically, in Eq. (19), we set

U0 = U∗
0

U1 = U∗
1

The developed adaptive filtering will have parameter matrices that, when adaptation
is successful, will converge to (approximately) these fixed starred environment para-
meters.
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Fig. 3 Feed-forward (FF)
demixing structure
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4.2 Step 2a: Determining the Rotation Unitary Matrix U for the Feedforward
Structure

The output from the FF structure, as depicted in Fig. 3, is expressed as

yn = U0rwn +
K∑

k=1

Ukrwn−k (20)

For simplicity of presentation, we begin with a two-tap model; thus, the two-tap FF
structure becomes

yn = U0rwn + U1rwn−1 (21)

The goal for a successful adaptive algorithm is to bring about the convergence of
the parameter matrices to the (starred) environment parameters. Specially, the adaptive
algorithm succeeds when its parameter matrices converge toU∗

0 , andU
∗
1 , respectively.

We now proceed with the development. One can rewrite this convolutive filter (21)
as the following (static) map

[
yn
rwn−1

]
=

[
U0 U1
0 I

] [
rwn
rwn−1

]
(22)

Then, one defines, respectively, the new augmented output, the static map, and the
augmented input as

Ỹ =
[

yn
rwn−1

]

Ũ =
[
U0 0
U1 I

]

R̃ =
[

rwn
rwn−1

]
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Thus, the expression in (22) becomes the static map

Ỹ = ŨHR̃ (23)

Based on the natural gradient approach [4,13], the update law for the columns of
the augmented demixing matrix Ũ can be expressed as

u+ = u − μE
[
R̃

(
g

(
uHR̃

))]
(24)

where u, respectively, u+, is the current, respectively, value of one column vector of
Ũ, μ is the step size and g is the chosen score function. Noting the structure of the
demixing matrix in (23), one decomposes the column vector as

u =
[
u0
u1

]
(25)

Hence, the update law is correspondingly decomposed as (note thatwehave suppressed
the E[·] operator):

[
u0+
u1+

]
=

[
u0
u1

]
− μ

[
rnw
rwn−1

]
g (yn) (26)

where u0, u1 are the column vectors ofU0 andU1 in (22), respectively. Therefore, the
update laws for the individual (sub-)columns are

u0+ = u0 − μrwn g (yn) (27)

u1+ = u1 − μrwn−1g (yn) (28)

Now, by induction, the update law for the kth lag element uk is

uk+ = uk − μrwn−kg (yn) (29)

4.3 Step 2b: Determining the Rotation Unitary Matrix U Based on Feedback
Structure I (FB-I)

The output of FB-I, as depicted in Fig. 4, results in the filtering expression

yn = U−1
0

(
rwn −

K∑

k=1

Ukyn−k

)
(30)

Consider now just two taps of FB-I, i.e.,

yn = U0
−1 (

rwn − U1yn−1
)

(31)
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Fig. 4 Feedback demixing
structure I (FB-I)
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One can rewrite this convolutive filter into the following augmented static form

[
rwn
yn−1

]
=

[
U0 U1
0 I

] [
yn
yn−1

]
(32)

Or

[
yn
yn−1

]
=

[
U0 U1
0 I

]−1 [
rwn
yn−1

]

[
yn
yn−1

]
=

[
U−1
0
0

−U−1
0 U1
I

] [
rwn
yn−1

]
(33)

Thus, in this case, one defines the augmented output, demixing matrix, and input as
follows:

Ỹ =
[

yn
yn−1

]

Ũ =
[
U0 0
U1 I

]

R̃ =
[

rwn
yn−1

]

One then re-expresses (32) into the compact equation

R̃ = ŨHỸ (34)

Again, using the natural gradient approach, the update law for a columnof the demixing
matrix Ũ is

u+ = u − μE
[
Ỹ

(
g

(
uHỸ

))]
(35)

As before, u, respectively, u+, is the current, respectively, value of one column vectors
of Ũ, μ is the step size and g is the chosen score function.
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One can exploit the block matrix structure of the demixing matrix and simplify the
update law. To that end, consider the block matrix

u0 =
[
u00

u10

]
(36)

Thus, the update laws can be calculated to produce

[
u0+
u1+

]
=

[
u0
u1

]
− μ

[
yn
yn−1

]
g (u0yn + u1yn−1) (37)

Similarly, the next block matrices can be defined as

u1 =
[
0
i1

]
(38)

This leads to the specialized form

[
0+
i+

]
=

[
0
i

]
− μ

[
yn
yn−1

]
g (yn−1) (39)

Thus, the update laws for the individual columns are

u0+ = u0 − μyng
(
rwn

)
(40)

and

u1+ = u1 − μyn−1g
(
rwn

)
(41)

Analogously, by induction, the update law for the kth lag element, say uk is

uk+ = uk − μyn−kg
(
rwn

)
(42)

4.4 Step 2c: Determining the Rotation Unitary Matrix U Based on Feedback
Structure II

The output of FB-II, as depicted in Fig. 5, is expressed as:

yn = U0rwn +
K∑

k=1

Ukyn−k (43)

Again, consider two taps of FB-II, i.e.,

yn = U0rwn − U1yn−1 (44)
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U1

Uk

z-1I

z-1I

+
+

0Uw
nr ny

Fig. 5 Feedback demixing structure II (FB-II)

Hence, one rewrites this convolutive filter in the following augmented static form

[
yn
yn−1

]
=

[
U0 − U1
0 I

] [
rwn
yn−1

]
(45)

Similarly, define the augmented entities as

Ỹ =
[

yn
yn−1

]

Ũ =
[

U0 0
−U1 I

]

R̃ =
[

rwn
yn−1

]

Thus, one rewrites (45) into the compact mapping

Ỹ = ŨHR̃ (46)

Using the natural gradient approach, the update laws for a weight column of the
demixing matrix Ũ are expressed as

u+ = u − μE
[
R̃

(
g

(
uHR̃

))]
(47)

where as before, u, respectively, u+, is the current, respectively, value of one col-
umn vectors of Ũ, μ is the step size and g(·) is the chosen score function. One can
appropriately decompose a column vector in order to simplify the update expressions
as:

u =
[
u0
u1

]
(48)
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Then the update law becomes decomposed as follows:

[
u0+
u1+

]
=

[
u0
u1

]
− μ

[
rwn
yn−1

]
g (yn) (49)

Thus, the update laws for the individual subcolumns are

u0+ = u0 − μrwn g (yn) (50)

and

u1+ = u1 − μyn−1g (yn) (51)

Finally, by induction, the update law for the kth lag element uk is

uk+ = uk − μyn−kg (yn) (52)

4.5 The Proposed Adaptive Rake-Based Detectors

While the previous filtering structures constitute new adaptive filters, one can augment
the existing conventional Rake detectors to improve its performance adaptively. We
now develop three adaptive modifications of the conventional Rake detector based
on, respectively, independent component analysis (ICA) [24], RobustICA [34], and
principle component analysis (PCA) [16]. Recalling the Rake detector’s structure as
given in (10), one can mathematically express the adaptive modified Rake detector for
DS–CDMA systems as follows:

bDi,Rake = SHi WHHr (53)

where as before, H is the crudely estimated (inverse) channel matrix, Si is a vector
associated with the ith user’s signature code, and bDi,Rake is the estimated ith user’s
symbol. A G × G matrix W is inserted which will adaptively augment and improve
the estimate of the channel inverse. In the following, we summarize the process in
Algorithms 1, 2, and 3 to adaptively estimate the matrixW using the FastICA, Robust
ICA, and PCA algorithms, respectively.

5 Simulation Results

A series of extensive simulations are carried out in order to verify and evaluate the
performance of the proposed adaptive filters and algorithms in the multipath downlink
DS–CDMA system in the presence of AWGN. We summarize the case study results
as follows. We assume a constant spreading gain, which is G = 63 for gold codes
and G = 64 for orthogonal variable spreading factor (OVSF) codes. The received
CDMA signal experiences five multipath channels L = 5 with delays of 0, 1, 2, 3, 4
chips, respectively. Also, we set the complex attenuation coefficients to represent the
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Algorithm 1 Adaptive Rake-based FastICA method
1: procedure Initialization
2: r ← M × N matrix of realization
3: W = IG ← Initial demixing matrix
4: Itr ← number of iterations
5: γ ← Step Size
6: H ← the estimated channel matrix
7: g (y) = y3 ← the nonlinear fcn
8: Pre-Whitening:
9: r ← V ∗ r = �((−1)/2) ET r
10: For Loop:
11: i ← 1 . . . N
12: r ← WHHr (:, i)
13: W+ ← E[[g (Wr)]T ] − E[g′ (Wr)]W
14: Normalization:
15: W+ ← W/norm (W)

16: bDi,ICA (:, i) ← SHi WNHHr
17: goto For Loop.
18: close;
19: Output:
20: bDi,ICA ← the estimated Symbols

Algorithm 2 Adaptive Rake-based RICA method
1: procedure Initialization
2: r ← M × N matrix of realization
3: W = IG ← Initial demixing matrix
4: Itr ← number of iterations
5: μ ← Step Size
6: H ← the estimated channel matrix
7: g (y) ← the gradient of the Kurtosis
8: Pre-Whitening:
9: r ← V ∗ r = �((−1)/2) ET r
10: For Loop:
11: i ← 1 . . . N
12: r ← WHHr (:, i)
13: W+ ← W + μ

(
IG − g (r) ∗ g(r)H

)
W

14: Normalization:
15: W+ ← W/norm (W)

16: bDi,RICA (:, i) ← SHi WNHHr
17: goto For Loop.
18: close;
19: Output:
20: bDi,RICA ← the estimated Symbols

multipath channels, specifically, h0 = 0.3684+0.5364i , h1 = 0.1982+0.0187i , h2 =
0.0237 + 0.5683, h3 = 0.1112 + 0.0835i , and h4 = 0.2203 + 0.2756i , respectively.
We use the following model function for sub-Gaussian sources for which the source
signals have a negative kurtosis sign:

gSUB
(
b̂
)

= b̂ −
(
tanh

(
Re

{
b̂
})

+ jtanh
(
Im

{
b̂
}))

(54)
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Algorithm 3 Adaptive Rake-based PCA method
1: procedure Initialization
2: r ← M × N matrix of realization
3: W = IG ← Initial demixing matrix
4: Itr ← number of iterations
5: γ ← Step Size
6: H ← the estimated channel matrix
7: Pre-Whitening:
8: r ← V ∗ r = �((−1)/2) ET r
9: For Loop:
10: i ← 1 . . . N
11: r ← WHHr (:, i)
12: W+ ← W + γ

(
IG − r ∗ rH

)
W

13: Normalization:
14: W+ ← W/norm (W)

15: bDi,PCA (:, i) ← SHi WNHHr
16: goto For Loop.
17: close;
18: Output:
19: bDi,PCA ← the estimated Symbols

Monte Carlo simulations have been run to verify the validity of the algorithms. We
also use the signal-to-noise ratio (SNR) as a figure of merit which represents the ratio
of the energy per symbol and the power spectral density (PSD) of the noise. Moreover,
all the user symbols are assumed to be transmitted with the same power. Figure 6a, b
shows the simulation results of BER versus SNR for the proposed detectors in contrast
to the existing and conventional ones for the number of users K = 30 and K = 50,
respectively. The other parameters were set as (i) number of symbols M = 1000
and (ii) number of paths L = 5, with the values of SNR in the range of −10 to
30dB. The simulations have been carried out using the MATLAB software on an
Intel Core i5 CPU 2.4 GHz processor and 4G MB RAM. We finally remark that we
repeat the experiments for 1000 realizations of the M symbols to produce the BER
rate. Moreover, we assume the data transmission to be quaternary phase-shift keying
(QPSK).

Figure 6 shows that the proposed algorithms improve the performance of theCDMA
system. One observes that the blind multiuser detection based on FB-II has resulted
in the lowest BER, and thus, it outperforms all other detectors, including the BMUD
algorithm presented in [27]. One also observes that the proposed algorithms work
even in cases which cause difficulties for the LMMSE receiver, as in the high SNR
ratio, and when the sample set is fairly small. Moreover, the performance of the blind
multiuser detection degrades as the number of users increases as comparatively shown
inFig. 6b. In our comparison among the aforementioned algorithms,we employ several
metrics including computational load time and performance accuracy.With the advent
of more powerful computing platforms including graphics processing units (GPUs),
however, performance accuracy holds more merit. CPU time is primarily used as an
indicator of the comparative computational load and convergence speed. As depicted
in Table 1, the convergence speeds of the proposed blind adaptive approaches are
comparable to the BMUD algorithm presented in [27] even though they improve the
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Fig. 6 Average BER as a function of SNR for DS–CDMA downlink. Using gold codes G = 63. a Using
30 users, b using 50 users



3340 Circuits Syst Signal Process (2017) 36:3320–3348

Table 1 CPU time comparison
among different detectors—in
seconds

ICA PCA RICA BMUD FF FB-I FB-II

12.4 8.4 7.2 48.2 50.8 50.4 50.3

BER performance. Table 1 shows the proposed fused semi-blind methods, especially
the RICA semi-blind algorithm, naturally exhibit faster convergence speed than the
BMUD and the proposed detectors.

Furthermore, we have also evaluated the effect of the OVSF codes. As depicted in
Fig. 7, it is generally the case that using the OVSF codes enhances the performance
of the proposed methods.

In the WCDMA System case, we assume that the channel coefficients are h0 =
0.3684 + 0.5364i , h1 = 0.1982 + 0.0187i , h2 = 0.0237 + 0.5683, h3 = 0.1112 +
0.0835i , and h4 = 0.2203 + 0.2756i , respectively. Also, all user-specific codes use
two types of spreading codes, namely gold codes with spreading gain G = 63 and
OVSF (or Walsh–Hadamard) codes with spreading gain G = 64.

In Figs. 8 and 9, we document and demonstrate the performance of the various
methods in terms of BER for the WCDMA downlink scenario. We observe that the
LMMSE is slightly better than some presented detectors under good (i.e., high) SNR
conditions. However, the proposed algorithm based on FB-II outperforms all detectors
over all SNR depicted ranges and has again produced the lowest BER when compared
to all other methods.

It is alsoworthwhile to compare the presented algorithmswith a relatively large data
sample set. Thus, Fig. 10 and Fig. 11 present the performance of the various detectors
with fairly long sample set, namely M = 30,000 in each of the DS–CDMA and
WCDMA systems. It is noted that the benchmark LMMSE detector performs much
better for high SNR. It is plausible to assume that the LMMSE detector becomes better
than other detectors under good SNR conditions. However, the proposed algorithm
based on FB-II has exceeded the LMMSE detector at all SNRs less than 22dB.

We clarify the BER computation in the following. We consider M = 30,000 and
repeat the experiment for 1000 realizations. Thus, we have 30,000 × 1000 symbols.
This results in 30 × 106 symbols, which can measure an error in the order of ∼10−6.
The BER is calculated by comparing the transmitted sequence of bits to the received
bits and counting the number of errors. The ratio of how many bits received in error
over the total number of bits received is the BER. Moreover, we assume the data
transmission to be quaternary phase-shift keying (QPSK).

Finally, we evaluate the effect of the number of users and the size of the sample
set on the performance of the proposed FB-II method in Figs. 12 and 13, respectively.
In Fig. 12, the simulation results show the BER versus SNR with various K users at
500 symbols for each user for blind multiuser detection based on the FB-II detector.
As expected, Fig. 12 shows that the FB-II detector decreases in performance as K ,
the number of users, is increased. Moreover, Fig. 13 shows the simulation results of
BER versus SNRwith 30 users (K = 30) for various data samples (M). The proposed
FB-II algorithm appears robust and performs resonably well, and it is obvious that its
performance improves more consistently as M increases by mitigating the MIA.
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Fig. 7 Average BER as a function of SNR for DS–CDMA downlink. Using OVSF codes G = 64. aUsing
30 users, b using 50 users
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Fig. 8 Average BER as a function of SNR for WCDMA downlink. Using gold codes G = 63. a Using 30
users, b using 50 users



Circuits Syst Signal Process (2017) 36:3320–3348 3343

Fig. 9 Average BER as a function of SNR for WCDMA downlink. Using OVSF codes G = 64. a Using
30 users, b using 50 users
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Fig. 10 Average BER as a function of SNR for DS–CDMA downlink. For 30 users. a Using gold codes
G = 63, b using OVSF codes G = 64
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Fig. 11 Average BER as a function of SNR for WCDMA downlink. For 30 users. a Using gold codes
G = 63, b using OVSF codes G = 64
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Fig. 12 Average BER as a function of SNR for various number of users K

Fig. 13 Average BER as a function of SNR for various sample sets M

Overall, the proposed variant detectors and algorithms perform well in solving the
symbol estimation problem in the DS/WCDMA downlink system, especially when
the size of the sample set is reasonably small.
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6 Conclusion

We have presented formulations, derivations, and subsequent extensive simulations of
various filtering algorithms with various structures for multiuser detection in CDMA-
based systems. Specifically, we have developed three blind multiuser detectors of
different filtering structures, namely FF, FB-I, and FB-II detectors. In addition, we
have introduced three adaptive semi-blind algorithms fused into the conventional
Rake detector based on ICA, RICA, and PCA. The results appear to show that the
proposed structures perform well in the symbol estimation problem in DS/CDMA
systems; more specifically, they outperform all other detectors in the comparative
study, including the LMMSE detector. Our results also show that MAI can be miti-
gated by the proposed detectorsalgorithms, particularly the proposed FB-II detector.
Although the FB-II detector further improves as the size of the sample set increases,
the results show that it performs well even when the sample sets are relatively small.
Finally, the proposed algorithms, unlike the adaptive LMMSE detector, do not require
the spreading codes of the interfering users. While these detectors are intended for the
mobile unit, they can be used at the base station as well.
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