
Circuits Syst Signal Process (2017) 36:2893–2916
DOI 10.1007/s00034-016-0447-8

Fractional Fourier, Hartley, Cosine and Sine
Number-Theoretic Transforms Based on Matrix
Functions

Paulo Hugo E. S. Lima1 · Juliano B. Lima1 ·
Ricardo M. Campello de Souza1

Received: 21 October 2015 / Revised: 20 October 2016 / Accepted: 22 October 2016 /
Published online: 1 November 2016
© Springer Science+Business Media New York 2016

Abstract In this paper, we introduce fractional number-theoretic transforms (FrNTT)
based on matrix functions. In contrast to previously proposed FrNTT, our approach
does not require the construction of any number-theoretic transform (NTT) eigen-
vectors set. This allows us to obtain an FrNTT matrix by means of a closed-form
expression corresponding to a linear combination of integer powers of the respective
NTT matrix. Fractional Fourier, Hartley, cosine and sine number-theoretic transforms
are developed. We show that fast algorithms applicable to ordinary NTT can also be
used to compute the proposed FrNTT. Furthermore, we investigate the relationship
between fractional Fourier and Hartley number-theoretic transforms, and demonstrate
the applicability of the proposed FrNTT to a recently introduced image encryption
scheme.

Keywords Number-theoretic transforms · Fractional transforms · Matrix functions ·
Image encryption

1 Introduction

The inaugural investigations related to fractional transforms date back to thefirst half of
the twentieth century [11,39]. In such studies, the computation of a Fourier transform
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is viewed as the application of a linear operator, the Fourier operator, to a function (or
signal) whose spectrum one desires to obtain; the fractional Fourier transform (FrFT)
corresponds to a generalization, where noninteger powers of the Fourier operator can
be considered. This enables a diversity of possibilities, which remained hidden until
the 1980s, when the FrFT was rediscovered. In quantum mechanics, optics and signal
processing, the FrFT has reappeared as a useful mathematical tool, with applications
based on new theoretic results and interesting interpretations [2,27–29].

In the time–frequency plane, the computation of the FrFT of a signal in the time
domain (horizontal axis to the right) can be viewed as a counterclockwise rotation by
an angle α = aπ/2, a ∈ R. If a is noninteger, the signal is taken to an intermediate
domain, which represents, in the physical point of view, something like a hybrid
domain between time and frequency [2]. In optics, the FrFT is related to systems
whose output corresponds to the Fourier transform of the input signal [27,29]. These
systems produce sequences of images of an object. In certain distances, the object
itself as well as its Fourier transform is observed; in arbitrary distances, the FrFT of
the object is obtained.

The fractional Fourier transform inspired the definition of fractional Hartley, cosine
and sine transforms, among others [3,30]. Furthermore, discrete fractional transforms
have also been introduced [8,31,34]. In particular, there are several approaches for
constructing a discrete fractional Fourier transform (DFrFT) [8,32,37]. Besides allow-
ing the employment of fast algorithms in its computation, a DFrFT should numerically
approximate the corresponding continuous-time transform and preserve some of its
properties.

More recently, fractional number-theoretic transforms (NTT) were proposed.
In [33], for example, closed-form orthogonal NTT eigenvector sets are constructed
from complete generalized Legendre sequences. Such sets are then used to spectrally
expand the NTT matrix and to compute its fractional powers. The method introduced
in [21] is also based on the spectral expansion of the NTT matrix. However, in this
case, orthogonal NTT eigenvectors are obtained from an extension to the finite field
scenario of a matrix which commutes with the NTT matrix; the eigenvectors derived
through this approach can be viewed as finite field Hermite–Gaussian vectors.

In this paper, we generalize the ideas introduced in [25] and describe several types
of new fractional number-theoretic transforms based on matrix functions [14]. This
approach involves concepts which are also valid for matrices whose elements lie
in a finite field, such as the Lagrange interpolation polynomial for a given function
and the minimal polynomial of a matrix. Given a transform matrix M, our goal is
computing f (M) = Ma , where the fractional parameter a = a1/a2 is a ratio of
two integers. Compared with previous works concerning fractional NTT [21,33], our
proposal has two main advantages. First, it does not require the construction of NTT
eigenvector sets, which usually constitutes a laborious task from the point of view
of computational complexity. Furthermore, since the fractional transform matrices
resulting from the proposed procedure correspond to a linear combination of integer
powers of the respective ordinary transform matrices, standard fast algorithms can be
straightly employed.
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Although the best-known NTT can be viewed as a finite field analogous of the
discrete Fourier transform (DFT),1 other types of NTT have been introduced in recent
years. Cosine and Hartley NTT, for example, have interesting properties and can be
used in applications related to information hiding, image encryption, communications,
etc. [10,12,18,24] In the present work, we also consider such transforms and show
how the matrix functions approach can be applied to fractionalize them. In order to
avoid ambiguities and contribute to the readability of our text, we adopt the following
nomenclature:

FNT Fourier number-theoretic transform

HNT Hartley number-theoretic transform

CNT Cosine number-theoretic transform

SNT Sine number-theoretic transform

FrFNT Fractional Fourier number-theoretic transform

FrHNT Fractional Hartley number-theoretic transform

FrCNT Fractional cosine number-theoretic transform

FrSNT Fractional sine number-theoretic transform

GF(p) Finite field withp elements

This paper is organized as follows. In Sect. 2, we review the main concepts related
to trigonometry over finite fields and number-theoretic transforms. In Sect. 3, we
develop the NTT fractionalization approach based on matrix functions and use it to
define the FrFNT, the FrHNT, the FrCNT, and the FrSNT. The relationship between
the FrFNT and the FrHNT is presented in Sect. 4. In Sect. 5, we give some illustrative
examples regarding fractional NTT. The image encryption scheme proposed in [19] is
revisited in Sect. 6; we show that, using fractional NTT based on matrix functions, its
implementation becomes simpler, while its robustness against the main cryptographic
attacks remains unaltered. The paper closes with some concluding remarks on Sect. 7.

2 Preliminaries

2.1 Cosine and Sine over Finite Fields

In this section, we present a definition for cosine and sine functions over finite fields.
Such finite field trigonometric functions were originally introduced in [7], as a require-
ment for defining aHartley number-theoretic transform, and are computedwith respect
to elements in the set of Gaussian integers over finite fields, GI(p). This set is isomor-
phic to the extension field GF(p2) and provides an analogy with classical complex
numbers.

1 In an NTT, the kernel WN = e− j2π/N of an N -point DFT is basically replaced by an element ζ ∈ GF(p)

of multiplicative order ord(ζ ) = N , and all computations are carried out modulo p.
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Definition 1 The set of Gaussian integers over GF(p) is the set GI(p) := {c +
jd, c, d ∈ GF(p)}, where j2 is a quadratic nonresidue over GF(p).

The elements ζ = c + jd of the “complex” structure GI(p) have a “real” part
c = R{ζ } and an “imaginary” part c = I{ζ }. If p ≡ 3 (mod 4), one may use
j = √−1 ≡ √

p − 1 (mod p), for example. However, if p ≡ 1 (mod 4),−1 ≡
p − 1 (mod p) is a quadratic residue and another j has to be selected [6].

Definition 2 Let ζ ∈ GI(p) be an element with multiplicative order denoted by
ord(ζ ) = N . The finite field cosine and the finite field sine of the arc related to ζ x are
computed modulo p, respectively, by

cosζ (x) := ζ x + ζ−x

2
(1)

and

sinζ (x) := ζ x − ζ−x

2 j
, (2)

for x = 0, 1, . . . , N − 1.

2.2 Number-Theoretic Transforms

In what follows, we define Fourier, Hartley, cosine and sine number-theoretic trans-
forms [5,7,20]. Compared with usual NTT definitions, where vectors whose elements
lie in GF(p) are considered, we consider a more general case, where vectors whose
elements lie in GI(p) can be transformed.

Definition 3 Let ζ ∈ GI(p) be an element of multiplicative order ord(ζ ) = N . The
Fourier number-theoretic transform (FNT) of an N -length vector x = (x[i]) , x[i] ∈
GI(p), is an N -length vector XF = (X F [k]) , X F [k] ∈ GI(p), given by

X F [k] :=
√

N−1
N−1∑

i=0

x[i]ζ−ki . (3)

The inverse transform is given by

x[i] =
√

N−1
N−1∑

k=0

X F [k]ζ ki .

Definition 4 Let ζ ∈ GI(p) be an element of multiplicative order ord(ζ ) = N . The
Hartley number-theoretic transform (HNT) of an N -length vector x = (x[i]) , x[i] ∈
GI(p), is an N -length vector XH = (X H [k]) , X H [k] ∈ GI(p), given by

X H [k] :=
√

N−1
N−1∑

i=0

x[i]casζ (ki), (4)
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where casζ (·) := cosζ (·) + sinζ (·). The inverse transform is also obtained from the
expression above, i.e., the Hartley transform is an involution.

The family of trigonometric number-theoretic transforms includes eight types of
cosine transforms (CNT) and eight types of sine transforms (SNT) [20]. The construc-
tion of a trigonometric NTT is based on symmetric extensions of a sequence whose
elements are in a finite field and requires the weighting function

β[r ] =
{ √

2−1 (mod p), r = 0 or N ,

r = 1, 2, . . . , N − 1.

Definition 5 Let ζ ∈ GI(p) be an element of multiplicative order ord(ζ ) = 2N . The
cosine number-theoretic transforms of types 1 and 4 (respectively, denoted by CNT-1
and CNT-4) of (N + 1)- and N -length vectors x are, respectively, given by

XC1 [k] :=
√

2

N

N∑

i=0

β[i] β[k] x[i] cosζ (ki), (5)

k = 0, 1, . . . , N , and

XC4 [k] :=
√

2

N

N−1∑

i=0

x[i] cosζ
((

k + 1

2

) (
i + 1

2

))
, (6)

k = 0, 1, . . . , N − 1.

Definition 6 Let ζ ∈ GI(p) be an element of multiplicative order ord(ζ ) = 2N . The
sine number-theoretic transforms of types 1 and 4 (respectively, denoted by SNT-1
and SNT-4) of (N − 1)- and N -length vectors x are, respectively, given by

X S1 [k] :=
√

2

N

N−1∑

i=1

x[i] sinζ (ki), (7)

k = 1, 2, . . . , N − 1, and

X S4 [k] :=
√

2

N

N−1∑

i=0

x[i] sinζ

((
k + 1

2

)(
i + 1

2

))
, (8)

k = 0, 1, . . . , N − 1.

We remark that, although an element ζ ∈ GI(p) of multiplicative order ord(ζ ) =
2N is used to define each CNT and SNT, transforms of different lengths are obtained
(N , N + 1, and N − 1). This is due to differences among the symmetric extension
criteria employed in the construction of each transform type. A complete explanation
regarding this aspect can be found in [20,26]. CNT and SNT of types 1 and 4 are also
involutions.
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2.3 Eigenstructure of Number-Theoretic Transforms

The computation of each transform defined in Sect. 2.2 can be expressed by the
matrix equation X = Mx, where x is the vector to be transformed, X is the transform
vector, and M is a transform matrix. In particular, the FNT of a vector x can be
expressed by XF = Fx, where the element in the kth row and the i th column of F
is [F]k,i = √

N−1ζ−ki . The inverse of F is F−1 = PF, where P is an N × N Schur
matrix [4] given by

P =
[
1 0
0 J

]
, (9)

and J is an (N − 1) × (N − 1) matrix with ones in the antidiagonal.
The matrix F has period equal to 4, i.e., l = 4 is the least positive integer such

that Fl = I, where I is the identity matrix. On the other hand, the matrices related to
the HNT, the CNT-1, the CNT-4, the SNT-1, and the SNT-4, respectively, denoted by
H,C1,C4,S1, and S4, are unitary and also symmetric. This means that such matrices
have period equal to 2 [7,24]. These facts can be used to determine the eigenvalues of
each transform matrix as well as their multiplicities. Such results are summarized in
the following proposition [4,24,31].

Proposition 1 The eigenvalues of an NTT matrix are distributed as follows:

– The matrixFhas, at most, four distinct eigenvalues, namely
{
1,−1,

√−1, −√−1
}
,

whose multiplicities are shown in Table 1;
– The matrix H has, at most, two distinct eigenvalues, namely {1,−1}, whose mul-

tiplicities are shown in Table 1;
– The matrices C1,C4,S1, and S4 have, at most, two distinct eigenvalues, namely

{1,−1}, whose multiplicities are shown in Table 2.

Table 1 Multiplicities of the
eigenvalues of N × N matrices
of the FNT and the HNT

N Fourier Hartley

1 −1
√−1 −√−1 1 −1

4n n + 1 n n − 1 n 2n + 1 2n − 1

4n + 1 n + 1 n n n 2n + 1 2n

4n + 2 n + 1 n + 1 n n 2n + 1 2n + 1

4n + 3 n + 1 n + 1 n n + 1 2n + 2 2n + 1

Table 2 Multiplicities of the
eigenvalues of N ′ × N ′ matrices
(N ′ can be equal to N , N − 1 or
N + 1) of the CNT and the SNT
of types 1 and 4

N ′ 1 −1

Odd N ′+1
2

N ′−1
2

Even N ′
2

N ′
2
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3 Finite Field Fractional Transforms Based on Matrix Functions

The approach presented in this section is based onmatrix functions [14], whose theory
can be described using concepts which are valid also in the finite field scenario. Such
concepts include, for example, the Lagrange interpolating polynomial for a given
function and the minimal polynomial of a matrix [17]. Our goal is to compute the
function Aa , where A is an NTT matrix and a is a rational number called fractional
parameter. We start by considering the minimal polynomial of A, which is defined as
the unique monic polynomial ψ of lowest degree such that ψ(A) = 0. The minimal
polynomial divides any other polynomial r for which r(A) = 0. According to the
following theorem, r(A) is completely determined by the values of r on the spectrum
of A.

Theorem 1 Let r and s be polynomials and A be an N × N matrix over a finite field.
Then r(A) = s(A) if and only if r and s take the same values on the spectrum of A.

The proof of Theorem 1 is analogous to that presented for Theorem 1.3 on p.
5 of [14]. This result can be generalized to an arbitrary function f considering the
following definitions.

Definition 7 Let λ1, λ2, . . . , λv be the distinct eigenvalues of A, and let ni be the
dimension of the largest Jordan block in which λi appears. We say that f (t) is defined
on the spectrum of A if the kth derivatives

f (k)(λi ), k = 0, 1, . . . , ni − 1, i = 1, . . . , v, (10)

called the values of f (t) on the spectrum of A, exist.

Definition 8 Let f be a polynomial defined on the spectrum of an N × N matrix A
over a finite field, and let ψ be the minimal polynomial of A. Then f (A) = r(A),
where r is the polynomial of degree less than deg(ψ) that satisfies the interpolation
condition

r (k )(λi ) = f (k )(λi ), (11)

k = 0, 1, . . . , ni − 1, i = 1, 2, . . . , v. If ni = 1, i = 1, . . . , v, the polynomial r
corresponds to the Lagrange interpolating polynomial [17]

r(t) =
v∑

i=1

f (λi )li (t), (12)

where

li (t) =
v∏

j = 1, j �= i

t − λ j

λi − λ j
. (13)
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In order to use Definition 8 to compute the ath power of a transform matrix, we
set r(t) = ta , where a = a1/a2, a2 �= 0, is a ratio of two integers; the variable t is
replaced by the corresponding NTT matrix. In what follows, we give details related
to the development of this approach to each NTT defined in Sect. 2.

3.1 Fractional Fourier Number-Theoretic Transform

The fractional Fourier number-theoretic transform (FrFNT) of an N -length vector x
is computed as Xa,F = Fax. According to Proposition 1, the FNT matrix has four
distinct eigenvalues λ ∈ {1,−1,

√−1,−√−1} and, therefore, v = 4. Thus, the
functions li (t), i = 0, 1, 2, 3, defined in Eq. (13), are

l1(t) = t3 + t2 + t + 1

4
,

l2(t) = −t3 + t2 − t + 1

4
,

l3(t) =
√−1 t3 − t2 − √−1 t + 1

4

and

l4(t) = −√−1 t3 − t2 + √−1 t + 1

4
.

From Eq. (12), one has

r(t) = l1(t) + (−1) al2(t) + (
√−1) al3(t) + (−√−1)al4(t).

Grouping the coefficients of each power of t and setting αi (a) = αi (a1, a2) as the
coefficient of the i th power of t , one has

r(t) =
3∑

i=0

αi (a1, a2)t
i ,

where

α0(a1, a2) = 1 + (
√−1)a + (−1)a + (−√−1)a

4

= 1

4

[
(

2a2
√−1)a1

(
1 + (

2aa
√−1)a1

)
+ (

2a2
√−1)−a1

(
1 + (

2aa
√−1)a1

)]

= 1 + ( 2a2
√−1 )a1

2
cos 2a2

√−1 (a1), (14)

α1(a1, a2) = 1 − √−1( 2a2
√−1 )a1

2
sin 2a2

√−1 (a1), (15)
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α2(a1, a2) = −1 + ( 2a2
√−1 )a1

2
cos 2a2

√−1 (a1), (16)

α3(a1, a2) = −1 − √−1( 2a2
√−1 )a1

2
sin 2a2

√−1 (a1). (17)

Finally, the FrFNT matrix with fractional parameter a = a1/a2 is computed as

Fa = F
a1
a2 = r(F) =

3∑

i=0

αi (a1, a2)Fi . (18)

3.2 Fractional Hartley, Cosine and Sine Number-Theoretic Transforms

In order to define fractional Hartley (FrHNT), cosine of type 1 (FrCNT-1) and type
4 (FrCNT-4), sine of type 1 (FrSNT-1) and type 4 (FrSNT-4) number-theoretic trans-
forms, we compute Ha,Ca

1,C
a
4,S

a
1 and S

a
4, respectively. According to Proposition 1,

these matrices have two distinct eigenvalues λ ∈ {1,−1}. In these cases, the functions
li (t), i = 0, 1, defined in Eq. (13), are

l1(t) = 1 + t

2

and

l2(t) = 1 − t

2
.

From Eq. (12), one has

r(t) =
(
1 + t

2

)
+ (−1)a

(
1 − t

2

)
. (19)

Grouping the coefficients of the powers of t and setting αi (a) = αi (a1, a2) as the
coefficient of the i th power of t , one has

r(t) = α0(a1, a2) + α1(a1, a2)t, (20)

where

α0(a1, a2) = 1 + (−1)a

2
and

α1(a1, a2) = 1 − (−1)a

2
.

Finally, the fractional number-theoretic transformmatrixBa with fractional parameter
a = (a1/a2) is computed as

Ba = α0(a1, a2)I + α1(a1, a2)B, (21)
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where B can be replaced byH,C1,C4,S1 or S4, according to the fractional transform
one desires to compute.

We reinforce the fact that the computation of fractional powers of an NTT matrix
by means of matrix functions does not require the construction of eigenvector sets.
This makes our approach simpler than that employed in [21,22,33], where fractional
Fourier, cosine and sine number-theoretic transforms are defined via finite field exten-
sions of the methods given in [8,32,34]. In particular, the approach described in [21]
involves a systematic procedure for deriving finite field Hermite–Gaussian vectors,
whose components may unpredictably lie in higher-order extension fields. On the
other hand, using the technique proposed in the present paper, if 2a2

√−1 ∈ GI(p),

we assure that the components of Fa = F
a1
a2 lie in GI(p); correspondingly, for other

transforms, it is sufficient that a2
√−1 ∈ GI(p).

3.3 Fast Algorithms

Another important property of fractional NTT defined using matrix functions is that
they can be computed by means of standard fast algorithms. This is due to the fact
that, according to the referred approach, the ath power of a transform matrix B is a
linear combination of integer powers of B. To be more specific, let us consider an N -
point Fourier number-theoretic transform, for which the matrix-vector product Fx can
be computed by means of a fast algorithm with MF (N ) multiplications and AF (N )

additions. According to Eq. (18), the FrFNT with fractional parameter a = a1/a2 of
an N -point vector x can be computed as

Xa,F =
[
α0(a1, a2)I + α1(a1, a2)F + α2(a1, a2)F2 + α3(a1, a2)F3

]
x

= [α0(a1, a2)I + α1(a1, a2)F + α2(a1, a2)P + α3(a1, a2)PF] x

= [α0(a1, a2)I + α2(a1, a2)P] x + [α1(a1, a2)I + α3(a1, a2)P]Fx.

By observing the last equation, we see that the FrFNT requires M ′
F (N ) = MF (N ) +

2[2N − 2 + N (mod 2)] multiplications and A′
F (N ) = AF (N ) + 3N additions.

Similarly, let us consider an N -point HNT, CNT, or SNT, for which the matrix-vector
productBx can be computed bymeans of a fast algorithmwith MB(N )multiplications
and AB(N ) additions. According to Eq. (21), the FrHNT, the FrCNT, or the FrSNT
with fractional parameter a = a1/a2 of an N -point vector x can be computed as

Xa,B = [α0(a1, a2)I + α1(a1, a2)B] x = α0(a1, a2)x + α1(a1, a2)Bx.

Therefore, the computation ofXa,B involves M ′
B(N ) = MB(N )+2N multiplications

and A′
B(N ) = AB(N ) + N additions.

In general, fast algorithms applicable to real-valued discrete transforms can also
be used to compute number-theoretic transforms. In this sense, FNT, HNT and,
consequently, FrFNTandFrHNT, can be computed bymeans ofCooley–Tukey,Good–
Thomas prime factor, and Rader prime algorithms, for instance [5,35]. Similarly, since
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the CNT and the SNTmatrices have symmetries analogous to those of the correspond-
ing real-valued transforms, standard decimation-in-time and decimation-in-frequency
fast algorithms can be employed in their computation and also in the computation of
the respective fractional number-theoretic transforms [9,15].

In short, an N -point fractional NTT based on matrix functions can be computed
withO(N log N ) additions andmultiplications in the corresponding field; on the other
hand, the computation of the N -point fractional NTT defined in [21,22], for example,
requires O(N 2) multiplications and additions. Moreover, if the transform is defined
over fields whose characteristic is a Fermat or a Mersenne prime, other strategies can
be employed to further decrease the computational complexity. Such strategies include
the employment of residue number system and the implementation of multiplications
by means of bit-shifts [5].

4 Relationship Between the FrFNT and the FrHNT

In this section, we show that the FrFNTmatrix can be obtained from the FrHNTmatrix
and vice versa. The relationship between such two matrices is a generalization of the
relationship between the FNT and the HNT matrices. For the sake of simplicity, in
what follows, we assume that p ≡ 3 (mod 4) and j = √−1. From Definitions 3
and 4, one clearly observes that matrices F and H are related according to

F = 1

2
(I + P)H + j

2
(I − P)H (22)

or

H =
[
1

2
(1 − j)I + 1

2
(1 + j)P

]
F. (23)

Defining the matrix S as

S := 1

2
(1 − j)I + 1

2
(1 + j)P,

we may write H = SF and F = S−1H. If N is odd, the N × N matrix S is

S = 1

2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 · · · 0 0 · · · 0
0 1 − j · · · 0 0 · · · 1 + j
...

...
. . .

...
... . .

. ...

0 0 · · · 1 − j 1 + j · · · 0
0 0 · · · 1 + j 1 − j · · · 0
...

... . .
. ...

...
. . .

...

0 1 + j · · · 0 0 · · · 1 − j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;
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if N is even, the N × N matrix S has the form

S = 1

2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 . . . 0 0 0 . . . 0
0 1 − j . . . 0 0 0 . . . 1 + j
...

...
. . .

...
...

... . .
. ...

0 0 . . . 1 − j 0 1 + j . . . 0
0 0 . . . 0 2 0 . . . 0
0 0 . . . 1 + j 0 1 − j . . . 0
...

... . .
. ...

...
...

. . .
...

0 1 + j . . . 0 0 0 . . . 1 − j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Our goal is to find Sa , which can be done by using matrix functions. We begin by
characterizing S with respect to its eigenstructure. The proofs of the following results
are given in the “Appendix.”

Lemma 1 The matrix S has, at most, four distinct eigenvalues.

Lemma 2 The N × N matrix

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b 0 . . . 0 0 . . . 0 c
0 b . . . 0 0 . . . c b
...

...
. . .

...
... . .

. ... 0
0 0 . . . b c . . . 0 0
0 0 . . . c b . . . 0 0
...

... . .
. ...

...
. . .

... 0
0 c . . . 0 0 . . . b 0
c 0 . . . 0 0 . . . 0 b

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(24)

has determinant
(
b2 − c2

) N
2 .

Lemma 3 If N is odd, the minimal polynomial of S is

PS(λ) = (λ − 1)
[
(2λ − 1 + j)2 − (1 + j)2

] N−1
2

.

If N is even, the minimal polynomial of S is

PS(λ) = (λ − 1)2
[
(2λ − 1 + j)2 − (1 + j)2

] N−2
2

.

Theorem 2 The eigenvalues of the matrixSare {1,− j}. Their multiplicities are shown
in Table 3.

Since the matrix S has two distinct eigenvalues, and according to Definition 8, its
li (t) functions are

l1(t) = t + j

1 + j
= 1 − j

2
( j + t)
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Table 3 Multiplicities of the
eigenvalues of the N × N matrix
S

N 1 − j

Even N+2
2

N−2
2

Odd N+1
2

N−1
2

and

l2(t) = t − 1

− j − 1
= 1 − j

2
(1 − t) ,

the Lagrange interpolating polynomial is

r(t) = (1)a 1 − j

2
( j + t) + (− j)a 1 − j

2
(1 − t) .

From the definition of the matrix S, the term 1− j
2 ( jI + S) is equivalent to I+P

2 and

the term 1− j
2 (I − S) is equivalent to I−P

2 . Therefore, replacing t by the matrix S, one
obtains

Sa = r(S) = 1

2
(I + P) + (− j)a

2
(I − P)

and the relationship between the FrHNT and the FrFNT, which is given by

Ha =
[
1

2
(I + P) + (− j)a

2
(I − P)

]
Fa . (25)

5 Examples

In this section, we develop numerical examples to illustrate the construction of frac-
tional number-theoretic transforms based on matrix functions.

5.1 FrFNT

Let us consider the element ζ = 4 ∈ GI(257), where ord(4) = 8. We choose the
fractional parameter a = a1/a2 = 3/8 and use Definition 8 to construct an 8 × 8
FrFNT matrix. Initially, we obtain the 8 × 8 FNT matrix

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

242 242 242 242 242 242 242 242
242 197 17 68 15 60 240 189
242 17 15 240 242 17 15 240
242 68 240 197 15 189 17 60
242 15 242 15 242 15 242 15
242 60 17 189 15 197 240 68
242 240 15 17 242 240 15 17
242 189 240 60 15 68 17 197

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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using Definition 3. In order to obtain αi (a1, a2), i = 0, 1, 2, 3, we compute

16
√

(−1)3 ≡ 16
√

(256)3 ≡ 603 ≡ 120 (mod 257),

cos 16√−1(3) = cos60(3) = 196,

sin 16√−1(3) = sin60(3) = 188.

Using these results, one obtainsα0(3, 8) = 36, α1(3, 8) = 28, α2(3, 8) = 97, α3(3, 8)
= 97 and, therefore,

F
3
8 = 36F0 + 28F1 + 97F2 + 97F3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

57 181 181 181 181 181 181 181
181 241 112 14 76 52 145 83
181 112 112 145 181 112 173 145
181 14 145 241 76 83 112 52
181 76 181 76 57 76 181 76
181 52 112 83 76 241 145 14
181 145 173 112 181 145 112 112
181 83 145 52 76 14 112 241

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

5.2 FrHNT

In this example, we consider the same parameters of Example 5.1 and construct the
8× 8 FrHNT matrix using Eq. (20). From Definition 4, the 8× 8 HNT matrix shown
in Eq. (26) is constructed. In order to obtain αi (a1, a2), i = 0, 1, we compute 8

√−1 ≡
2 (mod 257), α0(3, 8) = 133 and α1(3, 8) = 125. The matrix H3/8 = 133H0 +
125H1, shown in Eq. (27), is obtained.

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1
1 227 + 223 j 241 j 30 + 223 j 255 228 130 103
1 241 j 255 16 j 103 1 29 178
1 30 + 223 j 16 j 227 + 223 j 67 255 130 103
1 255 1 255 1 1 1 1
1 30 + 223 j 241 j 227 + 34 j 67 255 130 103
1 16 j 255 241 j 103 1 29 178
1 227 + 223 j 16 j 30 + 34 j 67 255 130 103

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(26)

H
3
8 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 125 125 125 125 125 125 125
125 238 + 118 j 56 j 152 + 119 j 132 152 + 138 j 201 j 105 + 138 j
125 56 j 8 201 j 125 56 j 132 201 j
125 152 + 119 j 201 j 238 + 119 j 132 105 + 138 j 56 j 152 + 138 j
125 132 125 132 1 132 125 132
125 152 + 138 j 56 j 105 + 138 j 132 238 + 119 j 201 j 152 + 119 j
125 201 j 132 56 j 125 201 j 8 56 j
125 105 + 138 j 201 j 152 + 138 j 132 152 + 119 j 56 j 238 + 119 j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(27)
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5.3 FrCNT

In order to obtain the 8 × 8 FrCNT of type 4 matrix over GI(257), an element ζ

whose multiplicative order is ord(ζ ) = 2N = 16 has to be chosen. We then select the
element ζ = 2 ∈ GI(257), which has the mentioned order, and use again the fractional
parameter a = a1/a2 = 3/8. From Eq. (6), the 8 × 8 CNT-4 matrix

C4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

29 11 190 127 189 178 154 61
11 189 61 79 67 228 130 103
190 61 130 246 103 189 29 178
127 79 246 61 29 154 67 68
189 67 103 29 196 246 178 127
178 228 189 154 246 127 61 67
154 130 29 67 178 61 68 11
61 103 178 68 127 67 11 228

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is constructed. We use Eq. (20) with α0(3, 8) = 133 and α1(3, 8) = 125 (the same
values employed in the construction of the FrHNT matrix in Example 5.2). Thus, one
has

C
3
8
4 = 133C0

4 + 125C1
4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

160 90 106 198 238 148 232 172
90 114 172 109 151 230 59 25
106 172 192 167 25 238 27 148
198 109 167 48 27 232 151 19
238 151 25 27 218 167 148 198
148 230 238 232 167 74 172 151
232 59 27 151 148 172 152 90
172 25 148 19 198 151 90 106

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The FrCNT of type 1 and FrSNT of types 1 and 4 are constructed in a similar
manner.

6 An Image Encryption Scheme Based on Fractional NTT

In this section, we revisit the image encryption scheme proposed in [19]. More specif-
ically, we verify that, after changing the FrFNT based on the approach given in [21]
by the FrFNT constructed using the matrix functions approach, the robustness of the
referred scheme against the main cryptographic attacks is not affected. Moreover, we
show that the FrFNTwe use to encrypt a grayscale image encoded with 8 bpp does not
require a pixel juxtaposition strategy performed in [19]. In addition to the computa-
tional advantages described in Sect. 3.3, this makes the current proposal more efficient
and straight.



2908 Circuits Syst Signal Process (2017) 36:2893–2916

6.1 Encryption Scheme

The encryption procedure consists in taking N × N image blocks from left to right
and from top to bottom, in the manner shown in Fig. 1. A two-dimensional version of
an FrFNT is applied to the current image block and the resulting block replaces the
corresponding original block before the next block is processed. In order to provide
diffusion to the scheme, a number of columns and rows is shared among adjacent
blocks. To be more specific, in Fig. 1, the first ov columns of block b1 (before its
encryption) correspond to the last ov columns of the encrypted version of b0; b1 is
then encrypted, and the first ov columns of block b2 (before its encryption) correspond
to the last ov columns of the encrypted version of b1; b2 is then encrypted and so on. A
similar overlapping strategy is also performed in the rows. An image block may have
to be assembled from two sub-blocks; this is the case of b3 = [b(1)

3 |b(2)
3 ] in Fig. 1.

The fractional parameter used in the computation of the FrFNT of each image block
is obtained from a secret-key. Actually, an integer a2 is chosen and kept fixed. The
secret-key is the K -length vector of integers

k = {a1,0, a1,1, a1,2, . . . , a1,K−2, a1,K−1}

and the i th image block is transformed by the matrix

F
a1,i (mod K )

a2 .

columns
overlapping

rows
overlapping

N

N

N

N

. . .
N - c

c

b0 b1 b2 b3
(1)

b3
(2) R

C

b4

ov

ov

Fig. 1 Block selection and overlapping in the image encryption scheme. The image has dimensions R ×C ,
and blocks with dimensions N × N are selected. Darker gray regions correspond to regions where adjacent
blocks overlap
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In the computation of the fractional power of F, the index i of the component of k
is taken modulo K because the number of blocks to be processed is usually greater
than the key length. In other words, the key components are used in a cyclic manner.
The encryption is finished after the whole image is covered by two rounds of the
block-by-block transformation procedure we have explained. The decryption consists
in applying, in the reverse order, the same steps performed in the encryption.

Specific parameters for an image encryption scheme following the described
approach can be chosen in accordance with the type of images to be processed.
Throughout this paper, we consider grayscale images encoded with 8 bpp. Since
the pixels values range from 0 to 255, an FrFNT defined over GI(257) can be used
to encrypt such images. We then consider the FNT used to construct the FrFNT in
Example 5.1 and use it to construct FrFNTwith different fractional parameters. In this
case, image blocks with dimension 8 × 8 are processed.

We remark that, using the method proposed in [21], an 8 × 8 FrFNT matrix over
GI(257)would have its entries lying in higher extensionfields. Since thiswould require
a more sophisticated arithmetic, in [19], the authors defined a 4×4 FrFNTmatrix over
GI(65537) and applied it to blocks where each entry is a Gaussian integer whose “real”
and “imaginary” parts are 16-bit numbers obtained from the juxtaposition of two 8-bit
numbers (pixels of an 8 × 8 image block). Using the matrix functions approach, as
shown in Example 5.1, 8 × 8 FrFNT matrices whose elements lie in GF(257) can be
obtained and any pixel manipulation is unnecessary.

6.2 Computer Experiments and Security Aspects

In order to carry out computer simulations of the proposed scheme, we consider the
FrNTT over GI(257) mentioned at the end of Sect. 6.1, and set a2 = 64 and ov = 2
(number of columns and rows overlapping). The secret-key

k = [53, 58, 9, 59, 41, 7, 18, 36, 62, 62, 11, 63, 62, 32, 52, 10, 27, 59, 51, 62, 42,
3, 55, 60, 44, 49, 48, 26, 42, 11, 46, 3, 18, 3, 7, 53, 45, 21, 61, 3]

was randomly generated and the 512 × 512 image lena.bmp shown in Fig. 2a was
encrypted.

In the encryption procedure, an additional strategy is employed, with the purpose
of avoiding the appearance of encrypted image blocks with pixels whose value is 256;
the representation of such pixels would require a 9-bit encoding. The strategy consists
in applying to the i th image block the FrNTT with fractional parameter a1,i (mod 40)

64 in a
recursive manner. More precisely, the FrNTT is applied to the image block and, if the
result contains a pixel of value 256, the FrNTT is applied again. The recursive FrNTT
application stops when a transformed image block whose maximum pixel value is less
than 256 is obtained, which allows maintaining an 8 bpp encoding.

In Fig. 2b, we observe that the visual aspect of the encrypted image is completely
noisy. In contrast to the histogram of the original image (Fig. 2c), the histogram of
the encrypted image appears to be uniform (Fig. 2d). Additionally, the correlation
coefficients obtained from pairs of horizontally adjacent pixels in the original and
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(a) (b)
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600
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1000

1200

(d)
Fig. 2 Image encryption by means of FrNTT. aOriginal image lena.bmp; c encrypted version of lena.bmp;
b histogram of original image and d histogram of encrypted image

the encrypted images are, respectively, 0.9853 and 0.0001 [40]; the entropy of the
encrypted image is 7.9992. This suggests that statistical and entropy attacks against
the proposed scheme would not be effective.

The secret-key used in our scheme is a vector with 40 integer numbers in the range
1–64. Since each such integer is encoded as a 6-bit string, the key length is 240 bits.
This satisfies the general requirement for resisting brute-force attack [38]. Naturally,
since the working premises of the scheme do not depend on the key length, the key
space size can be easily increased according to the desired security level.

The resistance of themethod to differential attack can bemeasured by the number of
pixels change rate (NPCR) and the unified average changing intensity (UACI), whose
ideal values are, respectively, 100% and 33.3% [1]. In order to obtain such metrics,
we change the least significant bit of a randomly chosen pixel in the original image
lena.bmp. The modified image is then encrypted and compared with the encrypted
version of the original image. After performing this experiment 100 times, the average
NPCR and UACI were, respectively, 99.6083 and 33.4765%. The same procedure was
performed for lena.bmpwith other resolutions. The results were, respectively, 99.6155
and 33.4300% for an 128×128 image, 99.6307 and 33.4425% for a 256×256 image,
and 99.6065 and 33.4565% for an 1024×1024 image. This indicates that the scheme
is also robust against differential attack.
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We can also perform a preliminary analysis regarding the computational complex-
ity of the proposed encryption scheme. Since the method basically involves transform
computations, we characterize its complexity by means of the total number of arith-
metic operations needed to apply such transforms. Considering the overlapping of two
columns and two rows in the processing of each 8 × 8 image block, we estimate the
number of FrNTT necessary to cover the whole R × C image twice as

TN=8,GF(257) = 2 × R

6
× C

6
.

Using the definition proposed in this paper, the computation of an N -point FrNTT
requires O(N log N ) arithmetic operations (see Sect. 3.3). Therefore, assuming that
an N × N two-dimensional FrNTT corresponds to an N -point FrNTT calculated 2N
times, we estimate the total complexity of our method by

16 × 8 log 8 × TN=8,GF(257) = 512

24
× R × C. (28)

The complexity of our method can be compared with that of the method proposed
in [19], which employs 4-point FrNTT over GI(65537), defined according to [21].2

In this case, the number of FrNTT necessary to cover the whole R × C image twice
is estimated as

TN=4,GI(65537) = 2 × R

8
× C

7
.

The computation of an N -point FrNTT defined according to [21] requires O(N 2)

arithmetic operations. Since these operations have to be carried out over GI(65537),
it is reasonable to consider that their cost is at least 16 times the cost of an operation
carried out over GF(257). Thus, we estimate the total complexity of the method given
in [19] by

8 × 42 × 42 × TN=4,GI(65537) = 512

7
× R × C. (29)

Comparing Eqs. (28) and (29), one concludes that the computational complexity of
the proposed scheme is about 3.4 times less than that of the method given in [19].

Finally, it is important to remark that the image encryption scheme analyzed in
this section is very flexible. Instead of using the FrNTT, other fractional NTT could
be employed. The parameters of the scheme can also be adjusted. This includes the
dimension of the transform matrix, which must coincide with the dimension of the
image blocks one desires to process, the field in which the transform is defined, the
number of columns and rows shared by adjacent image blocks, the key length, the

2 At this time, a comparison between the complexity of the proposed approach and that of the method
given in [19] appears to be the most adequate one, because both schemes employ equivalent mathematical
operations (arithmeticmodulo a primenumber) and similar encryption/decryption structures.Comparing the
complexity of the proposed approach with those of encryption schemes based on real-valued mathematical
tools, for instance, could not produce realistic results and would require considering details related to
implementation, speed, memory, etc.
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number of encryption rounds, etc. Such a flexibility allows designing schemes with
distinct robustness levels and whose implementations require different computational
efforts.

7 Concluding Remarks

A new approach for defining fractional number-theoretic transforms was presented in
this paper. The method is based on matrix functions and, differently from previously
proposed definitions, it does not require the construction of NTT eigenvectors. This
allows us to express fractional powers of an NTT matrix as a linear combination of
its integer powers. As we have demonstrated, this also enables the use of standard
fast algorithms in the computation of FrNTT matrix-vector products. Our approach
was developed for Fourier, Hartley, cosine and sine number-theoretic transforms, and
some peculiarities of these transforms were discussed.

Besides addressing theoretic aspects, we revisited a recently proposed image
encryption scheme based on the FrFNT.Wehave shown how the FrFNT constructed by
means of matrix functions can be employed in such an application and emphasized the
advantages that it provides. After carrying out computer experiments and performing
a preliminary security analysis, we have concluded that the scheme remains resistant
against the main cryptographic attacks.

Currently, we are investigating further theoretic and practical aspects concern-
ing fractional number-theoretic transforms. The possibility of defining FrNTT based
on closed-form Hermite–Gaussian eigenvectors over finite fields [16] and the char-
acterization, in the number-theoretic scenario, of fractional convolution and other
important properties [41] have been studied. Applications of FrNTT in the fields of
error-correcting codes, cryptography, digital watermarking, and multiuser communi-
cation have also been investigated [10,13,23,24,36].

Acknowledgements This research was partially supported by Conselho Nacional de Desenvolvimento
Científico e Tecnológico, under Grants 456744/2014-2 and 307686/2014-0.

8 Appendix

8.1 Proof of Lemma 1

Since the integer powers of S are

S2 =
[
1

2
(1 − j)I + 1

2
(1 + j)P

]2
= P,

S3 = PS

and

S4 = PS2 = I,

the matrix S has period 4 and, therefore, the lemma holds.
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8.2 Proof of Lemma 2

Permuting the second and the last rows of B, the updated first and second rows have
zero entries at the same positions. Applying analogous permutations to other rows of
B, after an even number of permutations, one obtains the matrix

Bp =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b 0 . . . 0 0 . . . 0 c
c 0 . . . 0 0 . . . 0 b
0 b . . . 0 0 . . . c 0
0 c . . . 0 0 . . . b 0
...

...
...

...
...

...
... 0

0 0 . . . b c . . . 0 0
0 0 . . . c b . . . 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (30)

such that |Bp| = |B|. This determinant can be expressed as |B| = (
b2 − c2

) |Bs |,
where Bs is the matrix obtained excluding the first two rows and the first and the last
columns of Bp. We can also write |B| = (

b2 − c2
)2 |Bs−1|, where Bs−1 is a matrix

obtained excluding the first two rows and the first and the last columns of Bs . In
general, we observe that |B| = (

b2 − c2
)s0 |Bs−s0+1|, s0 = 1, . . . , N

2 , where Bs−s0+1
is a matrix obtained excluding the first two rows and the first and the last columns of

Bs−s0+2. This leads us to |B| = (
b2 − c2

) N
2 .

8.3 Proof of Lemma 3

Theminimal polynomial of S is given by |λIN − S|. Defining b′ = λ−1, b = λ− 1− j
2

and c = 1+ j
2 , after permuting the rows in a way similar to that used in the proof of

Lemma 2, the matrix λIN − S has a structure similar to that of Bp. If N is odd, the
minimal polynomial of S is given by

PS(λ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b′ 0 . . . 0 0 . . . 0
0 b . . . 0 0 . . . c
0 c . . . 0 0 . . . b
...

...
...

...
...

...
...

0 0 . . . b c . . . 0
0 0 . . . c b . . . 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (31)

Therefore,

PS(λ) = b′ (b2 − c2
) N−1

2 = (λ − 1)
[
(2λ − 1 + j)2 − (1 + j)2

] N−1
2

.
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If N is even, the minimal polynomial of S is given by

PS(λ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b′ 0 . . . 0 0 0 . . . 0
0 0 . . . 0 b′ 0 . . . 0
0 b . . . 0 0 0 . . . c
0 c . . . 0 0 0 . . . b
...

...
...

...
...

...
... 0

0 0 . . . b 0 c . . . 0
0 0 . . . c 0 b . . . 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (32)

Therefore,

PS(λ) = (b′)2
(

b2 − c2
) N−2

2 = (λ − 1)2
[
(2λ − 1 + j)2 − (1 + j)2

] N−2
2

.

8.4 Proof of Theorem 2

If N is odd, the eigenvalues of S are the roots of the polynomial

PS(λ) = (λ − 1)
[
(2λ − 1 + j)2 − (1 + j)2

] N−1
2

.

From (2λ−1+ j)2 − (1+ j)2 = 0, the roots are {1,− j}, both with multiplicity N−1
2 .

The root λ = 1 also occurs due to the term (λ − 1). If N is even, the eigenvalues are
the roots of the polynomial

PS(λ) = (λ − 1)2
[
(2λ − 1 + j)2 − (1 + j)2

] N−2
2

.

From (2λ−1+ j)2 − (1+ j)2 = 0, the roots are {1,− j}, both with multiplicity N−2
2 .

The root λ = 1 occurs twice more, due to the term (λ − 1)2.
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