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Abstract In this paper, residue number system (RNS) to binary number system con-
version using core function is compared with techniques using Chinese remainder
theorem (CRT) and mixed radix conversion (MRC). The cause of inaccuracy of core
function for comparison, sign detection and scaling is analyzed. In spite of the inac-
curacy in estimating the exact core, the application of core function for RNS to binary
conversion is shown to be accurate. Since not much attention has been given to the use
of core function in designing reverse converters, reverse converters using core function
has been explored for some moduli sets for which other techniques such as CRT and
MRC also have been found to lead to complicated designs. Reverse converters for two
three-moduli sets {2n, 2n−1, 2n+1−1} and {2m−1, 2m, 2m+1} using core function
and for one four-moduli set {2n−3, 2n−1, 2n+1, 2n+3} are presented and compared
with earlier available designs using other techniques regarding hardware requirement
and conversion time trade-offs. State-of-the-art models for ROM and combinational
logic have been used to perform realistic estimate of area and conversion time. It has
been shown that designs using core function may be preferable over other designs in
some cases.
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1 Introduction

Several techniques have been described in the literature for residue number system
(RNS) to binary number system conversion [6,29,35,37] which are based on Chinese
remainder theorem (CRT) [37], mixed radix conversion (MRC) [37], core function
[1,2,4,5,15,16,23,24,27,28,43], new Chinese remainder theorems I, II (new CRTs)
[40], mixed radix CRT [14], quotient function [20] and more recent diagonal function
[9,18,19,31]. The performance of other operations needed in a RNS-based processor
such as scaling, sign detection, comparison and error correction is also dependent on
the efficiency of RNS to binary conversion.

Akushkii et al. [4] have introduced the core function whose purpose is to obtain
positional information froma residue encoded number (i.e., the position in the dynamic
range). Application of core function for residue to binary conversion, scaling and
sign detection has been studied by several researchers [1,2,5,15,16,23,24,27,28,43].
Hardware implementations also havebeendescribed in the literature [27,43].However,
the application of core function for residue to binary conversion has not receivedmuch
attention as compared to application of other residue to binary conversion techniques.

In this paper, we will revisit the concept of core function and derive the relationship
between the reverse conversion techniques based on core function, CRT and MRC.
We show that core function can be used for exact residue to binary conversion even
though it is not accurate for scaling, sign detection and comparison. We provide an
insight into the reasons for inaccuracy of the core function for being used for residue
number comparison, sign detection and scaling in RNS. In addition, the design of
reverse converters using core function for two three-moduli sets {2n, 2n −1, 2n+1−1}
[8], {2m + 1, 2m, 2m − 1} [3,21,22,32,33] and one four-moduli set {2n − 1, 2n + 1,
2n−3, 2n+3} [7,11,26,34] is investigated in order to bring out the trade-offs involved
in hardware requirements and conversion time.

In Sect. 2, we review the concepts of the core function andRNS to binary conversion
using core function. We compare the core function-based RNS to binary conversion
withCRTandMRC inSect. 3. The reverse conversion architectures using core function
for two three-moduli sets {2n, 2n − 1, 2n+1 − 1} [8], {2m, 2m − 1, 2m + 1} [3,21,
22,32,33] and one four-moduli set {2n − 1, 2n + 1, 2n − 3, 2n + 3} [7,11,26,34]
are presented in Sect. 4. In Sect. 5, the proposed converters are compared regarding
hardware requirements and conversion time with other reverse converters proposed in
the literature for the moduli sets considered in this paper. Since some of the converters
proposed in this paper and other converters described in the literature have used ROMs
together with combinational logic, we use state-of-the-art models for ROMs as well
as combinational logic for evaluation of various converters. Section 6 concludes the
brief.

2 Core Function and RNS to Binary Conversion

Consider the RNS using the moduli set {m1,m2,m3, . . . ,mk} with a dynamic range
M = ∏k

i=1 mi and given residues (r1, r2, r3, . . . , rk). The residues ri corresponding
to a given number X such that 0 ≤ X ≤ (M − 1) are defined as X mod mi and are
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also represented as (X)mi
. We need to choose first a constant C(M) as the core. It can

be the largest modulus in the RNS or product of two or more moduli. As in the case
of CRT, we define various Bias

Bi = Mi

(
1

Mi

)

mi

(1)

where Mi = M/mi and
(

1
Mi

)

mi
is the multiplicative inverse of Mi mod mi satisfying

the requirement that

(
( 1
Mi

)

mi
Mi

)

mod (mi ) = 1. We next need to compute weights

wi defined as

wi =
((

1

Mi

)

mi

C(M)

)

mod mi (2a)

The weights also need to satisfy the condition

C(M) =
k∑

i=1

M
wi

mi
(2b)

thereby necessitating that some weights be negative. The weights are next used to
compute the core function C(X) of a given number X as

C(X) =
(

X
C(M)

M
−

K∑

i=1

wi

mi
ri

)

mod C(M) (3)

Note that the core values C(Bi ) corresponding to the input Bi can be seen from (3) to
be

C(Bi ) = BiC(M)

M
− wi

mi
(4)

since the residue ri corresponding to Bi modmi is 1 and residues of Bi corresponding
to all other moduli are zero. Note that various C(Bi ) values are constants for a chosen
moduli set. From (2) and (4), it can be seen that C(Bi ) < C(M) since Bi < M .

The residue to binary conversion corresponding to residues (r1, r2, r3, . . . , rk) is
carried out by first determining the core function C(X) of the given number X as

C(X) =
(

k∑

i=1

riC(Bi )

)

mod C(M) =
k∑

i=1

riC(Bi ) − αC(M) (5)

where α is known as the rank function defined by CRT. Note that (5) is known as CRT
for core function. Next X can be computed by rewriting (3) as

X =
(

M

C(M)

(

C(X) +
k∑

i=1

wi

mi
ri

))

M

(6)
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The important property ofC(X) is that the term X C(M)
M in (3) monotonically increases

with X with some furriness due to the second term in (3) [15]. In general, for choice
of C(M) typically of same value as one modulus, the range of C(X) for 0 < X < M
gets smaller and the second term in (3) causes significant errors and hence, accurate
comparison of two numbers using core function or sign detection is difficult.

The main advantage claimed for using the core function is that the constants C(Bi )
involved in computing the core function following (5) are small since they are less
thanC(M). However, in order to simplify or avoid the cumbersome division byC(M)

needed in (6), it has been suggested that C(M) be chosen as a power of two or one
modulus or product of two or more moduli.

The following example illustrates the procedure of computing core and reverse
conversion using core function.

Example 1 Consider the moduli set {3, 5, 7, 11}. Let us choose C(M) = 11. Then,

M = 1155, M1 = 385, M2 = 231, M3 = 165 and M4 = 105. The values of
(

1
Mi

)

mi

are 1, 1, 2, 2. Thus, Bi = Mi

(
1
Mi

)

mi
are 385, 231, 330, 210. The wi can be found

from (2a) as −1, 1, 1, 0. It can be verified that (2b) is satisfied:
C(M) = −1 × 385 + 1 × 231 + 1 × 165 = 11. Next, we find following (4),

C(B1) = 4,C(B2) = 2,C(B3) = 3 and C(B4) = 2. Consider the residues (1, 2, 3,
8). Then, we find from (5), C(X) = (1 × 4 + 2 × 2 + 3 × 3 + 8 × 2) mod 11 = 0.
Next, X can be found from (6) as X = (

105
(
0 + 1×−1

3 + 2×1
5 + 3×1

7

))
1155 = 52.

3 Comparison with CRT, MRC and Mixed Radix CRT

It is interesting to note from (3) that the value of the core functionC(X) corresponding
to a given number X for a chosen C(M) actually represents the approximate quotient
resulting from the division of that number X by M/C(M). We use CRT to explain this
point and show the relationship between core function, mixed radix digit computation
andCRT. The use of CRT yields the binary number corresponding to the given residues
as

X = r1B1 + r2B2 + r3B3 + · · · + rk Bk − αM (7)

where Bi is given by (1). Multiplying both sides of (7) with C(M)/M , we have

C ′(X) = X
C(M)

M
= C(M)

M
(r1B1 + r2B2 + r3B3 + · · · + rk Bk) − αC(M) (8)

Substituting (4) in (5) and the resulting C(X) value in (6), we obtain

X = M

C(M)

(
k∑

i=1

(

ri

(
BiC(M)

M
− wi

mi

)

− αC(M)

)

+
k∑

i=1

riwi

mi

)

=
k∑

i=1

(ri Bi ) − αM (9)
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Note that any choice of wi will yield correct decoding. However, since BiC(M)
M

can be a mixed fraction for all moduli except the one chosen as C(M), choice of
wi
mi

suitably will yield an integer value for the terms ri
(
BiC(M)

M − wi
mi

)
. Note that

C ′(X) =
(∑k

i=1

(
ri BiC(M)

M

))

C(M)
will give the correct quotient X C(M)

M , whereas

C(X) computed from (5) gives an approximate quotient. Thus, using C(X) computed
from (5) for comparison of two numbers by comparing core function values, for sign
detection and scaling, leads to inaccuracies. If C(M) is chosen as one modulus (i.e.,
C(M) = mi ), then X C(M)

M corresponds to the highest mixed radix digit. We con-
sider the following example given by Burgess [15] in order to illustrate the difference
between core function and mixed radix digit in the case of choosing one modulus as
core function.

Example 2 The residues given are (7, 4, 2, 22, 16) in themoduli set {13, 17, 19, 29, 31}
corresponding to the number 3,004,567. We consider C(M) = 31. The multiplicative

inverses
(

1
Mi

)

mi
are (3, 16, 14, 12, 21), respectively. From (8) and (1), we have

(

X
C(M)

M

)

C(M)

=
(⌊

k∑

i=1

C(M)ri
mi

(
1

Mi

)

mi

⌋)

C(M)

=
(⌊

7×7
2

13
+4 × 29

3

17
+2×22

16

19
+22 × 12

24

29
+ 16 × 21

⌋)

31

= (�830.67391�)31 = 24

The use of core function yieldsC(M) = 27 for all the three methods given by Burgess
[15]. The reason is that it estimates the sum of rounded weighted values (7× 7+ 4×
29 + 2 × 23 + 22 × 13 + 16 × 21) mod 31 = 833 mod 31 = 27.

Core function yields approximate mixed radix digit when C(M) is chosen as one
modulus. Conventional mixed radix conversion can give the exact value of all mixed
radix digits which is sequential in computation. Bi and Gross technique [14] termed
as mixed radix CRT facilitates exact parallel computation of mixed radix digits but
involves cumbersome division operations. Sign detection and comparison involve
sequential comparison of mixed radix digits starting from the highest digit. It is inter-
esting to note that direct highest mixed radix digit computation was described for the
moduli set {2n − 1, 2n, 2n + 1, 2n+1 − 1} in [38].

4 Implementation Architectures for Reverse Converters Using Core
Function

The implementation of the reverse converter using core function follows (5) and (6).
It can be seen that the maximum value of C(X) is C(M) − 1. The magnitudes of
the terms wi ri

mi
are always less than wi since 0 ≤ ri ≤ (mi − 1). Some of the wi

values may be negative. Considering in the worst case all wi values are positive, the
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Table 1 Core function computation for few three-moduli sets

Moduli set C(M) wi C(Bi ) C(X)

{2n , 2n−1, 2n+1}
[12,17,30,39,
41] M1

2n 0, 1 − 2n−1, 2n−1 2n − 1, 2n−1 + 1, 2n−1 (r1(2n − 1) +
r2(2n−1 + 1) +
r32n−1) mod 2n

{2n , 2n −1, 2n+1 −1}
[8] M2

2n 0, 1, −2 1,1,2n -2 (r1 + r2 + (2n −
2)r3) mod 2n

{2n , 2n −
1, 2n−1 − 1}
[10,25] M3

2n 0,−2,1 2n−1 + 1, 2n −
2, 2n−1 + 1

(r1(2n−1 + 1) +
r2(2n − 2) +
r3(2n−1 + 1))
mod 2n

{2m +
1, 2m, 2m − 1}
[3,21,22,32,33]
M4

2m m, 0, (1 − m) m, 2m − 1,m + 1 (mr1 + (2m −
1)r2 + (m +
1)r3) mod (2m)

maximum possible value of X in (6) can be M
C(M)

(
C(M) − 1 + ∑k

i=1 |wi |
)
[15].

Thus, depending on the wi values of the chosen moduli set, the range of X before
reduction mod M needs to be estimated (which can be larger than that of M) so that
the needed modulo M reduction can be carried out to obtain the decoded X value.

The values of C(M), wi,C(Bi ) and expression for C(X) for four powers-of-two-
related three-moduli sets M1 {2n, 2n − 1, 2n + 1} [12,17,30,39,41], M2 {2n, 2n −
1, 2n+1 − 1} [8], M3 {2n, 2n − 1, 2n−1 − 1} [10,25] M4 {2m, 2m − 1, 2m + 1} [3,
21,22,32,33] are presented in Table 1 for illustration. We consider reverse conversion
using core function for moduli sets M2 and M4 in detail next.

4.1 Moduli Set M2 {2n, 2n − 1, 2n+1 − 1}

In the case of themoduli set {m1,m2,m3} = {2n, 2n−1, 2n+1−1}, choosingC(Ma) =
2n , where Ma = 2n(2n − 1)(2n+1 − 1), the decoded number following (6) and using
the expressions for C(Bi ) from Table 1 is given as

X =
(

M

C(M)
C(X) + w2r2m3 + w3r3m2

)

mod Ma

=
[(
2n − 1

) (
2n+1 − 1

)
C(X) + r2

(
2n+1 − 1

)

− 2r3(2
n − 1)

]
mod

(
2n(2n − 1)(2n+1 − 1)

)
(10)

The core function C(X) can be computed from Table 1 as

C(X) = (r1C(B1) + r2C(B2) + r3C(B3))2n = (r1 + r2 − 2r3)2n (11)

Note that (11) can be computed using a 4-input n-bit adder and ignoring the carry
bit. As an illustration for the n = 5 case, the four 5-bit words to be added are
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r14r13r12r11r10, r24r23r22r21r20, r33r32r31r301, 00001. Note that the−2r3 term is real-
ized by left shifting r3 by one bit and one’s complementing the n LSBs and ignoring
the MSB due to mod(2n) reduction and adding ‘1’. Next these four words need to be
added, and carry can be ignored to obtain C(X) (denoted as Cn hereafter). This needs
one CSA stage of n full-adders followed by a n-bit CPA as shown in Fig. 1a. Next, the
computation in (10) (before modular reduction) can be carried out by the addition of
the words in the bit matrix for the case n = 5 shown in Fig. 2 where the bars indicate
inverted bits (the top row indicates the bit position).

We have considered −2nC(X),−2n+1C(X),−r2,−2n+1r3, respectively, as 2n

(2n − 1 − C(X)), 2n+1(2n − 1 − C(X)), (2n − 1 − r2) and 2n+1(2n+1 − 1 − r3)
needing a correction term to be added. The overall correction term Z that needs to be
added is Z = M−2n(2n−1)−2n+1(2n−1)−(2n−1)−2n+1(2n+1−1). Note that in
effect M has been added so that the result is always positive. Note that the maximum
and minimum values of (10) are (22n − 2n − 1)(2n+1 − 1) and -(2n+2 − 4)(2n − 1).
However, one mod M subtraction will be required if the result of addition of all words
such as those in Fig. 2 in the general n case exceeds Ma . The complete architecture is
presented in Fig. 1a. The carry-save-adder tree for adding the various bits in the five
words in Fig. 1 needs (5n + 2)FA + (2n − 1)HA, and the CPA following it needs
(3n+1)FA and (3n+1)-bit A2:1MUX where FA, HA andA2:1MUX stand for full-adder,
half-adder and 2:1 multiplexer, respectively. The computation time for this stage is
(4 + 2(3n + 1))τFA where τFA is delay of a full-adder. The overall hardware and
conversion time requirements are (10n + 3)FA + (2n − 1)HA + (3n + 1)A2:1MUX
and (7n + 7)τFA.

4.2 Moduli Set M4 {2m+1, 2m, 2m-1}

We next consider reverse conversion for the moduli set {m1,m2,m3} = {2m +
1, 2m, 2m − 1} using core function. We select C(Mb) = 2m in this case where
the dynamic range of this RNS is Mb = 2m(4m2 − 1). The decoded number can be
written following (6) and using C(Bi ) values from Table 1, as

X =
[
(4m2 − 1)(mr1 − r2 + (m + 1)r3)2m + m(2m − 1)r1

+ (1 − m)(2m + 1)r3] mod (2m(4m2 − 1)) (12)

Anarchitecture for computation of (12) is presented inFig. 1b.Note that (mr1+mr3)
mod (2m) is realized by enabling m when (r10 exor r30) is ‘1’ where r10 and r30 are
the least significant bits of r1 and r3, respectively. Note also that m(2m − 1)r1 + (1−
m)(2m + 1)r3 is realized as (r1 − r3)(2m2 − m) + r3. Denoting q = log2(2m + 1),
this architecture needs one multiplier (q− bit ×2q− bit), one (q + 1)-bit subtractor,
one mod (2m) adder (q-bit) and one mod (2m(4m2 − 1)) adder (3q-bit) in the critical
path. One q-bit subtractor and a (q + 1)-bit ×(2q − 1)-bit multiplier are in a parallel
path. Note that the maximum and minimum values of X in (12) before reduction are
(6m2 − 1)(2m − 1) and (4m2 − 2m − 2)(1 − m), respectively, and hence, one mod
Mb(= 2m(4m2 − 1)) addition or subtraction needs to be carried out.
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(a) 

4m2-1

2m2-m

Mod (2m(4m2-1)) adder

r1
r3

+           - 
Subtractor 
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q+1 

q q 

X 

3q

q 

r3

q 

3q

q+1 
1 

r3 r2r30

Adder mod 2m

m

r10
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+           - 
Subtractor 

1 1 

q q 

2q
C(X) 

q 

Multiplier 

EXOR 
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X 

n n 

n           n 

3n+1 3n+1 

C  S 3n+1 3n+1 

r3r2

Carry Save adder  tree (3n+1)-bit 

Mod (2n(2n-1)(2n+1-1))Adder 

Bit Mapping 

r1

r3

r2

3n+1 

Mod 2n Adder 

Bit  Mapper 

C(X) n+1 

n 

n+1 

q 

(b) 
Fig. 1 RNS to binary converters using core function. a for the moduli set {2n , 2n − 1, 2n+1 − 1}, b for
the moduli set {2m, 2m − 1, 2m + 1}
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b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
cn4 cn3 cn2 cn1 cn0 cn4 cn4 cn3 cn2 cn1 cn0

cn4 cn3 cn2 cn1 cn0

z15 z14 z13 z12 r35
r24 cn3 cn2 cn1 cn0

r34 r33 r32 r31 r30 0 
z11 r34

r23 r22 r21 r20 z5 r24 r23 r22 r21 r20

z10 r33 r32 r31 r30
z4 z3 z2 z1 z0

z9 z8 z7 r35

   z6

Fig. 2 Bit matrix for the final adder for reverse converter for the moduli set {2n , 2n − 1, 2n+1 − 1}

4.3 Moduli Set M5 {2n − 1, 2n + 1, 2n − 3, 2n + 3}

We consider the three cases of choosingC1(Mc) = 2n−1,C2(Mc) = (2n−1)(2n+1)
and C3(Mc) = (2n − 1)(22n − 9) where the dynamic range of this RNS is Mc =
(22n − 1)(22n − 9). The first two choices permit easy reduction in the respective
core values C1(X) mod C1(Mc) and C2(X) mod C2(Mc). The third choice involves
difficult reduction in C3(X) mod C3(Mc) but simplifies the computation of the final
decoded word. Defining m1 = 2n − 1,m2 = 2n + 1,m3 = 2n − 3 and m4 = 2n + 3,
the various multiplicative inverses needed in (1) for this moduli set are as follows:

(
1

M1

)

m1

=
(

− 1

16

)

2n−1
= 2n − 1 − 2n−4,

(
1

M2

)

m2

=
(

1

16

)

2n+1

= 2n + 1 − 2n−4,

(
1

M3

)

m3

=
(

1

48

)

2n−3
= k(2n − 3) + 1

48
(13a)

where k = 11 for n even and k = 43 for n odd,

(
1

M4

)

m4

=
(

− 1

48

)

2n+3
= k′(2n + 3) − 1

48
(13b)

where k′ = 43 for n even and k′ = 11 for n odd.
We denote the three cases of choosing cores as (2n − 1), (22n − 1) and (2n −

1)(22n − 9), respectively, as Case I, Case II and Case III.

4.3.1 Case I

Choosing C1(M) = 2n − 1, in this case, the various wi and C1(Bi ) values can be
found for the case n even as follows:

w1 = 0, w2 = 2n−3, w3 =
(
40 − 13 × 2n

24

)

, w4 = 5(2n + 3) + 1

12

C1(B1) = C1(B2) = 2n − 2n−4 − 1, C1(B3) = 11(2n − 3) + 1

48
+ 1,

C1(B4) = 43(2n + 3) − 193

48
(14)
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For the case n odd, we have

w1 = 0, w2 = 2n−3, w3 = −
(
5(2n − 3) − 1

24

)

, w4 = (2n + 4)

12

C1(B1) = C1(B2) = 2n − 2n−4 − 1, C1(B3) = 43(2n − 3) + 97

48
,

C1(B4) = 11(2n + 3) − 49

48
(15)

For reverse conversion following (6), we need to compute

X =
[
C1(X)

(
22n − 9

) (
2n + 1

) + w2m3m4r2 + w3m2m4r3

+ w4m2m3r4
]
mod

((
22n − 1

)(
22n − 9

))
(16)

after computingC1(X) from (5) using theC1(Bi ) values from (14) and (15) for n even
and odd, respectively. Note that the maximum positive value of X before reduction
mod Mc in (16) can be >Mc or negative thus needing one addition or subtraction of
Mc for performing modulo reduction in (16).

The typical C1(Bi ) and wi values in the case C1(Mc) = 2n − 1 for n = 5, 6, 7
and 8 are presented in Table 2. Since the C1(Bi ) and wi values cannot be expressed as
simple sum of terms of the form 2z , it is preferable to use read-only memory (ROM) to
obtain (riC1(Bi )) mod C1(Mc) as shown in Fig. 3a. TheROM1andROM3are of size
2n ×n bits, and ROM2 and ROM4 are of size 2n+1 ×n bits. Next, the output words of
ROM1, ROM2, ROM3 and ROM4 need to be addedmod (2n−1) using two n-bit CSA
stages with end-around-carry (EAC) (CSA1 and CSA2) followed by a n-bit CPA with
EAC (CPA1) as shown in Fig. 3a (note that C and S stand for carry and sum vectors).
Next, corresponding to given r2, r3 and r4 using ROMs ROM5, ROM6 and ROM7,
the 4n-bit values u = w2m3m4r2, v = w3m2m4r3, w = w4m2m3r4 can be obtained
as shown in Fig. 3a. These ROMs are of size 2n+1 × (3n), 2n × (4n), 2n+1 × (4n),
respectively. Note that the bit width of the ROM 5 is less since the multiplier w2 is
2n−3 and can be obtained by appending n-3 zero bits as LSBs to the word read from
the ROM5. The weighting of C1(X) with (22n − 9)(2n + 1) and addition with the
three terms obtained from ROMs ROM5, ROM6 and ROM7 can be carried out by
mapping the bits of C1(X) denoted as c1, j and the three ROM outputs as shown in
the bit matrix in Fig. 3b. The bit mapping 1 block in Fig. 3a performs this function.
Note that dashes (′) indicate inverted bits. The addition is performed using a four-level
CSA tree 1 needing (10n − 2)FA + (4n + 1) XNOR/OR +4HA. The CSA tree 1 is
followed by a mod Mc adder 1 using two cascaded 4n-bit CPAs each needing 4nFA.
The second CPA stage performs optional addition or subtraction of Mc.

4.3.2 Case II

In this case, the C2(Bi ) values will be bounded by the chosen C2(Mc) = 22n −1. The
various wi and C2(Bi ) values for the case n even are as follows:
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Table 2 C1(Bi ),C2(Bi ) and wi values for both cases C1(Mc) = 2n − 1 and C2(Mc) = 22n − 1 for
moduli set M5

Case 1: C1(Mc) = 2n − 1

n C1(B1) C1(B2) C1(B3) C1(B4) w1 w2 w3 w4

5 29 29 28 7 0 4 −6 3

6 59 59 15 56 0 8 −33 28

7 119 119 114 29 0 16 −26 11

8 239 239 59 228 0 32 −137 108

Case 2: C2(Mc) = (22n − 1)

n C2 (B1) C2(B2) C2(B3) C2(B4) w1 w2 w3 w4

5 957 961 917 234 0 0 5 −6

6 3835 3843 940 3667 0 0 −10 11

7 15,351 15,367 14,679 3752 0 0 21 −22

8 61,423 61,455 15,024 58,703 0 0 −42 43

Case 2: C3 (Mc) = (22n − 9)(2n − 1)

n C3 (B1) C3(B2) C3(B3) C3(B4) w1 w2 w3 w4

5 29,435 28,210 29,558 7192 0 1 0 0

6 241,133 59,094 241,636 230,580 0 1 0 0

7 1,948,625 1,863,344 1,950,656 476,250 0 1 0 0

8 15,660,953 3,830,610 15,669,112 14,967,480 0 1 0 0

w1 = 0, w2 = 0, w3 =
(−2n + 4

6

)

, w4 = 2n + 2

6

C2(B1) = (2n − 2n−4 − 1)(2n + 1),C2(B2) = (2n − 2n−4 + 1)(2n − 1),

C2(B3) = (2n + 3)

(
11(2n − 3) + 1

48

)

+ 2,

C2(B4) = (2n − 3)

(
43(2n + 3) − 1

48

)

+ 7 (17)

For the case n odd, we have

w1 = 0, w2 = 0, w3 = 2n − 2

6
, w4 = −

(
2n + 4

6

)

C2(B1) =
(
2n − 2n−4 − 1

)
(2n + 1),C2(B2) =

(
2n − 2n−4 + 1

)
(2n − 1),

C2(B3) = (2n + 3)

(
43(2n − 3) + 1

48

)

+ 7,

C2(B4) = (2n − 3)

(
11(2n + 3) − 1

48

)

+ 2 (18)
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Fig. 3 Reverse conversion method I for moduli set M5. a architecture, and b bit matrix corresponding to
computation of X (primes indicate inverted bits.) (LSBs are shown in the top figure, and MSBs are shown
in the bottom figure)
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For reverse conversion following (6), we need to compute

X =
[
C2(X)

(
22n − 9

)
+ w3m4r3 + w4m3r4

]
modMc (19)

after computingC2(X) from (5) usingC2(Bi ) values from (17) and (18) for n even and
odd, respectively. Note that in this case also, the maximum positive value of X before
reduction mod Mc in (19) is >Mc and can be negative also thus needing one addition
or subtraction of Mc. The typical C2(Bi ) and wi values in the case C2(Mc) = 22n − 1
for n = 5, 6, 7 and 8 are also presented in Table 2. Since the C2(Bi ) and wi values
cannot be expressed as simple sum of terms of the form 2z , it is preferable to use
read-only memory (ROM) to obtain (riC2(Bi )) mod C2(Mc) values from ROM8,
ROM9, ROM10 and ROM11. The ROMs ROM8 and ROM10 are of size 2n × 2n bits
and ROM9 and ROM11 are of size 2n+1 × (2n) bits. Next, the ROM output words
need to be added mod (22n − 1) using two 2n-bit CSA stages with EAC (CSA3 and
CSA4) followed by a 2n-bit CPA with end-around-carry (CPA2) as shown in Fig. 4a.
Next, corresponding to given r3 and r4 using ROMs ROM12 and ROM13, the values
s = w3m4r3, t = w4m3r4 can be obtained as shown in Fig. 4a. These are of size 2n ×
(3n) and 2n+1×(3n), respectively. Theweighting ofC2(X)with (22n−9) and addition
with the two terms obtained from ROMs ROM12 and ROM13 can be carried out by
mapping the bits of C2(X) denoted as c2, j and the outputs of ROM12 and ROM13 as
shown in the bit matrix in Fig. 4b. The bit mapping block 2 in Fig. 4a performs this
function. Note that dashes (′) indicate inverted bits. The addition is performed using a
three-level CSA tree 2 needing (5n+ 1)FA+ (2n− 2)XNOR/OR+ (2n− 2)HA. The
CSA tree 2 is followed by a mod Mc adder 2 using two cascaded 4n-bit CPAs needing
each 4nFA. The second stage performs optional addition or subtraction of Mc.

4.3.3 Case III

We next consider the case with core chosen as product of all moduli except m2. Thus,
we choose C3(M) = (2n − 1)(2n − 3)(2n + 3). In this case, note that only w4 exists.
Using the core value C3(M), we can find w4 from (2a) as 1:

wi =
((

1

(2n − 1)(22n − 9)

)

2n+1
(2n − 1)(22n − 9)

)

mod ((2n + 1) = 1 (20)

The remaining wi for i = 1, 2, 3 are zero. The various C(Bi ) values can be next
obtained as

C3(B1) = (2n − 2n−4 − 1)(22n − 9),C3(B2) = k(2n − 3) + 1

48
(2n − 1)(2n + 3),

C3(B3) = 15 × 23n−4 − 7 × 22n−3 − 137 × 2n−4 + 8,

C3(B4) = k′(2n + 3) − 1

48
(2n − 1)(2n − 3) (21)
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Fig. 4 Reverse conversion method II for moduli set M5. a architecture, and b bit matrix corresponding to
computation of X (primes indicate inverted bits.) (LSBs are shown in the top figure, and MSBs are shown
in the bottom figure)
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Table 3 Hardware requirement and conversion time of various converters for three-moduli sets

Design Moduli set Hardware requirements Delay

D1 Converter I (MRC) [8] M2 (4n+3)FA+nAND/OR+
nXOR/XNOR

(6n + 5)τFA

D2 Converter II (CRT) [8] M2 (14n + 21)FA + (2n +
3)HA + (2n + 1)3 :
1MUX

(2n + 7)τFA

D3 Converter III (CRT) [8] M2 (12n + 19)FA + (2p +
2)HA + 10(2n +
1)ROM + (2n + 1)2 :
1MUX

(2n + 7)τFA

D4 New converter (core function) M2 (10n+4)FA+(n+1)HA+
(3n + 1)MUX2 : 1

(7n + 7)τFA

D5 New converter (core function) M4 (4n2+6n+1)FA+(4n2+
2n − 1)AND+ 2nHA+
(4n + 2)2 : 1MUX∗

(11n + 2)τFA

D6 Converter [22] (CRT) M4 (3n2+6n+8)FA+(3n2+
n)AND + (n + 2)5 :
1MUX∗ + 4(n +
2)COMP

(9n + 9)τFA+ τ5:1MUX

∗n = log2(2m + 1)

where k and k′ for n even and odd are as defined in (13). Next from (21), the core can
be found from (5) as

C3(X) = (r1C3(B1) + r2C3(B2) + r3C3(B3) + r4C3(B4))(2n−1)(22n−9) (22)

and the decoded number is obtained as

X = C3(X)(2n + 1) + r2 (23)

Note that no final mod M reduction is needed in this case. The typical C3(Bi ) and wi

values in the case C3(Mc) = (2n − 1)(22n − 9) for n = 5, 6, 7 and 8 are presented in
Table 3. The reverse converter following (22) and (23) is presented in Fig. 5a. Note
that ROM14, ROM15, ROM16 and ROM 17 can be used to obtain, respectively, the
four 3n-bit words ri × C3(Bi ) for i = 1, 2, 3 and 4. Note that the ROMs 14 and
ROM 15 are 2n × 3n bits and ROMs 16 and 17 are 2n+1 × 3n bits. The output words
of the ROMs are added using 3n-bit CSAs CSA5 and CSA6 followed by a modulo
((22n − 9)(2n − 1)) adder using a (3n + 2)-bit CPA and a (3n + 2)-bit 2:1 MUX to
obtain C3(X). Note that an addition followed by two consecutive subtractions may
be needed for the modulo reduction to obtain C3(X). Next, X can be computed using
(23) by adding the three 3n-bit words shown in Fig. 5b.

Note that C3(X) is the 3n-bit word c3,3n−1c3,3n−2, . . . , c3,1, c3,0. The addition of
these words using a CSA7 followed by CPA3 needs (3n + 1) FAs and (3n − 1) HAs
after simplification due to the reason that several bits are zero.
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(a) 
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X 4n
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Fig. 5 Reverse conversion method III. a Architecture and b bit matrix corresponding to computation of X
(primes indicate inverted bits)

It is interesting to note that most reverse converter implementations based on CRT
obtained by subtracting one residue from the CRT sum and dividing by the corre-
sponding modulus or those reverse converters based on new CRT I compute X similar
to (23). The decoded number in new CRT I [40] can be obtained as

X = r2 + m2
(
(x3 − x2)a + m3b(x4 − x3) + m3m4c(x1 − x4)

)
M2

(24a)

where

a =
(

1

m2

)

m1m3m4

, b =
(

1

m2m3

)

m1m4

and c =
(

1

m2m3m4

)

m1

(24b)
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Note that a, b and c can be obtained as

a = 23n−4 − 22n−3 − 7 × 2n−4 + 1,

b = (2n+2 − α)(2n − 1)(2n + 3) − 1

2n+2 , and c = 2n − 2n−4 − 1 (24c)

where α is such that b is an integer. For n = 8, α = 171. Substituting these a, b and c
values in (24a) and collecting terms of r1, r2, r3 and r4, the multiplier of m2 in (24a)
can be seen to be C3(X). Thus, if we choose core C(M) as the product of all moduli

except one modulus, e.g., ma , denoting the decoded number as X = d
(

M
ma

)
+ ra ,

the core value C(X) is the MRC digit d. For all other choices of C(M),C(X), it is

approximate value of X
(
C(M)
M

)
.

4.4 Additional Remarks

We wish to point out that the values of wi and C(Bi ) can be easily obtained from the
CRT expansion itself. This can be seen by dividing the CRT expansion by M /C(M)

and observing the coefficients of ri which are mixed fractions. These can be rounded
or truncated depending on the fractional part being greater than 0.5 or less than 0.5.
This yields the C(Bi ) values and wi values since C(Bi ) + wi has to be same as the
coefficient of ri in ‘scaled’ CRT expansion given in (8).

Consider the four-moduli set M5 = {2n − 1, 2n + 1, 2n − 3, 2n + 3} =
{255, 257, 253, 259} for n = 8. Let the core chosen be C(M) = 255. Note that

the
(

1
Mi

)

mi
values are 239, 241, 58 and 232, respectively, for i = 1, 2, 3 and 4 from

(13a). The CRT expansion yields after division by Mc/C1(Mc) = 257× 253× 259,

X

257 × 253 × 259
= 239r1 + 239

32

257
r2 + 58

116

253
r3 + 228

108

259
r4

Note that truncation or rounding of the coefficients of r2, r3 and r4 can be performed.
The numerators of the fractions are the variouswi values. One or more of these can be
chosen as (mi −wi ) and corresponding integer part of the weight ofmi be incremented
by 1 so as to meet the condition (2b). Thus, we haveC(B1) = C(B2) = 239,C(B3) =
59,C(B4) = 228 and w1 = 0, w2 = 32, w3 = −137, w4 = 108. It may be verified
that (2b) is satisfied: 32× 255× 253× 259− 137× 255× 257× 259+ 108× 255×
257 × 253 = 255. Considering the given residues {1, 2, 3, 4}, the core value can be
obtained as 21 and the decoded number is X = 21 × 257 × 253 × 259 + 2 × 32 ×
253 × 259 − 3 × 137 × 257 × 259 + 4 × 108 × 257 × 253 = 358,574,626.

5 Comparison with Earlier Designs

In this section, hardware requirements as well as conversion times of the proposed
converters for the two three-moduli sets M2 and M4 and four-moduli set M5 are
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evaluated. The total resource requirements of proposed converter in terms of full-
adders, half-adders, gates such as exclusive ORs and the conversion time in terms
of full-adder delay are presented in Table 3 as entry D4 for moduli set M2. The
corresponding resource requirement and conversion time for designs reported in the
literature in [8] for moduli set M2 are also presented in Table 3 as entries D1–D3. The
technique used for reverse conversion in each of these converters is also given in Table
3. The design converter I (entry D1) is based on mixed radix conversion, whereas the
converters II (D2) and III (D3) designs are based on CRT. The design D3 uses ROM,
whereas the converters D1 and D2 need only combinational logic.

The recently described converter D6 [22] for the three-moduli set M4 based on a
modification of CRT has been shown to be area-efficient over the previous designs
[3] and [21]. Note, however, that the authors in [22] did not give the area in terms of
basic logic elements and described only an FPGA implementation. We consider the
use of array multipliers for both 2n × n multiplier as well as n × n multiplier where
n = log2 (2m + 1). We also consider that 5:1MUX is realized as a three-level cascade
of 2:1 multiplexers (MUX) (first level containing two 2:1 MUXes, second level 2:1
MUX combining the outputs of these two MUXes and a third level combining the
fifth input with the output of the second level 2:1 MUX). The total hardware and
conversion time requirements thus computed are presented as entry D6 in Table 3 for
this converter, whereas the corresponding requirements for the proposed converter are
presented in entry D5 in Table 3.

We have also considered state-of-the-art models for gates in terms of transistors
[13] for more realistic estimate of the performance. The transistors needed for various
gates and arithmetic cells are 20, 10, 8, 6, 4 and 2 for a full-adder, half-adder and
2:1 multiplexer/XOR/NOR logic elements, AND/OR, NAND/NOR and NOT gates,
respectively. Note that two-input gates have been considered in the above estimation.
Since some of the converters (converter III (entryD3) formoduli setM2 and converters
entries 4–7, 9, 10 for moduli set M5) need ROM, we need to estimate the number of
transistors needed for ROM. We use the model used by earlier authors [36] and [42].
Denoting the ROM requirements as θ × γ bits implying θ = 2n locations each γ

bit-wide, the number of transistors AROM required for implementing the ROM and
access time DROM are given as

AROM = θ × γ + 2a(a + 1) + 2b(b + 2)γ + (2b + 1)γ (25a)

and
DROM = (

1 + 2log2a + 2log2 (b + 1) + b
)
�g (25b)

where �g is the delay of a simple 2-input gate, a = �log2θ� and b = �log2θ�. Note
that design entry 3 of Table 3 needs 10(2n+1) ROMbits, whereas we have considered
16(2n+1) bits thus implying θ = 16, a = 4, b = 4 and γ = 2n+1. Thus, the number
of transistors needed can be obtained from (24a) as 10 (2n + 1) + 16 × (4 + 1) +
16× (4+ 2) × (2n + 1) + (16+ 1) × (2n + 1) or 246n + 203. The ROM access time
for various a and b values obtained from (24b) is presented in Table 4. The delays
of various logic elements in terms of �g (a two-input gate delay) are, respectively,
[26] for full-adder, half-adder, 2:1 MUX/XOR/XNOR, AND/OR, NAND/NOR and
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Table 4 ROM access time for different memory address ranges (2α)

α a b ROM delay �g α a b ROM delay �g

3 3 3 12 7 7 7 20

4 4 4 15 8 8 8 23

5 5 5 18 12 12 12 29

6 6 6 19 16 16 16 35

Table 5 Hardware requirements (number of transistors) and Conversion time of three-moduli converters

Design Moduli set Hardware Requirements
(number of transistors)

Delay (in units of �g)

D1 Converter I [8] (MRC) M2 94n + 60 24n + 20

D2 Converter II [8] (CRT) M2 332n + 466 8n + 28

D3 Converter III [8] (CRT) M2 276n + 408 + 246n + 203 8n + 43

D4 New converter (core function) M2 234n + 98 28n + 28

D5 New converter (core function) M4* 104n2 + 184n + 30 44n + 8

D6 Converter [22] (CRT) M4* 78n2 + 180n + 288 36n + 42

∗ n = log2(2m + 1)

NOT as 4, 2, 2, 1, 1 and 0. The total number of transistors and the conversion time
needed for all the three-moduli set converters using the models for ROM and various
gates obtained from Table 3 are presented in Table 5. The area in terms of number of
transistors for all the three-moduli converters for n = 3–32 is presented in Table 6.
The plots showing the area in number of transistors and conversion times for all the
designs for Moduli set M2 are presented in Fig. 6a, b and for moduli set M4 in Fig. 6c,
d, respectively.

Table 6 shows that among the converters for the moduli set M2, converter D1 using
MRC needs the lowest number of transistors, whereas the proposed design D4 based
on core function needs less area than the converters D2 and D3 based on CRT and
more area than the converter D1 using MRC. The conversion time of the proposed
converter design 4 is more than that of D1. The converters D2 and D3 need much
lower conversion time than the converter I using MRC. It can be concluded that the
D1 using MRC is preferable for low area and low conversion time than the proposed
design. Considering the two converters for the moduli set M4 in Table 6, it can be seen
that the converter based on core function D5 needs more area and conversion time
than converter D6 for n >3. For n increasing from 5 to 32, the area increases from 2
to 28% and the conversion time increases from 8 to 18%.

We next consider the reverse converters for the four-moduli set M5. The converter
proposed in [34] uses new CRT II by considering pairs of moduli {2n − 3, 2n + 1}
and {2n − 1, 2n + 3} in first level using MRC to obtain two intermediate numbers
followed by a second level also using MRC to obtain the final number. This design
uses large size ROMs together with combinational logic. The ROMmodel needs a =
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Table 6 Area (number of transistors) for three-moduli sets

n D1 M2 D2 M2 D3 M2 D4 M2 D5 M4 D6 M4

3 348 1462 2177 800 1518 1592

4 444 1794 2699 1034 2430 2360

5 540 2126 3221 1268 3550 3284

6 636 2458 3743 1502 4878 4364

7 732 2790 4265 1736 6414 5600

8 828 3122 4787 1970 8158 6992

9 924 3454 5309 2204 10,110 8540

10 1020 3786 5831 2438 12,270 10,244

11 1116 4118 6353 2672 14,638 12,104

12 1212 4450 6875 2906 17,214 14,120

16 1596 5778 8963 3842 29,598 23,744

24 2364 8434 13,139 5714 64,350 50,480

32 3132 11,090 17,315 7586 112,414 87,200
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Fig. 6 a Transistor requirement for moduli set M2, b conversion time of designs for moduli et M2, c
transistor requirement, d conversion time for moduli set M4 for three-moduli reverse converters or various
values of n
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Table 7 Hardware and conversion time comparison of converters for four-moduli set M5

Design Hardware requirements Conversion time T

D1 [34] (two-level MRC) (26n + 8)FA + (2n+5 +
32)nROM

(7n + 8)τFA + 2τROM

D2 ROM less CE [11] (two-level MRC) (25.5n + 12 +
(5n2/2))FA + 5nHA +
3nEXNOR + 3nOR

(18n + 23)τFA

D3 CI HS [11] ROM less (two-level MRC) (37.5n + 28 +
(5n2/2))FA + 5nHA +
3nEXNOR + 3nOR

(12n + 15)τFA

D4 C2 CE [11] (MRC with ROM) (20n + 17)FA + (3n −
4)HA+2n(5n+2)ROM

3τROM + (13n + 22)τFA

D5 C2 HS [11] (MRC with ROM) (42n + 61)FA + (3n −
4)HA+2n(5n+2)ROM

3τROM + (7n + 10)τFA

D6 C3 CE [11] (CRT with ROM) (23n + 11)FA + (2n −
2)HA+(6n+4)2nROM

(16n + 14)τFA + τROM

D7 C3 HS [11] (CRT with ROM) (35n + 17)FA + (2n −
2)HA+(6n+4)2nROM

(4n + 7)τFA + τROM

D8 Converter [26] (two-level MRC) (4n2 + 4n − (n/3) −
7)FA+(2n+11)HA+
(20n + 6n(logn) +
(8n + 2)INV + 2n3 :
1MUX

(6n + 2)τFA +
τH A + τMUX + (7 +
2(logn))τG + τTable2

D9 New method I (core function) (21n − 2)FA + 4HA +
(4n + 1)XNOR/OR +
(26n)2nROM

(10n + 6)τFA + τROM

D10 New method II (core function) (19n + 1)FA + (2n −
2)HA + (2n −
2)XNOR/OR +
(21n)2nROM

(12n + 5)τFA + τROM

D11 New method II (core function) (12n + 3)FA + (3n −
1)HA + 3n2 :
1MUX + (18n)2nROM

(13n + 8)τFA + τROM

�log2
(
2n+4 + 16

)� and b = �log2
(
2n+4 + 16

)� [26]. The hardware and conversion
time requirements in terms of basic components are presented in entry D1 in Table 7.
Converters for this moduli set using two-level MRC (same as new CRT II for four-
moduli RNS) and CRT are described in [11] which can be realized as cost-effective or
high-speed versions. Note that the high-speed designs realizemodulo addition (A+B)
mod mi by computing A+ B and A+ B −mi using two adders in parallel and based
on the sign bit of the result of the computation of (A + B − mi ), the correct output
among A + B and A + B − mi is selected. The two-level MRC-based designs use
same pairs of moduli as in [34] but use Montgomery algorithm to implement two-
moduli MRC algorithm using combinational logic. The cost-effective and high-speed
versions of these converters are presented as entries D2 and D3 in Table 7. The designs
using conventional MRC using ROM for both high-speed and cost-effective versions
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Table 8 Hardware requirements (number of transistors) and conversion times of converters for moduli set
M5

Design Hardware requirement Conversion time (units of �g)

1 [34] two-level MRC 552n+160+2n+5n+
2a(a + 1) + 2b(b +
2)n+(2b+1)n+160∗

24n + 17 + 2(log2n) + 8n − 36

2 CI ROM less
two-level MRC CE
[11]

50n2 + 602n + 240 72n + 92

3 CI ROM less HS
two-level MRC [11]

50n2 + 842n + 560 48n + 60

4 C2 CE [11] MRC
with ROM

430n + 300 + 2n(5n2 + 29n + 17) 52n + 88 + 3(1 + n + 4log2n)

5 C2 HS [11] MRC
with ROM

870n + 1180 + 2n(5n2 + 29n + 17) 28n + 40 + 3(1 + n + 4log2n)

6 C3 CE [11] CRT with
ROM

480n + 200 + 2n(6n2 + 38n + 40) 64n + 56 + (1 + n + 4log2n)

7 C3 HS [11]CRT with
ROM

720n + 320 + 2n(6n2 + 38n + 40) 16n + 28 + (1 + n + 4log2n)

8 Converter [11] 80n2 + 228n + 36n�log2n� − 26 32n − 17 + 2log2n

9 New method I (core
function)

478n + 8 + 2n(26n2 + 105n + 1) 40n + 24 + (1 + n + 4log2n)

10 New method II (core
function)

437n − 16 + 2n(21n2 + 85n + 1) 48n + 20 + (1 + n + 4log2n)

11 New method III (core
function)

312n + 50 + 2n [18n2 + 73n + 1] 52n + 32 + (1 + 4log2n)

∗a = �log2(2n+4 + 16)�, b = �log2(2n+5 + 16)�

are presented as entries D4 and D5 in Table 7. In both these designs, three levels of
table look-up are needed. The hardware and conversion time requirements of CRT-
based implementation using ROM for both high-speed and cost-effective versions are
presented as entries D6 and D7 in Table 7. Note that the designs 4–7 need 2n locations
for each ROM thus needing a = b = n. In the designs using CRT (entry 6 and entry 7),
only one level of table look-up is needed. The recent design of Jaberipur andAhmadifar
[26] uses combinational logic only and uses different pairing ofmoduli in the first level
{2n − 1, 2n + 1} and {2n − 3, 2n + 3} from that in [34] and [11]. The hardware and
conversion time of this converter are presented as entry D8 in Table 7. Finally, the
hardware and conversion time of the three converters based on core function using
C1(Mc) = 2n − 1,C2(Mc) = 22n − 1 and C3(Mc) = (2n − 1)(22n − 9) are presented
as entries D9–D11 in Table 7. The corresponding count of the number of transistors
needed taking into account the component and ROM models described before for all
the eleven designs for various values of n are presented in Table 8 for moduli set
M5 together with the corresponding conversion times. The plots showing the area
in number of transistors and the conversion times for all the eleven converters are
presented in Fig. 7a, b.
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Fig. 7 a Transistor requirement for all designs and b conversion times for reverse converters for moduli
set M5 for various values of n

Figure 7a andTables 7 and 8 show that among the converters based on core function,
the choice of core as one modulus (D9) leads to lower conversion time, whereas the
choice of core as product of three moduli (D11) leads to less area. The converter D8
[26] using two-level MRC needs lower hardware requirements and conversion times
than the proposed three converters based on core function. The designs D2 and D3
need less area than all the other converters. It can be concluded that the converter
D8 exhibits the best performance—low area and low conversion time. The proposed
converters D9–D11 need less conversion time than the designs D2, D3 and D5 using
MRC and 6 using CRT. Among these, for n values below 16, the converter 8 needs
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least area. The conventional MRC-based designs D4 and D5, CRT-based designs D6
and D7, and core function-based designs D9–D11 exhibit fast increase in hardware
requirements with increase in n. This results because of the large ROM requirement
due to the complicated structure of the various multiplicative inverses.

It is relevant to assess the various RNS to binary conversion methods. The MRC-
based converters need (k − 1) steps for a k-moduli RNS. Each step needs several
modulo subtractions followed by modulo multiplication with multiplicative inverses.
In the case of moduli of the type 2x −1, the modulo subtraction can be simplified using
adders with EAC. In the case of general moduli (2x ± a), the modulo subtractions
need cost-effective or high-speed modulo adders. In the case of moduli sets needing
simple multiplicative inverses having only few ‘’1” bits (many bits may be zero), the
multiplications modmi whenmi is 2x −1, the partial products are obtained by circular
left shift which can be added using CSA tree followed by a CPA with EAC. In the
case of modulus 2x ± a, other techniques need to be used where the MSB bits of the
partial products (bits beyond x bits) need to be reduced and added with LSB bits of
all partial products leading to increase in hardware as well as computation time. In the
case of general moduli, themodulomultiplicationwith themultiplicative inversesmay
need ROMs. Next parallel multiplications of the MRC digits di with constants such
as m1,m1m2,m1m2m3, . . . ,m1m2m3 . . .mk−1 and final addition of all the products
needs to be carried out for evaluating the final decoded number:

X = d0 + d1m1 + d2m1m2 + d3m1m2m3 + · · · + dn−1m1m2m3 . . .mn−1

(26)

In case of powers-of-two-related moduli sets, the weighting with these various con-
stants (products of moduli) can be carried out by having few partial product terms.
Using multiple level CSA and CPA, the addition of all these terms can be obtained. In
the case of general moduli sets, multipliers of various operand bit lengths (since word
lengths of the various constants are different) will be required tomultiply the constants
with the MRC digits obtained and final addition needs to be performed using a CSA
tree and CPA to obtain X . The advantage of MRC is that final modulo reduction is not
needed.

All other techniques of RNS to binary conversion CRT, new CRT II and core
function use some form of CRT. We consider CRT for three different cases. In the
first case where no modulus of the form 2k is present, the various Miri (1/Mi ) mod
mi can be computed in parallel and the sum S of these is reduced modulo M . This
technique, however, needs mod M reduction in a large number S. Alternatively, the
various Mi (ri (1/Mi ) mod mi )mod mi can be computed and the results added in a
modulo M adder. For a k moduli RNS, in the first case the sum of the various terms S
needs subtraction of a large multiple of M and the latter case needs subtraction of at
most (k − 1)M . Thus, the reduction in result modulo M is area- and time-consuming
even if the simpler latter option is chosen. In the second technique, subtracting one
of the residues r j corresponding to one modulus m j from the CRT summation and
dividing by m j , the modulo reduction is simplified to a smaller size word M/m j . The
result XH needs final multiplication withm j and addition of r j in a final adder. In case
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one modulus is of the form 2x , the final result can be obtained by concatenating the
result and ri without needing additional hardware. In some moduli sets, M/2x of the
form (2α −1), so that the modulo M/2x reduction can be easily carried out using end-
around-carry operations to obtain the MSBs XH of the decoded word. This advantage
is enjoyed by the moduli sets {2n, 2n + 1, 2n − 1}, {2n, 2n − 1, 2n + 1, 22n + 1},
{2n, 2n − 1, 2n + 1, 2n − 2n+1/2 + 1, 2n + 2n+1/2 + 1}, {2n, 22n − 1, 22n + 1}. In the
third case, e.g., moduli sets M2, M3 having one modulus of the type 2x but with the
product of the other moduli not of the form (2α − 1), e.g., moduli set M2, M3 and
M4, we need the difficult reduction modulo a large number M/2x . This increases the
conversion time and needs more hardware. In the general case like moduli set M5,
new CRT II can be used needing only modulo (M/ma) reduction wherema is any one
modulus in the moduli set. In this case, reduction modulo M/ma needs to be carried
out, but a final adder following (23) will be needed.

The use of core function for RNS to binary conversion aims to reduce themagnitude
of CRT summation<(k−1)M so that the multiple of M that needs to be subtracted to
perform reductionmodM can be reduced. The sum consists of two parts [see (6)] a first
part dependent on the core C(X) and the second part dependent on some of the given
residues ri and weights wi and modulimi . The choice of core of the form 2z − 1 or 2z

will simplify modulo reduction to obtain the core C(X) from (5). The various C(Bi )
are less than C(M), and if they are in simple form, multiplication with residues xi can
be carried out by shifting/complementing operations and reduction moduloC(M) can
be simplified. However, if the core C(M) is not of the two forms, the computation of
C(X) needs reduction modulo C(M) which leads to more hardware and conversion
time. The computation of the second part in (6) needs multipliers. Since one of the
weights is negative, the final result can be negative as well in which case, the modulo
reduction to obtain X needs addition ofM . The core function-based reverse conversion
needs invariably a final modulo M adder irrespective of whether one modulus is of
the form 2x or not. The choice of C(M) as one modulus or product of more moduli
leads to requirement of different size multipliers and adders in the two parallel paths
leading to area/conversion time trade-offs.

Thus, the choice of a particular technique MRC, CRT, new CRT II or core function
depends on the structure of the moduli, the simplicity of multiplicative inverses, the
simplicity of products of all moduli and/or simplicity of C(Bi ) values. For general
moduli sets where all the advantages of easy modular operations exist, CRT-based
methods or variations such as new CRT II and core function may be attractive as
evidenced by several interesting solutions. The choice of MRC is preferable in cases
where the area and conversion time needed for final reduction mod M or mod M/2k

needed in CRT or simplified CRT or core function-based conversion is compensated
by the sequential computation of the mixed radix digits and weighted summation of
the MRC digits. MRC facilitates comparison of numbers based on mixed radix digits
without needing final conversion, though in a sequential manner. In the case of general
moduli sets, all the techniques of reverse conversion need to be explored to arrive at
an acceptable solution.
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6 Conclusion

It has been shown that core function can be derived from CRT and is an approximate
version of CRT scaled by one modulus or product of several moduli. In the case of
choice of one modulus as ore, it has been shown that core function evaluates the mixed
radix digit approximately. It has been shown that the reverse conversion using core
function is exact and leads to new architectural options which need to be explored
for possible area–time trade-offs for any moduli set chosen. Three-moduli sets for
which RNS to binary conversion is more difficult than for the popular three-moduli set
{2n−1, 2n, 2n+1} are considered for evaluation of the efficiency of reverse conversion
using core function. The possible area (number of transistors) and conversion times
trade-offs have been discussed taking into account realistic models for various logic
gates as well as ROM. The choice of core as one modulus or product of two and three
moduli is also studied for the four-moduli set M5 to bring out the trade-offs between
area and conversion time. Just as the computation of mixed radix digit alone cannot
give the exact location of the given RNS number in the dynamic range of the RNS
to facilitate comparison or sign detection, core value alone cannot be accurately used
for comparison or sign detection except in the case when core is product of all but
one moduli. Accurate comparison and sign detection can be performed after reverse
conversion only.
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