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Abstract A novel normalized subband adaptive filter algorithm with combined step
size is proposed for acoustic echo cancellation, which is derived by utilizing a variable
mixing parameter to combine a large step size and a small one, thus providing fast con-
vergence rate and small steady-state error. The mixing parameter is indirectly updated
by utilizing the stochastic gradient method which minimizes the sum of squared sub-
band errors. Simulation results demonstrate the superiority of the proposed algorithm
in terms of the convergence rate and steady-state error as compared to other algorithms
mentioned in this paper.

Keywords Normalized subband adaptive filter algorithm · Combined step size ·
Sigmoidal activation function · Acoustic echo cancellation

1 Introduction

The normalized least-mean-square (NLMS) algorithm has been widely used in many
practical fields, such as system identification, acoustic echo cancellation (AEC),
channel equalization and channel estimation [7,25,26,31,33], owing to its low com-
putational complexity and ease of implementation. However, it converges slowly for
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the colored input signals [7]. In order to achieve a faster convergence rate, a normal-
ized subband adaptive filter (NSAF) algorithm has been proposed in [8]. The NSAF
decomposes the colored input and desired signals into multiple subbands and then
decimates these subband signals to achieve the decorrelating for the colored signal,
and therefore achieves an improved convergence rate [9]. In addition, the compu-
tational complexity of the NSAF is similar to that of the NLMS, especially for the
adaptive filter with a long impulsive response. Therefore, based on these properties,
an important application of the NSAF is AEC. Unfortunately, similar to the NLMS
algorithm, the NSAF also requires a compromise between fast convergence rate and
small steady-state error, due to the use of a fixed step size.

One technique to solve the problem is to use the variable step size (VSS) instead
of the constant step size in the original NSAF algorithm [1,4,17,28,29,32,34]. A set-
membership NSAF (SM-NSAF) has been proposed in [1], which can be viewed as a
variant of the VSS-type algorithms. However, we need to conduct many experiments
to obtain a desired convergence performance in that the performance of the SM-NSAF
is very sensitive to the choice of the error bound. In [17], the variable step size matrix
NSAF (VSSM-NSAF) has been developed, whose performance is superior to that of
the SM-NSAF in terms of the convergence rate, tracking capability and steady-state
error. Regrettably, this algorithm still has a large steady-state error. Follow this line of
thought, two variable step size NSAF algorithms have been derived in [29] and [4], by
minimizing the mean square deviation (MSD) at each iteration. The difference is that
the latter has the capability of tracking for non-stationary system,while the former only
works well in stationary environment. As an improved version of [29], a new variable
step size NSAF has been proposed in [28], which utilizes the individual step size in
each subband instead of using a common step size in all subbands. Recently, a novel
variable step size NSAF (NVSS-NSAF) has been proposed in [32], which derives an
individual step size for each subband by minimizing the mean square of a posterior
subband error. Nevertheless, these VSS algorithms presented in [1,4,28,29,32] must
know the variances of the subband system noises in advance.

Another way is to use the convex combination of two adaptive filters, in which one
adaptive filter provides fast convergence rate and the other one ensures small steady-
state error [2,3,11–15,27,30]. In [16], the convex combination NSAF (CNSAF)
algorithm has been proposed which achieves fast convergence rate and small steady-
state error simultaneously without knowing the powers of the subband system noises.
To further improve the transient performance of the CNSAF algorithm, an improved
CNSAF (called ICNSAF) with transfer of weight has also been proposed in [16].
However, a common problem for these convex combination algorithms is a larger
computational burden since two adaptive filters are run at the same time.

Benefiting from the convex combination idea, this paper derives a combined step
size NSAF (CSS-NSAF) algorithm which combines a large step size and a small one
via a time-varying mixing parameter, and it is indirectly obtained by minimizing the
sum of squared subband errors through a modified sigmoidal function. It is worth
mentioning that compared to these existing convex combination algorithms, the pro-
posed algorithm only requires a single filter update and thus significantly reduces the
computational cost.
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2 Background on NSAF

Consider the desired response d(n) originated from an unknown system

d(n) = uT (n)wo + η(n) (1)

where wo denotes an unknown L × 1 vector to be estimated, u(n) = [u (n) ,

u(n − 1), . . . , u(n − L + 1)]T is the input vector, and η(n) stands for the white
measure noise with zero mean and variance σ 2

η .
Figure 1 shows the structure of the NSAF, where the input signal u(n) and

desired response d(n) are partitioned into subband signals ui (n) and di (n) by
using the analysis filters {H0(z), H1(z), . . . , HN−1(z)}, respectively, and N denotes
the number of subbands. The subband output signals yi (n) are obtained by filter-
ing ui (n) through the adaptive filter whose weight vector is denoted as w(k) =
[w0(k), w1(k), . . . , wL−1(k)]T . Then, the subband signals yi (n) and di (n) are criti-
cally decimated to generate signals yi,D(k) and di,D(k), respectively, where we use n
and k to indicate the original sequences and the decimated sequences. The i th subband
error signal is defined as ei,D(k) = di,D(k) − uTi (k)w(k). The weight vector of the
NSAF algorithm is updated by [8]

w(k + 1) = w(k) + μ

N−1∑

i=0

ui (k)

uTi (k)ui (k) + δ
ei,D(k) (2)

where ui (k) = [ui (kN ), ui (kN − 1), . . . , ui (kN − L + 1)]T , μ is the step size, and
δ is the regularization parameter to avoid division by zero.

Fig. 1 Structure of the NSAF filter
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3 Proposed CSS-NSAF Algorithm

Supposing a large step size μ1 and a small one μ2, i.e., 0 < μ2 < μ1, the weight
vector w(k) is updated to w1(k + 1) and w2(k + 1), respectively, as follows

w1(k + 1) = w(k) + μ1

N−1∑

i=0

ui (k)

uTi (k)ui (k) + δ
ei,D(k) (3)

w2(k + 1) = w(k) + μ2

N−1∑

i=0

ui (k)

uTi (k)ui (k) + δ
ei,D(k). (4)

By using a variable mixing parameter λ(k), the updated weight vectors w1(k + 1)
and w2(k + 1) can be combined as

w(k + 1) = λ(k)w1(k + 1) + (1 − λ(k))w2(k + 1) (5)

where 0 ≤ λ(k) ≤ 1. Substituting (3) and (4) into (5), we obtain the update formula
of the weight vector of the proposed CSS-NSAF

w(k + 1) = w(k) + μ(k)
N−1∑

i=0

ui (k)

uTi (k)ui (k) + δ
ei,D(k) (6)

where μ(k) = [λ(k)μ1 + (1 − λ(k))μ2] denotes the combined step size and μ(k) is
expected to obtain the values of μ1 and μ2 when λ(k) is equal to 1 and 0, respectively,
making the proposed CSS-NSAF algorithm obtain both fast convergence speed with
the large step size μ1 and small steady-state error with the small one μ2. In order
to constrain the value of λ(k) in the closed interval [0, 1], we introduce an auxiliary
variable α(k) via a modified sigmoidal activation function as follows [3]

λ(k) = C

1 + e−α(k)
−

(
C

2
− 1

2

)
(7)

where C (C > 1) is a positive constant and α(k) is limited as

α(k) =

⎧
⎪⎪⎨

⎪⎪⎩

− ln
(
C+1
C−1

)
if α(k) < − ln

(
C+1
C−1

)

ln
(
C+1
C−1

)
if α(k) > ln

(
C+1
C−1

)

α(k) otherwise

. (8)

It should be noted that if α(k) is equal to − ln(C+1
C−1 ) and ln(C+1

C−1 ), λ(k) can get
0 and 1, respectively. Next, by means of the gradient descent method, we minimize
the sum of squared subband errors, i.e.,

∑N−1
i=0 e2

i,D
(k), to recursively update α(k) as

follows
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Table 1 Proposed CSS-NSAF algorithm

α(k) = α(k − 1) − μα

2

∂

[
N−1∑
i=0

e2
i,D

(k)

]

∂α(k − 1)
= α(k − 1) + μα(μ1 − μ2)λ(k − 1)(1 − λ(k − 1))

×
N−1∑

i=0

ei,D(k)uTi (k)
N−1∑

i=0

ui (k − 1)ei,D(k − 1)

uTi (k − 1)ui (k − 1) + δ
(9)

where μα is the step size. In order to prevent the update process of α(k) from stalling
whenever λ(k) is equal to 0 or 1, we modify (9) as

α(k) = α(k − 1) + μα(μ1 − μ2)[λ(k − 1)(1 − λ(k − 1)) + ε]

×
N−1∑

i=0

ei,D(k)uTi (k)
N−1∑

i=0

ui (k − 1)ei,D(k − 1)

uTi (k − 1)ui (k − 1) + δ
(10)

where ε is a very small positive constant. The proposed CSS–NSAF algorithm is
summarized in Table 1.

Remark 1 It should be pointed out that the mixing parameter λ(k) is updated by a
modified sigmoidal function, which is quite different from the common sigmoidal
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Table 2 Computational complexity of the various NSAF-type algorithms

Algorithms Multiplications Comparisons Additions

NSAF 3L + 3NK + 1 – 3L + 3NK − 3N + 3

NVSS-NSAF 3L + 3NK + 4 1 3L + 3NK − 3N + 5

ICNSAF 4L + 3NK + 4N + (L + 5)/N + 3 – 6L + 6NK − 5N + L/N + 7

CSS-NSAF 3L + 3NK + 5 2 3L + 3NK − 3N + 8

function of other existing convex combination algorithms [12,13]. This modification
makes the combined step sizeμ(k) of the proposed CSS-NSAF get the values of large
step size and small one, bringing about a significant improvement in terms of the
convergence rate and steady-state error.

4 Computational Complexity

In Table 2, the computational complexity of the proposed CSS-NSAF algorithm is
compared with that of the NSAF [8], NVSS-NSAF [32] and ICNSAF [16] in terms
of the total number of multiplications, comparisons and additions, where K stands
for the length of the analysis and synthesis filters. We can see from Table 1 that the
numbers of multiplications for calculating the subband error signals and for updating
the weight vector of the CSS-NSAF are 3L + 1, and simultaneously CSS-NSAF
needs 3NK multiplications to analyze and synthesize signals. Since the calculation
of the accumulation in (10) does not require extra computational cost, (10) only needs
4 multiplications to update α(k). Thus, a total of 3L + 3NK + 5 multiplications
are required for the CSS-NSAF. Besides, the CSS-NSAF needs 2 comparisons and
3L+3NK −3N +8 additions as well. Since in many situation of AEC, L is typically
more than one thousand and is significantly larger than the product NK, the number of
multiplications could be approximated as 3L , which is apparently lower than that of the
ICNSAFwith about 4L . This illustrates the merit of decrease in computational burden
of the proposed CSS-NSAF algorithm and the validity on the implementation issue
of the AEC applications. The reason why the CSS-NSAF has a lower computation
cost is that it only needs a single filter update instead of performing two filter updates
simultaneously in the traditional convex combination method.

Remark 2 Here we discuss multiplications and additions of implementing the pro-
posed CSS-NSAF algorithm in field programmable gate array (FPGA) and using chip
EP4CE10F17C8N, which has at least 100 multipliers and 300 adders. Time division
multiplexing (TDM) technique is used to reduce the complexity of the proposed algo-
rithm. Supposing the length of the measured acoustic echo path is set to L = 1024
and the clock cycle is 2× 10−7s, thus, about 105 multiplications and 2.5× 105 addi-
tions can be performed within 1 s. Considering the actual situation, approximately 104

iterations can be done within 1 s based on a conservation estimate, which is feasible
in practical applications.
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5 Simulation Results

To verify the performance of the proposed CSS-NSAF, simulations are performed in
the context of AEC. The unknown vector wo is illustrated in Fig. 2a with L = 512
taps. To compare the tracking capability of these algorithms, the unknown vector is
changed to −wo in the middle of iterations. It is assumed that adaptive filter has the
same length as the unknown vector. The input signal is either a zero-mean white
Gaussian signal, or an AR(1) signal generated by filtering a white Gaussian noise
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Fig. 2 aMeasured acoustic echo path with L = 512 taps, b speech signal for echo cancellation experiment
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through a first-order autoregressive system with a pole at 0.9, or a speech input signal
which is depicted in Fig. 2b. A four-band cosine-modulated filter bank is used [32]. A
white Gaussian noise is added to the unknown system output as a background noise
with a signal-to-noise ratio (SNR) of 20 or 30 dB. The performance is measured by
the normalized MSD (NMSD), defined as 20 log10

[‖wo − w(k)‖22 / ‖wo‖22
]
, which is

used as the performance design criteria to compare the NSAF, NVSS-NSAF, CNSAF,
ICNSAF and the proposed CSS-NSAF algorithms. All simulated learning curves are
obtained by ensemble averaging over 50 independent trails, except for the speech input
signal (one trial).

5.1 White Input

Figure 3 illustrates the NMSD learning curves of the standard NSAF [8], NVSS-
NSAF [32], CNSAF [16], ICNSAF [16] and the proposed CSS-NSAF algorithms. In
this simulation, a white Gaussian signal is used as the input signal and the SNR is
20dB. For a fair comparison, the parameters of these algorithms are chosen according
to the recommended values in the literature. We can see that although the convergence
speed of the proposed CSS-NSAF is slightly slower than that of the NVSS-NSAF, the
CSS-NSAF still achieves a significant smaller steady-state NMSD than the NVSS-
NSAF algorithm, and the proposed algorithm outperforms the NSAF, CNSAF and
ICNSAF algorithms in terms of the convergence rate, tracking capability and steady-
state NMSD. Here we should owe the performance improvement of the CSS-NSAF to
the modified sigmoidal function, letting the proposed CSS-NSAF algorithm obtains
fast convergence speed with the large step size μ1.

0 0.5 1 1.5 2 2.5 3

x 10
5

-50

-40

-30

-20

-10

0

10

Iteration number

N
M

S
D

(d
B

)

NSAF(µ=1.00)

NSAF(µ=0.02)
NVSS-NSAF

CNSAF(µ1=1.00,µ2=0.02)

ICNSAF(µ1=1.00,µ2=0.02)

CSS-NSAF(µ1=1.00,µ2=0.02)

Fig. 3 NMSD learning curves of NSAF [8], NVSS-NSAF [32], CNSAF [16], ICNSAF [16] and the
proposed algorithm for white Gaussian input signal with SNR = 20 dB. NVSS-NSAF: λ = 4, κ = 1;
CNSAF: μα = 50; ICNSAF: μα = 50; CSS-NSAF: μα = 200



Circuits Syst Signal Process (2017) 36:2991–3003 2999

0 0.5 1 1.5 2 2.5 3

x 10
5

-60

-50

-40

-30

-20

-10

0

10

Iteration number

N
M

S
D

(d
B

)

NSAF(µ=1.00)

NSAF(µ=0.02)
NVSS-NSAF

CNSAF(µ1=1.00,µ2=0.02)

ICNSAF(µ1=1.00,µ2=0.02)

CSS-NSAF(µ1=1.00,µ2=0.02)

Fig. 4 NMSD learning curves of NSAF [8], NVSS-NSAF [32], CNSAF [16], ICNSAF [16] and the
proposed algorithm for white Gaussian input signal with SNR = 30 dB. NVSS-NSAF: λ = 4, κ = 1;
CNSAF: μα = 200; ICNSAF: μα = 200; CSS-NSAF: μα = 550

In Fig. 4, the SNR is increased to 30dB and still the same input signal is used.
As expected, the proposed CSS-NSAF still has an improvement in the convergence
speed, steady-state NMSD as well as the tracking capability as compared to the NSAF,
NVSS-NSAF, CNSAF and ICNSAF algorithms. Besides, by contrasting Fig. 4 with
Fig. 3, it can be observed that the steady-state NMSD of the proposed CSS-NSAF
algorithm decreases as the SNR increases.

5.2 AR(1) Input

Figures 5 and 6 compare the performance of the CSS-NSAF with that of the NSAF,
NVSS-NSAF, CNSAF and ICNSAF algorithms for AR(1) input signal with the SNR
20dB and 30 dB, respectively. These simulation results with AR(1) input signal are
similar to those with white input signal in Figs. 3 and 4, which verify the effectiveness
of the proposed CSS-NSAF. The results is predictable because a modified sigmoidal
function is used instead of the common sigmoidal function in other existing con-
vex combination algorithms, which guarantees that the proposed algorithm is able
to achieve faster converge rate than the NSAF, NVSS-NSAF, CNSAF and ICNSAF
algorithms. Likewise, the larger the SNR value, the smaller the steady-state NMSD
for AR(1) input signal.
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Fig. 5 NMSD learning curves of NSAF [8], NVSS-NSAF [32], CNSAF [16], ICNSAF [16] and the
proposed algorithm for AR(1) input signal with SNR = 20 dB. NVSS-NSAF: λ = 4, κ = 1; CNSAF:
μα = 20; ICNSAF: μα = 20; CSS-NSAF: μα = 20
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Fig. 6 NMSD learning curves of NSAF [8], NVSS-NSAF [32], CNSAF [16], ICNSAF [16] and the
proposed algorithm for AR(1) input signal with SNR = 30 dB. NVSS-NSAF: λ = 4, κ = 1; CNSAF:
μα = 100; ICNSAF: μα = 100; CSS-NSAF: μα = 100

5.3 Speech Input

Figure 7 shows the NMSD learning curves of the standard NSAF [8], NVSS-NSAF
[32], CNSAF [16], ICNSAF [16] and the proposed CSS-NSAF algorithms for the
speech input signal. The used speech signal is depicted in Fig. 2b, and the SNR is
30dB. Note that the regularization parameters with the speech input are set to 15σ 2

u
for all algorithms, where σ 2

u is the power of the input signal. With the benefit of the
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Fig. 7 NMSD learning curves of NSAF [8], NVSS-NSAF [32], CNSAF [16], ICNSAF [16] and the
proposed algorithm for speech input signal with SNR = 30 dB. NVSS-NSAF: λ = 4, κ = 1; CNSAF:
μα = 100; ICNSAF: μα = 100; CSS-NSAF: μα = 100

modified sigmoidal function, one can see that the proposed algorithm performs much
better than the NSAF, NVSS-NSAF, CNSAF and ICNSAF algorithms with respect to
the convergence rate and steady-state NMSD.

6 Conclusion

A novel combined step size NSAF (CSS-NSAF) algorithm has been proposed for
acoustic echo cancellation (AEC) applications in this paper, which has the following
advantages.

– By minimizing the sum of squared subband errors, the mixing parameter is indi-
rectly updated through a modified sigmoidal function, which is quite different
from the common sigmoidal function of other convex combination techniques.
This modification makes the combined step size achieve the values of large step
size and the small one, making the proposed CSS-NSAF algorithm obtain fast con-
vergence rate with the large step size and small steady-state error with the small
one.

– Compared with other convex combination methods, the proposed algorithm has
a lower computational complexity in that it only requires a single filter update,
demonstrating the efficiency on the implementation issue of the AEC applications.
Simulation results in the context ofAEC show that the proposed algorithmachieves
better performance than other algorithms mentioned above.

– Although the CSS-NSAF algorithm in this paper essentially belongs to linear
adaptive filtering scheme for AEC applications, it also can be extended to the
nonlinear model [20], fuzzy-model-based general nonlinear systems [18,19,21,
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22], Volterra-model-based nonlinear system identification and AEC [6,10,23,24]
and other fields [5] in the future.

– Filtering design of fuzzy-model-based with signal quantization is an important
problem in nonlinear networked control system [21]. Therefore, it remains a future
work to generalize the proposed adaptive filter algorithm for solving this practical
application problem.
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