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Abstract In this paper, we propose a new expectation-maximization (EM) algorithm,
named GMM-EM, to blind separation of noisy instantaneous mixtures, in which the
non-Gaussianity of independent sources is exploited by modeling their distribution
using theGaussianmixturemodel (GMM). The compatibility between the incomplete-
data structure of the GMM and the hidden variable nature of the source separation
problem leads to an efficient hierarchical learning andalternativemethod for estimating
the sources and the mixing matrix. In comparison with conventional blind source
separation algorithms, the proposedGMM-EMalgorithmhas superior performance for
the separation of noisymixtures due to the fact that the covariancematrix of the additive
Gaussian noise is treated as a parameter. Furthermore, the GMM-EM algorithmworks
well in underdetermined cases by incorporating any prior information one may have
and jointly estimating the mixing matrix and source signals in a Bayesian framework.
Systematic simulations with both synthetic and real speech signals are used to show
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the advantage of the proposed algorithm over conventional independent component
analysis techniques, such as FastICA, especially for noisy and/or underdetermined
mixtures. Moreover, it can even achieve similar performance to a recent technique
called null space component analysis with less computational complexity.

Keywords Blind source separation · Gaussian mixture model · Expectation-
maximization · Underdetermined mixture

1 Introduction

Blind source separation (BSS) aims to estimate unknown sources from the observed
sensor signals without (or with very limited) prior information about the sources and
how the sources propagate to the sensors. It has drawn great attention due to its wide
range of applications in signal processing. Many algorithms have been developed to
solve the BSS problem based on the assumption that the sources to be recovered are
statistically independent, leading to a family of well-known methods called indepen-
dent component analysis (ICA) [1,2,5,6,23,41], such as the informationmaximization
based Infomax algorithm [5], the joint approximate diagonalization of eigenmatrices
(JADE) algorithm [23] and the FastICA algorithm [41]. However, most of the ICA
methods are developed for the case of determined/overdetermined mixtures (i.e., the
number of sources P is equal to or smaller than the number of sensors Q), and consider
a noiseless source separation model. These methods are not directly applicable to the
problem of source separation from noisy and/or underdetermined mixtures.

There have been a number of attempts to extend the ICA approach in order to
address the noisy and/or underdetermined BSS problem, such as the noise-model-
based FastICA algorithm [26], cumulant-based separation algorithms [22,36], and
the characteristic functions-based blind identification methods [10,15,24,27]. These
methods have offered new ideas for estimating the mixing system; however, their per-
formance is still limited for recovering the source signals. The underdetermined source
separation problem is, in particular, very challenging since, as opposed to dealing with
determined/over-determined mixtures, even provided with the information about the
mixing system, the sources cannot be uniquely reconstructed, simply because, for
P > Q, where P is the number of sources and Q is the number of sensors, the mixing
matrix is not invertible. In contrast to the ICA approach, the recently proposed null
space component analysis (NCA) approach can solve the noisy and/or underdeter-
mined BSS problem effectively [21,32]. Given a set of signals, the NCA approach
constructs an operator for each signal so that only the signal of interest is in the oper-
ator’s null space, and all the other signals are excluded. Furthermore, an additional
constraint on the rank of the operators is imposed to remove the rotation ambiguity.

In fact, the methods discussed above can be considered as special cases under
the Bayesian framework. In a Bayesian technique, a statistical model defined by a
set of parameters is used to describe the source separation problem [8,13,14,31].
The parameters of the model can be inferred from the acquired data, with the help
of some prior information about the physical system under consideration. As com-
paredwith the classical ICAmethods [1,2,5,6,23,41], theBayesian approach provides
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advantages in several scenarios. For example, the Bayesian approach is often much
more robust to noise since the noise levels in the data are taken into account through
the parameterization of the noise covariance matrix within the Bayesian model [8,13].
Second, the Bayesian approach also enables any prior knowledge about the physical
application systems to be exploited in the model where appropriate prior distributions
for the unknown parameters can be assigned.Moreover, the BSS problem can be refor-
mulated as a problem of joint maximum a posteriori (MAP) probability estimation of
the mixing matrix and the sources, and as a result, the Bayesian approach can be
extended to address the underdetermined BSS problem [14,31].

Under theBayesian framework, a number ofBSSapproaches have been presented in
the literature. Belouchrani et al. [3] developed amaximum-likelihood (ML)method for
jointly estimating the mixing matrix and noise covariance matrix via the expectation-
maximization (EM) algorithm [18,19] where the sources are drawn from a finite
alphabet set. However, many natural signals, such as speech signals, are continuous
signals (rather than the discrete sources). It has been shown in [20] that many PDFs
can be closely approximated by a finite-order Gaussian mixture model (GMM) via
the Kullback–Leibler (KL) divergence [4]. Following this route, several GMM-based
BSS approaches have been proposed. For example, an approximate ML approach was
developed byMoulines et al. [38] for blind separation and deconvolution of noisy linear
mixtures. Thismethod primarily considered the use ofGMMs tomodel the distribution
of sources, and the parameters of this model, along with the unknown mixing matrix
were optimized to best represent the observed data. Some related works can also be
found in [3,13,14,17,31,42], in which different mixture models, such as generalized
Gaussian mixture model [3], are used. The application of these models for blind sepa-
ration of underdetermined mixtures has been studied in [3,14,31]. On the other hand,
an alternative strategy, in which the GMM is fitted to the observed data, rather than the
sources, is developed in [33,40]. In this approach, the mixtures are separated by find-
ing the rotation matrix that approximately diagonalizes all of the correlation matrices
resulting from the GMM. However, it is limited to the noiseless determined case.

Recently, we proposed an EM algorithm for separating noisy determined /underde-
terminedmixtureswith non-stationary sources, inwhich the continuous density hidden
Markov model (CDHMM) is used to model the PDF and to track the non-stationarity
of the sources [11]. Preliminary study on synthesized data has shown great potentials
of this algorithm, despite the challenge in initializing appropriately the large number
of hyper-parameters in practical scenarios. In practice, the distribution model plays
a vital role in Bayesian approach. On one hand, the distribution model is required to
depict as many distribution forms as possible to make the approach more flexible and
to potentially improve separation performance. On the other hand, it is also required to
involve as few parameters as possible such that the Bayesian approach can be imple-
mented easily. Hence, there is a trade-off between the generalization of the distribution
model and estimation precision.

In this paper, we also consider the challenging noisy and/or underdetermined BSS
problem. In order to address the above issue,we propose to exploit the non-Gaussianity
of the sources by modeling their distributions using a GMM, and to incorporate prior
information by assigning conjugate priors for the parameters of the GMM and mixing
matrix for improving the separation performance. In such a case, the BSS problem can
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be treated as a problem of estimating parameters from incomplete data. The EM algo-
rithm is probably the most well-known algorithm for obtaining the ML estimates
in parametric models for incomplete data. It is an iterative algorithm alternating
between the E-step and M-step, respectively. In the E-step, the conditional expec-
tation of the complete-data log-likelihood is computed on the basis of the observed
data and parameter estimates. In the M-step, the parameters are estimated by maxi-
mizing the complete-data log-likelihood from the E-step. Therefore, an EM algorithm
is proposed for obtaining the MAP estimates of the mixing matrix, the sources and
the noise covariance matrix in a joint manner. Although there are some similar works
in the literature, our approach differs from these works in the following aspects. First,
different from [38], the conjugate priors used for incorporating prior information have
not been considered. Second, as opposed to the variational Bayesian method in [42], a
new GMM-EM method is used to obtain the MAP estimates of the sources and para-
meters due to its advantage of providing fast and stable convergence [9]. Thanks to
the prior information incorporated by the conjugate priors, the proposed EM method
works well even for underdetermined mixtures. Third, in comparison with the method
based on CDHMM [11], the proposed GMM-EM method is easier to implement.

The remainder of this paper is organized as follows. In Sect. 2, the BSS problem and
the assumptions made in our work are presented. The source distribution model based
on GMM is given in Sect. 3. The notations describing the prior laws for the mixing
coefficients, noise covariancematrix and themodel parameters are presented in Sect. 4.
In Sect. 5, a new GMM-EM algorithm is derived for the estimation of the mixing
coefficients, the noise covariancematrix and themodel parameters, in order to estimate
the source signals. Issues regarding the practical implementation and performance of
the proposed algorithm are discussed in Sect. 6, where the initialization scheme for the
parameters, the convergence performance and computational complexity are analyzed.
In Sect. 7, simulations are provided to show the performance of the proposed algorithm.
Finally, conclusions are drawn in Sect. 8.

2 Problem Formulation

We consider the well-known instantaneous linear mixing model given as [41]

x(t) = As(t) + w(t), t = 1, . . . , T (1)

The random vector s(t) = [s1(t), . . . , sP (t)]T, representing P statistically inde-
pendent sources at discrete time instance t , is mixed by a time-invariant unknown
mixing matrix A, where (·)T denotes transpose operator. The observation vector
x(t) = [x1(t), . . . , xQ(t)]T is obtained from an array of Q sensors and contaminated
by the noise vector w(t) = [w1(t), . . . , wQ(t)]T which is assumed to be Gaussian
white with zero mean and unknown covariance matrix Rw = diag([σ 2

1 , . . . , σ 2
Q]) and

independent of s(t), where diag(·) is an operator for forming a diagonal matrix with
the elements of the specified vector on the main diagonal.

Different from the determined and/or noiselessmodels investigated inmany existing
contributions, here, we consider the more practical situations where the mixtures may
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be corrupted by noise or the mixing system is underdetermined. Our objective in this
paper is therefore to develop an algorithm for recovering the source signals from noisy
and/or underdetermined mixtures. To this aim, we propose to reconstruct the source
signals {s(t)}t=1,...,T and the mixing matrix A in a joint manner under the Bayesian
framework on the basis of the observed signals {x(t)}t=1,...,T and the assignment of
some prior information.

3 Source Distribution Model

This section describes the source model based on GMM. The PDF of the i th source
signal at time instance t is modeled by the GMM as follows

fs (si (t), θ i ) =
Ni∑

li =1

αi,liN
(

si (t);μi,li , σ
2
i,li

)
, i = 1, . . . , P (2)

where N (·; ·, ·) denotes a Gaussian density function and Ni denotes the number of
Gaussians. The mixing weights are denoted by {αi,li }Ni

li
, such that

∑Ni
li =1 αi,li = 1.

The means and variances of the Gaussians are denoted by {μi,li }Ni
li

and {σ 2
i,li

}Ni
li
,

respectively. Assuming that the source signals are statistically independent, the joint
PDF of the sources can be formulated as follows [17]

fs (s(t);Θ) =
P∏

i=1

fs (si (t); θ i )

=
N1∑

l1

α1,l1N
(

s1(t);μ1,l1 , σ
2
1,l1

)

N2∑

l2

α2,l2N
(

s2(t);μ2,l2 , σ
2
2,l2

)

. . .

NP∑

lP

αP,lPN
(

sP (t);μP,lP , σ 2
P,lP

)

=
N1∑

l1

N2∑

l2

· · ·
NP∑

lP

ωl1,l2,...,lP

N
(
[s1(t), s2(t) . . . , sP (t)]T ;

[
μ1,l1 , μ2,l2 , . . . , μP,lP

]T
,

diag
(
σ 2
1,l1 , σ

2
2,l2 , . . . , σ

2
P,lP

))

=
M∑

m=1

ωmN
(
s(t);μm,Cm

)
(3)
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where M = ∏P
i=1 Ni is the total number of Gaussians in the joint PDF and

ωm = ∏P
i=1 αi,li ; m = 1, . . . , M are the mixing weights of each Gaussian com-

ponent such that
∑M

m=1 ωm = 1. The index denotes a unique combination of
the Gaussian components from each source, i.e., l1, . . . , lP → m, where li ∈
{1, . . . , Ni } denotes a Gaussian index of the source. The mean vector and covari-
ance matrix of the Gaussian are denoted by μm = [μ1,l1 , μ2,l2 , . . . , μP,lP ]T and
Cm = diag(σ 2

1,l1
, σ 2

2,l2
, . . . , σ 2

P,lP
), respectively. It can be observed from (3) that the

joint PDF of the sources is a multivariate GMM parameterized by a diagonal covari-
ance matrix [11].

4 Choices of Prior Densities

In this section, we discuss how to choose the prior distributions to incorporate prior
information for improving the performance of blind separation. The prior distribution
is used to attribute uncertainty rather than randomness to the unknown parameter or
latent variable. The hyper-parameters of the priors are chosen to reflect any existing
information. In the Bayesian framework, the aim for solving BSS problem is to obtain
the posterior distribution of the relevant parameters. Generally, let z be a random
variable, and ϑ be the relevant parameter. According to the Bayesian theorem, the
posterior distribution can be represented as the product of the likelihood function
f (z|ϑ) and prior f (ϑ), normalized by the probability of the data f (z)

f (ϑ |z) = f (z|ϑ) f (ϑ)∫
f (z|ϑ) f (ϑ)dϑ

(4)

The likelihood function is usuallywell determined from the data-generating process
and can be considered fixed. Therefore, the difficulty in calculating the integral in the
denominator in the right-hand side (RHS) of the above equation will depend on the
choice of the prior distributions. With conjugate priors,1 the posterior distribution will
have the same algebraic form as the prior distribution (but with different parameter
values and also depending on the likelihood function if the form of the likelihood
function is varied). This essentially reduces the difficulty involved in the calculation
of the numerical integrations as described above, as the conjugate priors [7,30,35] can
provide a closed-form expression for the posterior distribution. Moreover, the use of
conjugate priors does not prevent the proposed EM algorithm from choosing flexible
forms of the density functions, such as Gaussian, Laplacian, Gamma or other members
in the exponential family, which covers a wide range of distributions for the mixing
matrix and the noise covariance. The choice of the hyper-parameters of the priors will
be discussed later in Sect. 6.2. Next, we discuss the choice of the prior densities for
the mixing matrix and noise covariance matrix, as in [11], and for the source models,
as in [40].

1 For a likelihood function, a conjugate prior is defined as the prior for which the posteriori and the priori
are of the same type of distributions.
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4.1 Prior Density for Mixing Matrix

To account for somemodel uncertainty, we assign aGaussian prior law to each element
of the mixing matrix A

g
(

ai j |μi j , σ
2
i j

)
= N

(
μi j , σ

2
i j

)
(5)

With (5), some constraints can be imposed on the elements of the mixing matrix,
i.e., by assigning some known values to the means μi j with σi j chosen for small
values to reflect the degree of the uncertainty [12]. Assuming that the elements of the
mixing matrix are independent from each other, it is straightforward to derive that
g(vec(A)) = ∏Q

i=1

∏P
j=1 g(ai j ), where vec(·) is an operator for obtaining a vector

by stacking the columns of a matrix one beneath the other. It is straightforward to get

g(vec(A)) = N (μA,�) (6)

where μA = [μ11, . . . μ1P , . . . , μQ1, . . . , μQ P ]T and � is a diagonal matrix whose
elements are σ 2

i j .

4.2 Prior Density for Noise Covariance Matrix

Covariance matrices are symmetric positive semi-definite matrices. Tomodel the prior
knowledge about them, Wishart distribution, which is a generalization of the univari-
ate Chi-square distribution, is often used. The Wishart distribution is a conjugate
density which therefore has another advantage in simplifying the GMM-EM process
as described in Sect. 5. Therefore, as in [11], the Wishart density is assigned as the
prior density of the noise covariance matrix Rw, defined as

g(R−1
w |Σ−1

w , vR) ∝
∣∣∣R−1

w

∣∣∣
(vR−Q−1)/2

exp

[
−1

2
tr
(
ΣwR−1

w

)]
(7)

where Σw is a Q × Q positively defined symmetric matrix, vR is a scalar greater than
Q − 1, tr(·) denotes the trace of a squared matrix, | · | indicates the determinant of a
squared matrix, and exp(·) represents exponential operator.

4.3 Prior Density for Parameters of the Source Model

The conjugate prior density assignment for the parameters Θ = {ωm,μm,Cm}M
m=1 in

(3) is more complicated. According to [34], however, we can interpret a finite mixture
density as a density associated with a statistical population, denoted as a mixture
of M component populations weighted by the coefficients (ω1, . . . , ωM ). Therefore,
we can regard f (s(t);Θ) as a marginal PDF of the joint PDF of the parameters
Θ . More specifically, it can be computed as the product of a multinomial density
and multivariate Gaussian densities, which denote the sizes of the populations and
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the densities of individual components, respectively [34]. If the joint density of the
weighting parameters is a multinomial distribution, then a practical candidate for
modeling the prior knowledge of these parameters is a conjugate density such as the
Dirichlet density

g (ω1, . . . , ωM |η1, . . . , ηM ) ∝
M∏

m=1

ωηm−1
m (8)

where ηm > 0 are the hyper-parameters for the Dirichlet density. As for the parameters
(μm,Cm) of the individual Gaussian mixture component, the following conjugate
density is chosen

g
(
μm,C−1

m |τm,um, vm,Σ−1
m

)
∝
∣∣∣C−1

m

∣∣∣
(vm−P)/2

exp
[
−τm

2

(
μm − um

)T C−1
m

(
μm − um

)]

exp

[
−1

2
tr
(
ΣmC−1

m

)]

(9)

where (τm,um, vm,Σm) are the prior density hyper-parameters such that vm > P −1,
τm > 0, um is a vector of dimension P , and Σm is a P × P positive definite matrix.

Assuming that the parameters of the individualmixture components and themixture
weights are independent [34], then, the joint prior density g(Θ) can be computed as
the product of the prior densities defined in (8) and (9), respectively, given as follows,

g(Θ) = g (ω1, . . . , ωM )

M∏

m=1

g
(
μm,C−1

m

)
(10)

5 Bayesian Blind Separation

In this section, equipped with the source model discussed in Sect. 3 and prior densities
defined in Sect. 4, we develop a new EM algorithm under the Bayesian framework
for the BSS problem as described in Sect. 2. For the convenience of analysis, we
employ a probability-generative model, as depicted in Fig. 1, where a graphical model
is used to show the process of generating an observation signal at time instant t based
on the mixture model. Apparently, there are two levels of hidden variables in this
graphical model, with the first level being represented by the Gaussian component
labels {y(t)}t=1,...,T of the density mixture, and the second level by the source signals
{s(t)}t=1,...,T .

As a result, the BSS problem in essence can be treated as a problem of esti-
mating parameters from incomplete data. The incomplete data are the observations
X = {x(t)}t=1,...,T , while the missing data are the sources S = {s(t)}t=1,...,T and the
unobserved Gaussian component labels of the density mixture Y = {y(t)}t=1,...,T .
The parameters that need to be estimated are A, Rw and Θ . The EM algorithm is
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Fig. 1 Probability-generative model of observed signals at the discrete time instance t

a commonly used method for inferring the parameters of an underlying distribution
from incomplete data based on the ML/MAP scheme [25]. Therefore, similar to the
method we adopted in [11], we derive an GMM-EM algorithm in this work to obtain
the MAP estimates of the unknowns including the mixing matrix, noise covariance
matrix and the parameters of the source model, as detailed below.

5.1 The E-Step

Given the observed dataX and the current parameter estimates, theE-step of theGMM-
EM algorithm aims to obtain the expected value of the complete-data log-likelihood
log f (X,S, Y |A,Rw,Θ) with respect to the unknown data S and Y . The evaluation
of this expectation is called the E-step of the algorithm. To this end, we define an
auxiliary function as

J
(
A,Rw,Θ,Ag,Rg

w,Θg)

= E
[
log f (X,S, Y |A,Rw,Θ)|X,Ag,Rg

w,Θg] (11)

where Ag , Rg
w, and Θg are the current estimates of the parameters that we use to

evaluate the expectation and A, Rw and Θ are the new parameters that we optimize
to increase J . E[·] is an expectation operator.

SinceX andAg ,Rg
w,Θg are constants,A,Rw,Θ are variables thatwewish to adjust,

and s, Y are random variables governed by the distribution f (S, Y |X,Ag,Rg
w,Θg),

the RHS of (11) can be rewritten as

E
[
log f (X,S, Y |A,Rw,Θ) |X,Ag,Rg

w,Θg]

= E
[

f
(
S, Y |X,Ag,Rg

w,Θg) log f (X,S, Y |A,Rw,Θ)
]

(12)

After a series of derivations (more details can be found in “Appendix 1”), we can
get.
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J =
T∑

t=1

M∑

m=1

∫

s
f
(
y(t) = m|s(t),X,Ag,Rg

w,Θg)

logωm f (s(t)|y(t) = m,Θ)ds

+
T∑

t=1

∫

s
f
(
s(t)|X,Ag,Rg

w,Θg) log f (x(t)|s(t),A,Rw)ds (13)

It is clear that the posterior distribution f
(
s(t)|X,Ag,Rg

w,Θg
)
is indispensable

for the evaluation of the expectation in (13). In practice, it can be proved that (more
details can be found in “Appendix 2”)

f
(
s(t)|X,Ag,Rg

w,Θg) =
M∑

m=1

ω̃
g
mtN

(
s(t); μ̃

g
mt , C̃

g
mt

)
(14)

where ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C̃g
mt = (

(Ag)T(Rg
w)−1Ag + (Cg

m)−1
)−1

μ̃
g
mt =

(
C̃g

mt

) (
(Ag)T(Rg

w)−1x(t) + (Cg
m)−1μ

g
m
)

ω̃
g
mt = ω

g
m

(∣∣∣(C̃g
mt )

∣∣∣
1/2
/∣∣2πRg

w

∣∣1/2 ∣∣Cg
m
∣∣1/2

)

exp

{
− 1

2

[
xT(t)(Rg

w)−1x(t)

+ (μ
g
m)T(Cg

m)−1μ
g
m − (μ̃

g
mt )

T(C̃g
mt )

−1μ̃
g
mt

]}

(15)

5.2 The M-Step

This step maximizes the expectation of the complete-data log-likelihood as shown in
(13) with respect to A, Rw and Θ , and the maximum point is then taken as the new
parameters. It can be observed that the first term in the RHS of (13) is dependent on
the parameters Θ of the GMM model, while the second term is determined by the
mixing matrix A and the noise covariance matrix Rw. For this reason, the auxiliary
function in the RHS of (13) can be split into two parts J1 and J2, i.e.,

J = J1 + J2 (16)

where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

J1 =
T∑

t=1

∫
s f

(
s(t)|x,Ag,Rg

w,Θg
)

log f (x(t)|s(t),A,Rw) ds

J2 =
T∑

t=1

M∑
m=1

∫
s f

(
y(t) = m|s(t), x,Ag,Rg

w,Θg
)

logωm f (s(t)|y(t) = m,Θ) ds

(17)
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Accordingly, the parameters A, Rw and Θ can be estimated by optimizing the
auxiliary functions J1 and J2, respectively, as explained in the next two subsections.

5.2.1 Estimation Formula for the Mixing Matrix A and the Noise Covariance Matrix
Rw

First of all, the updating rules for the mixing matrixA and the noise covariance matrix
Rw are discussed based on the auxiliary function J1. Note that the auxiliary function
J1 in (17) can be converted into the following form as

J1 = −T

2
log |2πRw|

−T

2
tr
[
R−1

w

(
Rxx − ARsx − RT

sxA
T + ARssAT

)]
(18)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Rxx = 1
T

T∑
t=1

x(t)xT(t)

Rsx = 1
T

T∑
t=1

E
[
s(t)|x,Ag,Rg

w,Θg)
]
xT(t)

Rss = 1
T

T∑
t=1

E
[
s(t)sT(t)|x,Ag,Rg

w,Θg
]

(19)

Note that the prior information for the mixing matrix A denoted by J g
A is related to its

conjugate prior as shown in (6). Therefore, we can obtain the MAP auxiliary function
for the mixing matrix A by incorporating its prior information, which gives

ĴA = J1 + J g
A

= −T

2
log |2πRw| − 1

2
log(|�|)

−T

2
tr
[
R−1

w (Rxx − ARsx − RT
sxA

T + ARssAT)
]

−1

2
tr
[
�−1(vec(A) − μA)(vec(A) − μA)T

]
(20)

The updating rule for the mixing matrix A can therefore be obtained by taking the
derivative of ĴA with respect to A, and setting it to zero, which gives

vec(Â) =
[
TRss ⊗ R−1

w + �−1
]−1

[
vec

(
TR−1

w Rxs

)
+ �−1μA

]
(21)

where ⊗ denotes the Kronecker product.
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Similarly, by incorporating the prior information for the noise covariance matrix
Rw denoted by J g

Rw
, which is related to its prior distribution as defined in (7), theMAP

auxiliary function for the noise covariance Rw can be written as

ĴRw = J1 + J g
Rw

= −T

2
log |Rw|

−T

2
tr
[
R−1

w

(
Rxx − ARsx − RT

sxA
T + ARssAT

)]

−vR − Q − 1

2
log |Rw| − 1

2
tr
(
ΣwR−1

w

)
(22)

The updating rule for the noise covariance matrix Rw can be similarly obtained by
taking the derivative of ĴRw with respect to Rw, and setting it to zero, which gives

R̂w = 1

T + vR − Q − 1[
T
(
Rxx − ÂRsx − RT

sx (Â)T + ÂRss(Â)T
)

+ Σw

]
(23)

The updating rules forA andRw involve the calculation ofRss andRsx . Using the pos-
terior distribution f

(
s(t)|x,Ag,Rg

w,Θg
)
as shown in (14) and (15), it is easy to obtain

the conditional expectations E[s(t)|x,Ag,Rg
w,Θg] and E[sT(t)s(t)|x,Ag,Rg

w,Θg].

5.2.2 Estimation Formula for the GMM Parameters

The parameters Θ of the GMM can be updated in a similar way to that for the mixing
matrix and noise covariance matrix. Using (14) and (15), the auxiliary function J2 in
(17) can be rewritten as

J2 =
T∑

t=1

M∑

m=1

∫

s
ω̃

g
mtN

(
s(t); μ̃

g
mt , C̃

g
mt

)

logωm f (s(t)|y(t) = m,Θ) ds (24)

with the prior density as depicted in (8), (9) and (10), then the prior information for
the source signals can be denoted as

J g
S =

M∑

m=1

(ηm − 1) logωm − (
(vm − P)

/
2
)
log |Cm |

−τm

2
tr
[
C−1

m

(
μm − um

) (
μm − um

)T]− 1

2
tr
(
ΣmC−1

m

)
(25)

Hence, the MAP auxiliary function ĴS for the GMM parameters can be written as
ĴS = J2 + J g

S . To maximize this expression, we can maximize the terms containing
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the weighting coefficient parameter ωm , and the term containing the mean vector μm ,
and the covariance matrix Cm , m = 1, . . . , M separately since they are independent
from each other.

Note that
∫
sN (s(t); μ̃g

m, C̃g
m)ds = 1, and hence, the part of the auxiliary function

ĴS related to parameter ωm can be simplified as

Ĵ (1)
S =

T∑

t=1

M∑

m=1

ω̃
g
mt logωm +

M∑

m=1

(ηm − 1) logωm (26)

Adding the Lagrange multiplier λ, using the constraints that
∑M

m=1 ωm = 1, and

setting the derivative of Ĵ (1)
S with respect to ωm equal to zero, one obtains

∂

∂ωm

[(
M∑

m=1

T∑

t=1

ω̃
g
mt logωm

)

+
M∑

m=1

(ηm − 1) logωm+λ

(
M∑

m=1

ωm − 1

)]
= 0 (27)

Summing both sides over m, we can get λ = −(∑M
m=1 ηm − M + T

)
resulting in

ω̂m = ηm − 1 +∑T
t=1 ω̃

g
mt∑M

m=1 ηm − M + T
(28)

On the other hand, the part of the auxiliary function ĴS related to parameters μm
and Cm can be written as

Ĵ (2)
S =

T∑

t=1

∫

s
ω̃

g
mN

(
s(t); μ̃g

m, C̃g
m

)
log f (s(t)|y(t) = m,Θ) ds

+ (
(vm − P)

/
2
)
log

∣∣∣C−1
m

∣∣∣

−τm

2
tr
[
C−1

m (μm − um)(μm − um)T
]

− 1

2
tr
[
ΣmC−1

m

]
(29)

The updating rule forμm andCm can therefore be obtained by taking the derivative
of Ĵ (2)

S with respect to μm and Cm , respectively, and setting them to zero. That is

∂ Ĵ (2)
S

/
∂μm = 0 and ∂ Ĵ (2)

S

/
∂Cm = 0.

For notational simplicity, define

Γ m = E
[
s(t)sT(t)|y(t) = m, x,Ag,Rg

w,Θg
]

= C̃g
mt + μ̃

g
mt
(
μ̃

g
mt
)T

(30)
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Then, one obtains

∂

∂μm

(
T∑

t=1

∫

s
ω̃

g
mtN (s(t); μ̃

g
mt , C̃

g
mt ) log f (s(t)|y(t) = m,Θ)ds

)

=
T∑

t=1

ω̃
g
mtC

−1
m

(
μ̃

g
mt − μm

)
(31)

and
∂

∂Cm

(
T∑

t=1

∫

s
ω̃

g
mtN (s(t); μ̃

g
mt , C̃

g
mt )

log f (s(t)|y(t) = m,Θ)ds

)

= 1

2

T∑

t=1

ω̃
g
mt

[
−Cm +

(
Γ m − μ̃

g
mtμ

T
m − μm(μ̃

g
mt )

T + μmμT
m

)]
(32)

On the other hand, notice that

∂

∂μm

(
((vm − P)

/
2) log

∣∣∣C−1
m

∣∣∣

−τm

2
tr
[
C−1

m (μm − um)(μm − um)T
]

− 1

2
tr(ΣmC−1

m )

)

= −τmC−1
m (μm − um) (33)

∂

∂Cm

(
((vm − P)

/
2) log

∣∣∣C−1
m

∣∣∣

−τm

2
tr
[
C−1

m (μm − um)(μm − um)T
]

− 1

2
tr(ΣmC−1

m )

)

= − (vm − P)

2
Cm + τm

2
(μm − um)(μm − um)T + 1

2
Σm (34)

Combining the terms (31) and (33), the updating formula forμm can be easily obtained
as

μ̂m = τmum +∑T
t=1 ω̃

g
mt μ̃

g
mt

τm +∑T
t=1 ω̃

g
mt

(35)

and the updating formula for Cm can be similarly obtained by combining the terms
(32) and (34)

Ĉm = Σm + τm(μ̂m − um)(μ̂m − um)T

vm − P +∑T
t=1 ω̃

g
mt

+
∑T

t=1 ω̃
g
mt
(
Γ m − μ̃

g
mt (μ̂m)T − μ̂m(μ̃

g
mt )

T + μ̂m(μ̂m)T
)

vm − P +∑T
t=1 ω̃

g
mt

(36)
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6 Practical Implementation and Algorithm Analysis

In this section, we discuss some practical implementation issues of the proposed
algorithm and also offer an empirical analysis of its convergence and computational
complexity.

6.1 Summary of the Algorithm

The proposed GMM-EM algorithm can be implemented as follows:

1. Initialization Initialize the mixing matrix A(0), noise variance matrix R(0)
w

and model parameters Θ(0) according to the initialization scheme described in
Sect. 6.2, and set the EM iteration index i = 0.

2. EM iterations Repeat the E-step and M-step until convergence.
(a) E-stepCalculate f (s(t)|x(t),A(i),R(i)

w ,Θ(i)) according to (14)–(15), and cal-
culate Rss and Rsx according to (19).

(b) M-stepCalculate the mixing matrixA(i+1) and noise covariance matrixR(i+1)
w

according to (21) and (23), respectively. Calculate the weight ω
(i+1)
m , mean

vector μ
(i+1)
m and covariance matrix C(i+1)

m according to (28), (35) and (36),
respectively.

3. MAP source estimation Let i0 be the number of iterations required before the
convergence of the algorithm, the posterior mean estimate ŝM AP is approximated
by the empirical mean of the sequence si>i0 .

6.2 Parameter Initialization

It is well known that the EM optimization strategy is sensitive to the initial setups of
the parameters. The likelihood function may converge to a local maximum instead of
the global maximum due to the use of the bootstrap process in the iterations. The initial
values for the parameters therefore become important for the convergence of the EM
algorithm, not only in terms of minimizing the number of iterations required for the
algorithm to converge to a local maximum, but also for it to find a “good” solution
[35]. Therefore, the parameters are given proper prior densities, i.e., conjugate prior
densities, in order to incorporate the prior information as discussed in Sect. 4. A
reasonable choice for the initial estimates is the mode of the prior density. For the
mixing matrix and the noise covariance matrix, the initial values can be set as

{
vec(A)(0) = μA

R(0)
w = (vR − Q − 1)Σ−1

w

(37)

The mean value of the mixing matrix μA can be estimated by the blind identifica-
tion methods such as those presented in [10,15,22,24,26,27,36]. Although, in such
cases, the source signals can not be recovered by multiplying the observed signals
with the inverse/pseudo inverse of the mixing matrix, the hyper-parameter μA can be
determined by the estimate of the mixing matrix. In our implementation in Sect. 7,
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the LEMACAF-4 method2 in [15] has been used for estimating the initial value of the
mixing matrix.

Similarly, the initial estimates for the GMM model parameters of the sources are
taken as

⎧
⎪⎨

⎪⎩

ω
(0)
m = (ηm − 1)

/(∑M
m=1 ηm − M

)

μ
(0)
m = um

C(0)
m = (vm − P)Σ−1

m

(38)

It has been shown that the joint PDF of the observed signals can also be modeled
by GMM when the joint PDF of the source signals is modeled by GMM [40] (due to
space limitation, the detail is omitted here). As a result, the weighting coefficients, the
mean vectors and covariance matrices of the observation-based GMM model can be
learned from the observed signals. Therefore, according to the relationship between the
weighting coefficients, the mean vectors and covariance matrices of the observation-
basedGMMmodel and their counterparts of the source-basedGMMmodel, the hyper-
parameters ηm , um and Σm can be determined by the estimate of the mixing matrix
and the estimates of the observation-based GMM model parameters jointly.

6.3 Convergence Analysis

In essence, the proposed GMM-EM separating algorithm is a gradient-based bootstrap
method for optimizing the log-likelihood function. There are already some works that
have investigated this issue [37,39]. For example, Xu et al. [39] have established the
linkage of the EM algorithm with the gradient-based approaches for the ML learning
based onGMM, and shown that the EMparameters are iterated in terms of the gradient
obtained by a positive definite projection matrix. This result was extended to the more
general block coordinate descent (BCD) method [12,28], in which a single block of
variables is optimized at each iteration.

In Section V, to update each variable of A, Rw, ωm , μm and Cm , the employed
method is to simply set the first derivative of the complete-data log-likelihood with
respect to each variable to be zero and solve the corresponding equation sequentially.
Hence, if the Hessian matrices of complete-data log-likelihood with respect to these
variables are non-positive, then it is safe to state that the subproblem with respect to
each variable is convex. Take the mixing matrix as an example. By converting the
matrix A into vector form vec(A), the Hessian matrix of ĴA with respect to vec(A)

can be easily obtained, and written asHA = −(TRss ⊗R−1
w +�−1). SinceRw and�

are positively defined, it is obvious thatHA is non-positive. The Hessian matrix of ĴRw

with respect to Rw can be obtained in a similar way, and it is also non-positive. That
is, for each iteration of the GMM-EM algorithm given in (21, 23), the search direction
of the parameters has a positive projection on the gradient of its corresponding MAP
auxiliary function.

2 Matlab codes can be found at: http://www.i3s.unice.fr/pcomon/TensorPackage.html.

http://www.i3s.unice.fr/pcomon/TensorPackage.html
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We further discuss the GMM parameters ωm , μm and Cm . If each mixture com-
ponent is assumed to be non-degenerate [39], i.e., ω̂m > 0, then ω̃

g
m1, . . . , ω̃

g
mT

is a sequence of T i.i.d. random variables with a non-degenerate distribution and
limT →∞

∑T
t=1 ω̃mt = ∞ with probability one. It follows that the Hessian matrix

Hωm = −(ηm − 1 +∑T
t=1 ω̃

g
mt ) is non-positive with probability one when T → ∞.

Applying the same reasoning, we can see that the GMM-EM estimation formulas for
μ̂m and Ĉm are asymptotically similar in terms of the MAP approach [29,34]. There-
fore, as long as the initial estimates of A(0), R(0)

w and Θ(0) remain unchanged, the EM
algorithm will converge to the same estimates with probability one when T → ∞.

Finally, it should be pointed out that the EM algorithm may converge to a local
maximum instead of the global maximum when the number of parameters is large
and/or the parameters of the algorithm are inappropriately initialized. This is a general
limitation associated with the gradient-based bootstrap-like optimization algorithms.
The reason is that it is often trapped to the neighborhood of a local optimizer if the
number of parameters is large and/or the parameters of the EMalgorithm are initialized
such that the solution is far from the global optimizer. Hence, the initialization scheme
discussed in Sect. 6.2 is vital to ensure the convergence of the proposed GMM-EM
algorithm.

6.4 Computational Complexity Analysis

The computational load of the proposed GMM-EM algorithm is dominated by the
E-step and M-step. In each iteration of the E-step, it is required to:

– calculate the posterior probability f
(
s(t)|x,A(i),R(i)

w ,Θ(i)
)
with (14) and (15)

which requires O(Q(P + Q)(P2 + Q2)) multiplications per observation vector.
– calculate the statistics Rxx , Rsx and Rss with (19) which requires O((P + Q)2)

multiplications per observation vector.

In each iteration of the M-step, it is required to:

– update the mixing matrix A using (21) and the noise covariance matrix Rw using
(23) which require O((P Q)3 + (P Q)2) and O(P Q(P + Q)) multiplications,
respectively.

– update theweighting coefficientsω
(i+1)
m ,mean vectorμ(i+1)

m and covariancematrix
C(i+1)

m according to (28), (35) and (36) which amount to O(M P2T ) multiplica-
tions.

From the above analysis, we can see that the computational complexity of the
proposed GMM-EM algorithm depends closely on the number of sources and sample
size considered in the model. Theoretically, the proposed GMM-EM algorithm for
GMM parameter estimation of source signals would become increasingly intractable
and computationally unaffordable as the number of sources increases. This is because
the number of Gaussians for modeling the source vector grows exponentially with the
number of sources. For example, assuming that the number of sources is P = 10,
and the PDF of each source is modeled by the GMM with l p = 3 Gaussians, then
it is straightforward to derive that M = 310 Gaussians are required to model the
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source vector. However, it has been shown that the determined GMM order in high
dimensions is always much smaller than the theoretical number of Gaussians [40].
The main reason is that the distribution of the sensors becomes more Gaussian while
the number of sources increases. Hence, it enables the applicability of the proposed
GMM-EM method also for a large number of sources.

Note that the computational complexity of an iteration of the NCA algorithm [21] is
O(T 3)when the size of the signal is assumed to be much larger than other parameters.
In contrast to the NCA algorithm, the proposed GMM-EM algorithm apparently has
advantage in terms of computational complexity. This is because the computational
complexity of an iteration of the proposed GMM-EM algorithm is O(T ) under the
same situation.

7 Simulations and Analysis

In this section, the separation performance of the proposed GMM-EM algorithm is
evaluated in terms of similarity score, and compared with that of the NCA [21] and
FastICA [41] algorithms. Calculation of the similarity score is detailed in “Appendix
3.” Note that the FastICA algorithm cannot be implemented in the underdetermined
case, and hence, we only compare the proposed GMM-EMwith the NCA in such case.

The section is organized as follows. First, the separation performances of the com-
pared algorithms are evaluated based on synthetic data in terms of similarity score
versus the signal-to-noise (SNR) level within the mixtures, sample size, and the num-
ber of sources in determined mixtures. Second, these performance aspects are also
investigated for underdetermined mixtures. Finally, the performances of the compared
algorithms are evaluated for separating mixtures of real speech signals.

The compared algorithms were operated under the following overall settings: (1)
The number of EM iterations used in the proposed GMM-EM algorithm was set to
100; (2) the separation performance of the NCA algorithm was evaluated with 100
iterations.

7.1 Synthetic Data

7.1.1 Separation Performance as a Function of SNR in Determined Mixtures

The following experiment compares the separation performances of the tested algo-
rithms for determined mixtures in the presence of additive Gaussian noise. Each
source signal is synthesized by the following GMM PDF fs = 0.5N (s; 1, 0.4) +
0.5N (s;−1, 0.4). For each SNR, 100 sets of two-dimensional independent source
signals, containing T = 1000 samples, are synthesized and mixed by a random
2× 2 mixing matrix, with its elements randomly drawn in the range [−1, 1]. Additive
Gaussian noise is added in the mixing process, and the SNR of the observations ranges
from 0 to 30dB.

Figure 2 depicts the average similarity score between the original sources and
recovered sources of the tested algorithms versus the SNR. For the low SNRs (e.g.,
lower than 20dB), one can observe that the proposed GMM-EM algorithm offers the
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Fig. 2 Average similarity score of the tested algorithms versus the SNR in the determined case

best performance, followed by the NCA and FastICA algorithms, respectively. The
advantage of the proposed algorithm tends to disappear when the SNR is greater than
20dB, and in this case, the level of noise is pretty low and hence could be ignored in
practice. Furthermore, the performance of the NCA algorithm is close to that of the
proposedGMM-EMalgorithm. This is because the noise component is also considered
in the NCA algorithm. For the NCA algorithm, it mainly depends on whether the null
space of different signals is orthogonal. For the proposed GMM-EM algorithm, it is
robust to noise due to the fact that the noise component has been taken into account
in the model with its covariance jointly estimated in the EM process.

7.1.2 Separation Performance as a Function of Sample Size in Determined Mixtures

The following experiment compares the separation performances of the tested algo-
rithms as a function of the sample size T for determined mixtures. Each signal is
synthesized by the same GMM used in the first experiment shown above. For each
T ∈ {100, 200, 400, 600, 1000, 2000, 4000}, 100 sets of two-dimensional indepen-
dent sources are synthesized and mixed by a random 2 × 2 mixing matrix, with its
elements randomly drawn in the range [−1, 1]. Additive Gaussian noise is added in
the mixing process, and the SNR of the observations is 10dB.

Figure 3 depicts the average similarity score of the tested algorithm versus the
sample size T . One can observe that as T increases from 100 to 4000, the separation
performances of the tested algorithms improve, and the proposed GMM-EM and
NCA algorithms outperform the FastICA algorithm. Moreover, the performance of
the proposed GMM-EM algorithm will achieve a steady state when the sample size is
larger than 2000. The reason is that the statistics can be estimated with a high precision
by using a large number of samples, and the estimation precision will converge to a
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Fig. 3 Average similarity score of the tested algorithms versus the sample size in the determined case

steady state. However, as pointed out in [21], the computational complexity of the
NCA algorithm is proportional to O(T 3), and hence, it becomes computationally
prohibitive when the sample size is large than 1000, and no results are given beyond
this point.

7.1.3 Separation Performance as a Function of Dimension in Determined Mixtures

The following experiment compares the separation performances of the proposed
algorithm as a function of SNR for different number of sources in determinedmixtures.
Each signal is synthesized by the same GMM as used in the first experiment. For each
P ∈ {2, 3, 4, 5}, 100 sets of P independent source signals, containing T = 1000
samples, are synthesized and mixed by a random P × P mixing matrix, with its
elements randomly drawn in the range [−1, 1]. Additive Gaussian noise is added in
the mixing process, and the SNR of the observations ranges from 0 to 30dB.

Figure 4 depicts the average similarity score of the proposed GMM-EM algorithm
versus the SNR when the number of sources is varied from 2 to 5. One can observe
that the performance of the proposed GMM-EM algorithm deteriorates as the number
of sources increases.

7.1.4 Separation Performance as a Function of SNR in Underdetermined Mixture

The following experiment compares the separation performances of the tested algo-
rithms for underdetermined mixtures in the presence of additive Gaussian noise. Each
signal is synthesized by the sameGMMused in the first experiment. For each SNR, 100
sets of three-dimensional independent source signals, containing T = 1000 samples,
are synthesized and mixed by a random 2 × 3 mixing matrix, with its elements ran-
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Fig. 4 Average similarity score of the proposed algorithm versus SNR for a varying number of sources in
the determined case
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Fig. 5 Average similarity scores of the tested algorithms versus the SNR in the underdetermined case

domly drawn from the range [−1, 1]. Additive Gaussian noise is added in the mixing
process, and the SNR of the observations ranges from 0 to 30dB.

The average similarity scores of the tested algorithms versus the SNR in the under-
determined case are shown inFig. 5.Due to themixingmatrix and sources are estimated
jointly, rather than separately (e.g., based on the inverse of the mixing matrix), the
proposed GMM-EM algorithm can also work in the underdetermined case. From
Fig. 5, one can also observe that the separation performances of the tested algorithms
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Fig. 6 Average similarity score of the tested algorithms versus the sample size in the underdetermined case

improve with the increase of SNR. However, it can also be observed that the sep-
aration performance in the underdetermined case deteriorates as compared with the
performance in determined case. This is because the information loss caused by the
lack of sensors in the underdetermined case. Furthermore, it should be pointed out
that the NCA algorithm outperforms the proposed GMM-EM algorithm in such an
underdetermined case. The main reason is that the NCA algorithm mainly depends
on whether the null spaces of different sources are orthogonal, regardless whether the
mixture is determined or underdetermined.

7.1.5 Separation Performance as a Function of Sample Size in Underdetermined
Mixtures

The following experiment compares the separation performances of the tested algo-
rithms as a function of sample size T for underdetermined mixtures. Each signal
is synthesized by the same GMM as used in the first experiment. For each T ∈
{100, 200, 400, 600, 1000, 2000, 4000}, 100 sets of three-dimensional independent
source signals are synthesized and mixed by a 2× 3 mixing matrix, with its elements
randomly drawn in the range [−1, 1]. Additive Gaussian noise is added in the mixing
process, and the SNR of the observations is 10dB.

Figure 6 depicts the average similarity score of the tested algorithm versus the
sample size T , where the performance of the NCA algorithm is again shown for up to
1000 samples. One can observe that as T increases from 100 to 4000, the separation
performances of the tested algorithms improve.
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Fig. 7 Average similarity scores of the proposed algorithm versus the SNR for a varying number of sources
in the underdetermined case

7.1.6 Separation Performance as a Function of Dimension in Underdetermined
Mixtures

The following experiment compares the separation performances of the tested algo-
rithms as a function of the number of sources in underdeterminedmixtures. Each signal
is synthesized by the same GMM used in the first experiment. For each P ∈ {3, 4, 5},
100 sets of P independent source signals, containing T = 1000 samples, are synthe-
sized and mixed by a random 3× P mixing matrix, with its elements randomly drawn
in the range [−1, 1]. Additive Gaussian noise is added in the mixing process, and the
SNR of the observations ranges from 0 to 30dB.

Figure 7 depicts the average similarity score of the proposed GMM-EM algorithm
versus the SNR when the number of observations is fixed and the number of sources
is varied. One can observe that the performance of the proposed GMM-EM algorithm
deteriorates as the number of sources increases.

7.2 Real Data

The following experiments compare the performances of the tested algorithms, in
terms of similarity score, in separating different mixture combinations of three 0.5-s-
long speech signals,3 sampled at 8000Hz and recordedwith 8 bits per sample. Figure 8
shows the waveform of the sources and their histograms of the amplitude distributions.
On the other hand, the PDFof each source signal ismodeled byGMMof order 3,where
the order of the GMM is determined according to the Bayesian information criterion
(BIC) [16]. TheBIC, based on the likelihood function and a penalty term introduced for
the number of parameters in the model, is a well-known criterion for model selection

3 Available at: http://www.kecl.ntt.co.jp/icl/signal/sawada/webdemo/bssdemo.html.

http://www.kecl.ntt.co.jp/icl/signal/sawada/webdemo/bssdemo.html
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Fig. 8 Speech signals and their respective histograms of amplitude distributions

among a finite set of models. By calculating the BIC values for all possible models,
the candidate model is chosen as the one corresponding to the minimum value of the
BIC. The density estimations for the sources are shown in Fig. 9. We can observe that
each distribution can be well approximated with 3 Gaussian components and similar
to its counterpart in Fig. 8.

Two experiments are used to investigate the separation performance of the proposed
GMM-EM algorithm when the sources are real speech signals.

– In the first experiment, two speech signals are artificially mixed by a 2× 2 mixing
matrix, whose elements are randomly generated from a uniform distribution over
the interval [−1, 1]. Additive Gaussian noise is added in the mixing process, and
the SNR of the observations ranges from 0 to 30dB. In [40], it is shown that the
joint PDF of the observed signals can also be modeled by GMM when the joint
PDF of the source signals is modeled by GMM. Hence, the order of the GMM
of the sources equals to that of the observed signals. As a result, the order of the
GMM can be determined according to the BIC based on the observed signals.
Here, the optimal GMM order determined by the BIC criterion for the GMM-EM
separating algorithm is 9. The NCA and FastICA algorithms are implemented as
baseline algorithms. 100 Monte Carlo experiments are run.

– In the second experiment, the underdetermined case of P = 3 sources and Q = 2
observations is considered. The source signals are the same speech signals used
in the noisy determined case. The sources are artificially mixed by a 2× 3 mixing
matrix, whose elements are randomly generated from a uniform distribution over
the interval [−1, 1]. The SNR of the observations is ranged from 0 to 30dB. The
optimal GMM order determined by the BIC criterion for the GMM-EM algorithm
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Fig. 10 Average similarity score of the tested algorithms versus the SNR in the determined mixtures with
real speech signals

is 27. The NCA algorithm is implemented as the baseline algorithm. 100 Monte
Carlo experiments are run.

The average separation performance of the tested algorithms in terms of the similar-
ity score versus the SNR in determined mixtures is shown in Fig. 10. The separation
performances of the tested algorithms for underdetermined mixtures are shown in
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Fig. 11 Average similarity score of the tested algorithms versus the SNR in the underdetermined mixtures
when the sources are speech signals

Fig. 11. One can observe similar performance patterns to those in Figs. 2 and 5.
More specifically, the proposed GMM-EM algorithm seems to give almost identical
similarity scores as for synthetic data.

8 Conclusion

In this paper, the challenging noisy and/or underdetermined BSS problem is con-
sidered. To address this issue, we have proposed a GMM-EM approach in which
the non-Gaussianity of the sources is exploited by modeling their distributions using
GMM. Then, the mixing coefficients, the GMM parameters and the noise covariance
matrix are estimated by maximizing their posterior probabilities using an EM algo-
rithm. Finally, issues regarding the practical implementation and performance of the
proposed GMM-EM algorithm, such as the initialization scheme for the parameters,
the convergence performance and computational complexity, are also discussed. Sim-
ulation results have shown that the proposed GMM-EM algorithm gives promising
results with considerable computational complexity in two difficult cases: low SNR
and underdetermined mixtures. Taking into account the noise in the model and jointly
estimating its covariance are the main reasons for the robust performance achieved by
the proposed GMM-EM method in noisy environments. The competitive separation
performance achieved by the proposed algorithm in underdetermined cases is mainly
due to the incorporation of prior information by conjugate priors which facilitates the
recovery of the sources without taking the inverse of the mixing matrix.
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Appendix 1: Proof of Equation (13)

Since

f
(
s, Y |x,Ag,Rg

w,Θg)

=
T∏

t=1

f
(
s(t)|x,Ag,Rg

w,Θg) f
(
y(t)|s(t), x,Ag,Rg

w,Θg) (39)

On the other hand,

f (x, s, Y |A,Rw,Θ)

=
T∏

t=1

f (x(t)|s(t),A,Rw) f (s(t)|y(t),Θ) (40)

Substituting (39) and (40) in (11), it is straightforward to derive that

J =
T∑

t=1

M∑

m=1

∫

s
f (y(t) = m|s(t), x,Ag,Rg

w,Θg)

logωm f (s(t)|y(t) = m,Θ)ds

+
T∑

t=1

∫

s
f (s(t)|x,Ag,Rg

w,Θg) log f (x(t)|s(t),A,Rw)ds

Appendix 2: Proof of Equation (14)

Based on the Bayesian theory, it is easy to obtain

f
(
s(t)|x(t),Ag,Rg

w,Θg)

=
M∑

y(t)=1

f
(
x(t)|s(t),Ag,Rg

w,Θg)

f
(
s(t)|y(t) = m,Ag,Rg

w,Θg) (41)

Hence,

f (x(t), s(t),Ag,Rg
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= 1
∣∣2πRg

w

∣∣1/2

exp

{
−1

2
(x(t) − Ags(t))T(Rg

w)−1(x(t) − Ags(t))
}
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After a series of derivations, (42) can be simplified as
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Appendix 3: Definition of Similarity Score

In order to measure the separation performance, the similarity score is introduced to
evaluate the separation performance of the proposed algorithm

ρi i =
T∑

t=1

si (t)ŝi (t)

/√√√√
T∑

t=1

(si (t))2
T∑

t=1

(ŝi (t))2 (43)

where ŝi (t) is the i th recovered source signal. ρi i depicts the similarity between the
i th original source signal and the corresponding recovered source signal. It is clear
that the larger the value of ρi i , the higher the degree of similarity between the original
sources and the recovered sources.
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