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Abstract In recent years, compressed sensing has received considerable attention
from the signal processing community because of its ability to represent sparse signals
with a number of samples much less than that is required by the Nyquist sampling
theorem. �1-minimization is a powerful tool for sparse signal reconstruction from few
measured samples, but its computational complexity is a burden for real applications.
Recently, a number of greedy algorithms based on orthogonalmatching pursuit (OMP)
have been proposed, and they have near �1-minimization performance with much less
processing time. In this work, a new OMP-type two-stage sparse signal reconstruction
algorithm, namely data-driven forward–backward pursuit (DD-FBP), is proposed. It is
based on a former work called forward–backward pursuit (FBP). DD-FBP iteratively
expands and shrinks the estimated support set, and these constitute the forward and
backward stages. In DD-FBP, unlike FBP, the forward and backward step sizes are not
constants, but they are dependent on the correlation and projection values, respectively,
which are calculated in each iteration. The recovery performance by using noiseless
and noisy sparse signal ensembles, as well as a natural sparse image, indicates that
DD-FBP surpasses the other methods in terms of success rate and processing time.
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1 Introduction

Compressed sensing deals with efficient representation and reconstruction of sparse
(or more generally, compressible) signals. Most of the real-world signals are sparse
or compressible in some basis. For example, natural images are known to be approxi-
mately sparse when represented in terms of Fourier or wavelet basis functions, giving
rise to image compression algorithms like JPEG2000.Another example is the cognitive
radio applications, which utilizes the spectrum holes to increase transmission effi-
ciency in a high-bandwidth environment. In each case, if the classic Nyquist sampling
rate is applied, several millions of pixels would be needed to represent a moderate-
sized image or several gigasamples (per second) would be required to regenerate a
transmission signal that has a much less total effective bandwidth.

In a compressed sensing framework, we are given a measurement matrix A of size
MxN such that M < N and an observation vector y of length M such that y = Ax,
where x is an unknown sparse vector of length N that has at most K nonzero elements
placed in arbitrary locations where K � N . If x is known to be sparse in some basis
other than the measurement domain, then the observation vector can be expressed
as y = A�∗x where � is the matrix that consists of orthonormal sparsifying basis
functions and (∗) denotes conjugate transpose. Throughout the paper, the signal is
assumed to be sparse in the measurement domain and the �-term is omitted.

Because M < N , the problem setting defined by y = Ax is underdetermined and
there is an infinite number of solutions. Some additional constraints utilizing the spar-
sity of x must be employed. Optimization methods utilizing �0-norm or �1-norm are
extensively studied in the literature. �0-minimization problem is in general NP-hard
and computationally intractable [21]. �1-minimizationmethods providemore tractable
solutions that are supported by theoretical analysis using the restricted isometry prop-
erty (RIP) [7,11].

Because �1-norm is a convex cost function, linear programming techniques can
be used for reconstruction. Early studies on convex relaxation include interior-point
methods that employ a primal–dual interior-point framework [6,8,18], the homotopy
method [24], least absolute shrinkage and selection operator [28], and gradient meth-
ods [13,15]. For more information, please see [30] and the references therein. More
recently, coordinate descent methods [14,37], a proximal gradient homotopy method
[35], and active-set methods [17,27] have been proposed among many others.

Although �1-minimization provides strong theoretical guarantees for perfect sparse
reconstruction, its computational complexity is too high to be used for most of the
real-life scenarios. Noteworthy alternatives to speed up �1-minimization include fast
iterative shrinkage–threshold algorithm [2] and parallel coordinate descent method
[5]. Also, in [34], screening tests and random projections are adopted in order to
reduce the size of the problem and hence the computational cost.

Greedy algorithms, where one or more element(s) of the support of x are sought
in each iteration, are widely applied for sparse signal reconstruction. In general, they
have faster convergence speeds and more suited for large-scale problems than �1-
minimization methods. Arguably the most popular greedy algorithm is orthogonal
matching pursuit (OMP) [26]. In OMP, the following steps are performed in each
iteration: (i) Find the column (sometimes referred to as atom) ofAwhich is maximally
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correlatedwith the residual, (ii) add the column index to the list, (iii) estimate the sparse
vector using the current index list by orthogonal projection, and (iv) subtract its effect
from the measurement vector to create a new residual. RIP-based theoretical bounds
for OMP are given in [29] and [31].

A number of algorithms that improve the reconstruction performance and/or the
processing time of OMP have been proposed. Regularized OMP (ROMP) chooses
more than one column in each iteration based on a regularity measure [23]. Stagewise
OMP (StOMP) does the same thing using a probabilistic model about the correlation
coefficients [12]. Generalized OMP (gOMP) [32,33] and the orthogonal super greedy
algorithm [19] simply choose a multiple but constant number of columns in each
iteration. In stagewise weak selection [4], all the elements that come within a factor of
the largest inner product (coefficient correlation) are selected. Compressive sampling
matching pursuit (CoSaMP) and forward–backward pursuit (FBP) first choose a bunch
of columns and then apply a pruning step after orthogonal projection [16,22]. In the
pruning step, they remove a number of column indices which are least likely to be
on the support of x from the estimated support set. Both the number of included and
removed columns are constants for a given M or K . Two-stage algorithms have the
ability to correct the errors made in the forward step, and hence, they have a potential
of increased performance when compared to the single-stage methods. More recently,
robust sparse approximation in the presence of impulsive noise [25,38], multi-channel
sparse signal recovery [3,10], and nonnegative orthogonal matching pursuit [36] are
proposed.

In this paper, a new OMP-type sparse signal reconstruction algorithm, namely
data-driven forward–backward pursuit (DD-FBP), is presented. DD-FBP resembles
the CoSaMP and FBP algorithms in the sense that it has a pruning step. In the forward
step, after correlating the columns of A with the residual, the correlation values that
are larger than a ratio of the maximum-valued one are chosen and the corresponding
indices are included in the support set just like in [4]. Similarly, in the backward step,
after the projection coefficients are calculated and among the newly included ones, the
projection values that are smaller than a ratio of the maximum-valued one are chosen
and their indices are removed from the support set. Thisway, the projection coefficients
that have comparable magnitudes are not separated and are altogether included in the
support set. Note that both FBP and CoSaMP use predefined constant number of
indices for the inclusion and removal processes. The forward and backward steps are
continued until the calculated residual error power falls below a certain value or the
size of the estimated support exceeds M . The term “data-driven” comes from the fact
that the threshold values used in the forward and backward steps are calculated using
the correlation and projection coefficients, which are calculated from the signal or the
data itself. In some respects, DD-FBP resembles wavelet thresholding methods for
signal denoising in which the wavelet coefficients are thresholded in order to remove
their noisy part [1].

The paper is organized as follows: In Sect. 2, OMP-type algorithms are described in
some detail. In Sect. 3, threshold setting rules are defined and the DD-FBP algorithm is
described. In Sect. 4, simulation results that show the superiority of DD-FBP in terms
of performance and processing time are presented. Section 5 makes the conclusion.
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2 OMP-Type Algorithms

A general framework for OMP-type sparse signal reconstruction algorithms is given
below.More or less, allOMP-typemethods conform to this frameworkwith differences
on implementation of some steps. Note that superscripts in parenthesis denote the
iteration number.

Initialization Residual: r(0) = y
Index set: �(0) = ∅
Iteration number: t = 1

Algorithm

1. Correlation: Obtain a signal correlated with x such that c(t) = A∗r(t−1). Columns
of A(a1, a2, . . ., aN ) can be viewed as a dictionary as each measurement vector is
a linear combination of just a small number of entries in the dictionary such that:

y = Ax =
K∑

i=1

xΛi aΛi (1)

where � = (Λ1,Λ2, . . ., ΛK ) is the support of x. Multiplying this with A∗ in the
first iteration yields:

c(t) = A∗Ax =
⎡

⎣xi 〈ai , ai 〉 +
N∑

j=1, j �=i

x j 〈ai , a j 〉
⎤

⎦

i=1,...,N

(2)

If we assume that the columns ofA are of unit length (which will be valid through-
out the paper), then the correlation vector becomes c(t) = x + e, where e can
be regarded as a noise vector that occurred because of non-orthogonality of the
columns of A.

2. Insertion: Using c(t), find the index values (λ(t)) which are most likely from the
support of x and add them to the index set: �(t) = �(t−1) ∪ λ(t). Exclude the
previously chosen columns in the selection process. Selection of one or more
indices that have relatively high correlation values seems plausible. This step can
also be regarded as the forward step.

3. Estimation (orthogonal projection): Using the index set �(t), find an estimation
x(t) that solves the least square problem x(t) = argminx ‖ y − A(t)x ‖2, where
A(t) is created by taking the columns of A indexed by �(t). Note that x(t) can be
found by

x(t) =
[(

A(t)
)∗

A(t)
]−1 (

A(t)
)∗

y. (3)

4. Pruning: Shorten �(t) and x(t) by removing some of the indices chosen in the
insertion step: �(t) = �(t) − ξ (t)(ξ (t) is the set of index values to be removed).
This way, possible errors made by the insertion step are meant to be eliminated.
Removing those that have relatively small values is reasonable. The number of
indices pruned must be less than the number of indices inserted in order to make
progress in each iteration. This step can be regarded as the backward step.
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Table 1 Insertion and pruning rules for some OMP-type methods

Method Insertion rule Pruning rule

OMP Choose the biggest coordinate of |c(t)| None

ROMP First choose K biggest coordinates of |c(t)|
Then among all the subsets with
comparable coordinates, choose the one
with the maximal energy

None

StOMP Choose coordinates of |c(t)| that are larger
than an adaptive threshold determined by
the Gaussianity assumption of the noise
term

None

CoSaMP Choose 2K largest coordinates of |c(t)| Keep K projection coefficients that have the
largest amplitudes, remove the others

gOMP Choose a multiple but fixed number of
largest coordinates of |c(t)| (typically
between 3 and 9)

None

FBP Choose α largest coefficients of |c(t)| where
α is typically between and 0.2M and
0.3M , where M is the number of
observations

Remove β projection coefficients that have
the smallest amplitudes, where β is
typically α − 1 (or larger than 0.7α)

DD-FBP Choose the coefficients whose absolute
values are larger than Tf max

∣∣∣c(t)
∣∣∣ Tf is

typically between 0.3 and 0.7

Remove the projection coefficients whose
absolute values are smaller than
Tb max

∣∣∣x(t)
∣∣∣ Tb is typically between 0.5

and 0.7

5. Residual update: Update the residual r(t) = y − A(t)x(t).
6. Termination: Terminate if ‖ r(t) ‖2< emax (some predefined threshold) OR t <

tmax (predefined maximum number of iterations) OR some other rule. Output
�̂ = �(t) and x̂ = x(t). Else, increment t and go to step 1.

TheOMP-type algorithms proposed in the literature differ from each otherwith respect
to how and how many indices are selected in the insertion and pruning stages. The
selection and removal rules used in some popular methods are given in Table 1. For
the sake of completeness, the rules for DD-FBP are also included.

3 Data-Driven Forward–Backward Pursuit

DD-FBP is a two-stage sparse signal reconstruction algorithm with forward and back-
ward steps. It resembles FBP in the sense that in the forward step, it chooses a number
of atoms to be included in the support set, and in the backward step, some of the
included indices are removed from the set. However, unlike FBP, the numbers are not
pre-defined. For the inclusion step, the absolute correlation values that are higher than
a threshold are selected. The threshold value is set to a ratio of the maximum absolute
valued correlation coefficient:

c(t)
f = Tfmax

∣∣∣c(t)
∣∣∣ (4)
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Tf is a pre-determined constant and its typical values are between 0.3 and 0.7. Note that
while computing the forward threshold, the correlation values corresponding to the
formerly selected indicesmust not be taken into consideration, i.e., themaximumvalue
selection must be done among the indices that are not yet included in the estimated
support set.

In the backward step, after the calculation of the projection coefficients, the indices
whose corresponding absolute projection values are smaller than a threshold are
removed from the estimated support. Similar to the forward step, the backward thresh-
old value is set to a ratio of the maximum absolute valued projection coefficient:

x (t)
b = Tbmax

∣∣∣x(t)
∣∣∣ (5)

Tb is a pre-determined constant and its typical values range between 0.5 and 0.7. The
maximum value selection must be done among the indices that are selected in the
forward step of the current iteration.

Compared to FBP, it is expected that DD-FBPmakes fewer mistakes and consumes
less processing time. It utilizes the intuitive fact that in a set of clustered numbers, the
ones that have similar or comparable values have a higher probability of belonging
to the same cluster. A small numerical example will help understanding this concept.
Let us assume that before the backward step, the newly included and sorted projection
coefficients are 0.9, 0.8, 0.7, 0.2, 0.1, and so on. By eye inspection, we can deduce that
it is highly probable that the first three indices are in the support set and the others are
not. This is also the case for DD-FBP if Tb is set to a reasonable value. But for FBP,
unless α– β is not preset to 3 coincidentally, more or less number of coefficients will be
selected and it will result in erroneous inclusions or missed detections. Regarding DD-
FBP, making more correct decisions in each iteration means less number of iterations
on the average to converge and hence less processing time.

The theoretical complexity analysis of DD-FBP is hard to make, because in each
step, the number of included indices is not constant, but it varies. Nevertheless, a com-
parative analysis with OMP can be made. The main differences between OMP and
DD-FBP are thatDD-FBPhas a pruning step and it usually converges inC log(K ) steps
instead of K steps, whereC is typically between 2 and 4. The pruning step has insignif-
icant complexity, and hence, the proposedmethod is expected to be K/C log(K ) times
faster than OMP, which is roughly validated in the next section.

A disadvantage of DD-FBP is that for best performance, the forward and backward
constants should be selected depending on the sparsity and noise levels. However, the
dependence is not very strong, if the actual sparsity and noise levels are different than
the assumed ones to some extent, the performance does not significantly change as
explained in the next section.

For the reproducibility of the results that are presented in Sect. 4, the MATLAB
source code of the method is given in Appendix. The iterations are terminated when
the size of the estimated support reaches M or the power of the residual falls below
a threshold. When the signal is noise free, the threshold is set to ‖y‖2/100, which
corresponds to 40 dB SNR in y. Otherwise, the threshold value should be selected
accordingly. Other implementation details can be recognized by examining the code.
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4 Simulation Results

The simulation results for DD-FBP along with OMP, CoSaMP, StOMP, gOMP, and
FBP using synthetic 1-D sparse signals and a 2-D real image are given in this section.
DD-FBP is also compared to basis pursuit (BP), which is a convex relaxation method
that uses linear programming and a primal–dual log-barrier algorithm [8]. The MAT-
LAB code for BP is obtained from the Web site https://sparselab.stanford.edu. ROMP
is excluded from the simulations to prevent the graphs from being more complex,
because ROMP is reported to give similar (or even worse) results with OMP in some
works [9,32].

4.1 Simulation Setup

For 1-D signal simulation, exact reconstruction rates and runtimes are compared for
the methods under consideration using several values of N , M , and K . The methods
are executed 500 times for each (N , M, K ) triple, and the success rate, which is the
percentage of successful recovery, is recorded. For the noise-free case, “successful
recovery” is defined such that signal-to-residual error (error present after recovery)
ratio for the reconstructed sparse signal is above 40 dB. For noisy conditions, when
the signal-to-residual error ratio is comparable to the initial signal-to-noise ratio (for
instance, when it is a few decibels below), the signal is said to be successfully recov-
ered. For each run, a new observation matrix, whose elements are drawn from a
Gaussian random variable of zero mean and variance 1/M , is created. Note that simi-
lar results are obtained when Bernoulli-type random matrices are involved. Two types
of sparse 1-D signals are used in the simulations. The first type is created by placing
constant-amplitude values (±1′s) into K arbitrary locations and setting the others to
zero. Such constant-amplitude random-sign distribution presents a challenging case
for the reconstruction performances of matching pursuit-type algorithms [9,20]. The
sparse signals of the second type are drawn from a standard Gaussian random variable.
To limit the total simulation time, N is fixed to 512 and a limited number of K values
are used. The simulations are conducted on a laptop computer that has Windows 7
running on an Intel Core i7 2.10 GHz processor and 8 GB of RAM. In order to obtain
fair runtimes, a similar implementation structure is used for each method.

4.2 Parameter Selection

ForOMP, the only parameter to select is the total number of iterations, which is also the
maximum size of the support set. Although it is mentioned that K iterations should
suffice in [29], it is known that allowing the support size to exceed K gives better
results. The idea of allowing larger than necessary supports comes from Lemma 3.1
of [12]. It states and proves that in the noiseless case, as long as the true support is
covered, perfect recovery is possible if the size of the estimated support is smaller than
or equal to the number of measurements (M). This allows for inclusion of false alarms
to the estimated support. Hence, for OMP and any other method that iteratively expand
the estimated support, it is reasonable not to stop at the sparsity level (K ) and go on

https://sparselab.stanford.edu
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until the estimated support size reaches M . As the size grows larger (up to M), results
become “better,” because there are probably more true detections in the estimated
support, which in turn reduces the amount of the reconstruction error. The “best”
results are obtained when the size reaches M , because making the size larger than M
does not improve performance according to the Lemma above. Hence, the best results
are obtained when the maximum support size is set to M with the cost of increased
runtime especially in case of failure. For OMP, setting the value tomax(K , M/3) gives
significantly lower runtimes with minimal drop in performance, so it is adopted in the
OMP implementation.

For FBP, choosing the forward parameter α between 0.2M and 0.3M for±1 sparse
signals brings about similar results with the latter having slightly lower runtimes, so
α = 0.3M is used. Choosing the backward parameterβ asα−1 gives the best recovery
results, but the number of iterations, hence the runtime is very high. So, β is chosen
as 0.7α with significant drop in runtimes and insignificant loss in performance. The
maximum allowable support size is set to M .

Similar to the discussions above, the parameters for the other methods used in
the comparisons are selected to give the best performance in terms of recovery rate
and processing time for the corresponding signal type. For the repeatability of the
simulation results, these parameters are given in Table 2. In the table, max (#�) is the
maximum allowable size of the support estimate, and tmax is the maximum number of
iterations. S is the number of expected iterations for StOMP, and G is the number of
inclusions in each iteration for gOMP. (α, β) are the forward and backward parameters
for FBP, and (Tf , Tb) are the forward and backward threshold values for DD-FBP. ε
is the error tolerance for BP.

In DD-FBP, the selection of the forward and backward threshold parameters, Tf and
Tb, is a little bit tricky. In Fig. 1, for±1 sparse signals, the number of observations (M)

needed to have at least 50% successful reconstruction for different sparsity and noise
levels is shown when Tf and Tb are varied between 0.1 and 0.9. As seen, the optimum
values of the parameters, which correspond to the minimum points in the graphs,
change with the sparsity and the noise levels. It is possible to adjust the parameters by
using a priori information about the sparsity and the noise levels, but this is not a desired
option. This situation seems like a major drawback of the method. Automatically
adjusting the threshold parameters is left as a future work. The values used in the
simulations for±1 sparse signals are given in Table 3. The good news is that in general,
the performance of the method does not strictly depend on exact determination of the
parameters, i.e., the sensitivity of the performance on the parameter values is low. This
is evident in Fig. 1, where the minimum regions are kind of splayed instead of being
sharp. This means that the Tf and Tb values can be changed to some degree without
significant loss in performance. As a consequence, the performance of the method
does not drop much when the sparsity and noise levels fluctuate from the assumed
values. An exception occurs when both the sparsity and noise levels are high as seen
in the last two graphs of Fig. 1b. In this case, small changes in Tf seem to have a big
impact on performance while the insensitivity to Tb continues.
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Fig. 1 Minimum number of measurements required for at least 50% successful reconstruction for different
sparsity levels, a clean case, b 20 dB SNR on the observation vector

Table 3 Values of Tf and Tb
used in the simulations

K = 20 K = 40 K = 60 K = 80

Tf Tb Tf Tb Tf Tb Tf Tb

Clean 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.4

20 dB SNR 0.5 0.7 0.4 0.7 0.3 0.7 0.3 0.7

4.3 Simulation Results with Empirical Signals

The main purpose of the simulations in this part is to determine how many measure-
ments M are necessary to correctly recover a K -sparse signal with high probability.
In Fig. 2, out of the 500 trials, the percentage of correct reconstructions as a function
of M for different sparsity levels when the sparse signal is composed of ±1′s and
no noise is present is shown. DD-FBP outperforms every other OMP-based method
especially for high sparsity levels. For low sparsity levels, it gives similar results with
CoSaMP. It also performs comparably with BP for low sparsity levels.

In Fig. 3, average runtimes are exhibited as a function of M for different methods.
Notice that DD-FBP consumes less processing time in nearly all of the cases due to the
fact that more correct decisions and less false detections are made in each iteration.
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Fig. 2 Successful reconstruction rates as a function of the number of measurements for clean sparse signals

As a result, total number of iterations to converge is less on the average than the
other methods. The runtime of BP is not shown, because it is 15 to 25 times larger
than the runtime of DD-FBP. An observation that needs explanation is the “bump”
in the graphs. For all methods, the runtime increases as M increases, then a drop
occurs, and then it increases again. The drop occurs when M reaches the necessary
amount of measurements for reliable successful reconstruction. Before that, because
of insufficient M , erroneous decisions are made in each iteration and more iterations
are needed for the algorithms to converge, if they converge at all. This results in larger
average runtimes.

In Fig. 4, successful reconstruction rates when the observation vector is contami-
nated by noise are given. Here, by “successful,” we mean that after convergence, the
energy of the residual is comparable with the energy of the actual noise. It is assumed
that the noisy observation vector is ynoisy = y + n, where n is an Mx1 noise vec-
tor whose elements are drawn from a zero-mean Gaussian random variable whose
variance is selected such that the SNR is 20 dB. As observed in Fig. 4, DD-FBP and
CoSaMP exhibit similar performances while seemingly CoSaMP is slightly better. But
when one focuses on relatively large values of M for especially K = 60 and K = 80,
it can be inferred that DD-FBP reaches the 100% reconstruction rate more rapidly than
CoSaMP, i.e., less values of M are required for reliable successful reconstruction. As
seen in the graphs, BP outperforms all of the OMP-type algorithms in the noisy case.
Another observation is that two-stage algorithms (CoSaMP, FBP, DD-FBP) perform
significantly better than the ones that do not have a backward stage (OMP, StOMP,
gOMP) when noise is present. This can be attributed to the fact that the errors made in
the forward step naturally tend to increase when the signal is noisy, and the two-stage
algorithms have the ability to correct these errors while the others do not.
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Fig. 3 Average runtimes as a function of the number of measurements

Fig. 4 Successful reconstruction rates as a function of the number of measurements for noisy signals
(SNR=20dB)

The results for Gaussian sparse signals are shown in Fig. 5. DD-FBP gives the best
results, nearly edging FBP. The poor performances of CoSaMP and BP for Gaussian
sparse signals are remarkable.

In Fig. 6, simulation results using a structured observation matrix are shown. The
observation matrix is formed by randomly selecting M rows of an NxN Hadamard
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Fig. 5 Successful reconstruction rates as a function of the number of measurements for clean Gaussian
sparse signals

Fig. 6 Successful reconstruction rates as a function of the number of measurements for a structured
observation matrix

matrix. The sparse signal is composed of ±1′s with no noise. The parameters of the
algorithms are the same as the first row of Table 2. The results are not very different
from the results of Fig. 2; DD-FBP generally outperforms other OMP-type algorithms
while basis pursuit gives the best results with much more processing time.
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          Test image    OMP (PSNR = 18.7 dB)    StOMP (PSNR = 18.6 dB) 

CoSaMP (PSNR = 18 dB)  gOMP (PSNR = 18.8 dB)       FBP (PSNR = 18.6 dB) 

     BP (PSNR = 21.4 dB)     DD-FBP (PSNR = 19.4 dB) 

Fig. 7 Image reconstruction performance comparison

4.4 Simulation Results with a Real Image

For a more realistic case, the methods are compared via their reconstruction perfor-
mances of a real image. Images generally are not sparse in the spatial domain, and they
are approximately sparse when represented in terms of some orthogonal basis such as
DCT or Haar wavelet functions. The mandrill image (320× 320) to be reconstructed,
which is shown in Fig. 7a, is first decomposed into 16x16 sub-images in order to
deal with manageable vector and matrix sizes. N , which is the total pixel number, is
256. Then, each sub-image is passed through the Haar wavelet transform to obtain
an approximately sparse representation. The transformation is done by multiplying
the vectorized sub-image with the Haar orthogonal transform matrix, which can be
shown by�. In [16], a pre-processing is done on the sub-images to make them exactly
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sparse by keeping a number of largest wavelet coefficients and zeroing the others. This
seems like an aberration from reality, so such pre-processing is not adopted here. The
non-exact sparseness of real images can be considered as a noisy sparse reconstruc-
tion problem and presents a harder case for the reconstruction algorithms. After that,
M = 128 observations are obtained by using an MxN observation matrix A whose
entries are randomly drawn from aGaussian random variable with zero mean and vari-
ance of 1/M . Note that the composite matrix that will be used by the reconstruction
methods becomes A�∗. Then, the sub-images are recovered using the reconstruction
method before combining into a single reconstructed 320×320 image. The results for
the methods are shown in Fig. 7b–g along with the corresponding PSNR values. Note
that the parameters used by the methods are adjusted to have the best visual quality
and highest PSNR values (third row of Table 2). PSNR values suggest that the best
result among the OMP-type methods is obtained by DD-FBP. By careful inspection,
it can also be seen that DD-FBP manages to preserve the detailed regions of the image
more accurately.

5 Conclusion and Future Work

In this work, a new sparse signal reconstruction method based on orthogonal matching
pursuit, namely data-driven forward–backward pursuit, is proposed. It is a two-stage
reconstruction algorithm that iteratively expands and shrinks the estimated support set.
In each iteration, the expansion and shrinkage are not done by constant amounts like
other methods, but they are dependent on the correlation and projection coefficients
that are calculated in each iteration. Simulation results show that for all types of
simulated sparse signals, DD-FBP generally provides better successful reconstruction
rates with lower computational costs than the competing methods. It even outperforms
the basis pursuit in some cases although the runtime of basis pursuit is several times
higher.

A disadvantage of the method is that there are no automatic means of setting the
forward and backward threshold values, and they must be pre-determined based on the
sparsity and noise levels which are assumed to be known in advance. Nevertheless, this
dependence is not very strong, and the values can be changed to some degree without
significant loss in performance. Work is still being carried out to apply a probabilistic
model in both correlation and projection coefficients to automatically set the forward
and backward threshold parameters.

Among the two-stageOMP-type algorithms, subspace pursuit andCoSaMPprovide
theoretical analysis and guarantees [9,22]. However, in their analysis, the support size
is always fixed after the backward step in every iteration, and they make use of it in
their analysis. For the proposed method, the support expands in each iteration, and the
amount of expansion is not fixed. So, the theoretical analysis is more complex, and it
is left as a future work.
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Appendix

The following MATLAB (version 8.3) code is used to obtain the results of Sect. 4.
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