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Abstract Detecting the vowel regions in a given speech signal has been a challeng-
ing area of research for a long time. A number of works have been reported over the
years to accurately detect the vowel regions and the corresponding vowel onset points
(VOPs) and vowel end points (VEPs). Effectiveness of the statistical acoustic model-
ing techniques and the front-end signal processing approaches has been explored in
this regard. The work presented in this paper aims at improving the detection of vowel
regions as well as the VOPs and VEPs. A number of statistical modeling approaches
developed over the years have been employed in this work for the aforementioned
task. To do the same, three-class classifiers (vowel, nonvowel and silence) are devel-
oped on the TIMIT database employing the different acoustic modeling techniques
and the classification performances are studied. Using any particular three-class clas-
sifier, a given speech sample is then forced-aligned against the trained acoustic model
under the constraints of first-pass transcription to detect the vowel regions. The cor-
rectly detected and spurious vowel regions are analyzed in detail to find the impact
of semivowel and nasal sound units on the detection of vowel regions as well as on
the determination of VOPs and VEPs. In addition to that, a novel front-end feature
extraction technique exploiting the temporal and spectral characteristics of the excita-
tion source information in the speech signal is also proposed. The use of the proposed
excitation source feature results in the detection of vowel regions that are quite different
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from those obtained through the mel-frequency cepstral coefficients. Exploiting those
differences in the obtained evidences by using the two kinds of features, a technique
to combine the evidences is also proposed in order to get a better estimate of the VOPs
and VEPs. When the proposed techniques are evaluated on the vowel–nonvowel clas-
sification systems developed using the TIMIT database, significant improvements are
noted. Moreover, the improvements are noted to hold across all the acoustic modeling
paradigms explored in the presented work.

Keywords Phone recognition system ·Vowel onset point ·Vowel end point · SGMM ·
DNN

1 Introduction

The vowel onset point (VOP) and the vowel end point (VEP) are the instants of starting
and ending of a vowel region in a speech sequence, respectively [10,28,35,40]. The
change in the excitation source and the vocal tract system is predominantly reflected
at these instants. The vowels are the prominent regions in a speech signal due to their
larger amplitude, periodicity and longer duration [34]. Considering these aspects of
speech production, several methods have been proposed in the literature to detect the
vowel regions and their correspondingVOPs andVEPs. The vowels can be detected by
anchoring these two events.On the other hand, theVOPs and theVEPs can be identified
from the detected vowel regions by finding the starting and ending points. The former
approach ismostly used in the explicit signal processing techniques [28,33,35–37,40],
while the latter in the statisticalmodeling approaches [4,15,30,38]. The characteristics
of both the vocal tract system and the excitation source are better manifested in the
vowel regions [25]. The accurate detection of the vowel regions, the VOPs and the
VEPs is employed in extracting different levels of features that are robust to the
environmental degradation. Such features are preferred in the development of various
speech-based applications [6,18,24–26,35].

The featuresmostly employed for the detection of theVOPs, theVEPs and the vowel
regions include various signal processing approaches like the difference in the energy
of each of the peaks and their corresponding valleys in the amplitude spectrum [10],
the zero-crossing rate, the energy and the pitch information of the speech signal [38],
the wavelet scaling coefficients of the input speech signal [39], the Hilbert envelop of
the linear prediction (LP) residual [29], the spectral peaks, the modulation spectrum
energies [28] and the spectral energy present in the glottal closure region of the speech
signal [35]. The statistical modeling methods like the Hierarchical neural network, the
multilayer feed-forward neural network (MLFFNN) and the auto-associative neural
network (AANN) have also been used [30,38]. These models are generally trained on
the features estimated using the speech frames around the VOPs.

The transition characteristics of the vowels vary with the context of the spoken
utterance and the environmental conditions [27,34]. For example, a fricative to vowel
transition is completely different from that of a semivowel to vowel transition. Due
to the similarities in the production characteristics of the vowels and the semivowels,
most of the vowel detection algorithms fail to detect the semivowels, the VOPs and
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the VEPs for the semivowel–vowel clusters and the diphthongs. Due to the afore-
mentioned shortcomings, several signal processing methods [25,27] and statistical
modeling techniques [4,15] have been explored in the literature for detecting the
vowel-like regions (VLRs) instead of the vowel regions. The VLRs are defined as the
regions corresponding to the vowel, the semivowel and the diphthong sound units [27].

The existing signal processing methods based on the transition characteristics are
generally threshold dependent. In most of those methods, the VOPs and the VEPs
are detected by convolving the features characterizing the temporal variations with
a first-order Gaussian difference (FOGD) operator within a region that is 100 ms in
duration [28,35–37,40]. In those works, it is generally assumed that for a continuous
speech utterance, only one vowel will be present within a duration of 100 ms. The
convolved output is then used as the evidence for the detection of the VOPs and the
VEPs. In such approaches, the convolved outputmainly depends on the 100ms regions
under consideration. As a result, most of the weak transitions are smoothed out. On
the other hand, performing the convolution in a smaller region will lead to spurious
detections. In order to overcome this issue, threshold-independent vowel detection
systems should be developed by statistically modeling the vocal tract system, the
excitation source and their transient behavior. Motivated by this, an excitation-based
feature is proposed in this work to extract the temporal and spectral characteristics of
the excitation source information.

In the presented work, an attempt is made to accurately detect the vowel regions
by exploiting the different acoustic modeling techniques reported in the literature.
For learning the acoustic model parameters, the hidden Markov model (HMM) is
explored in this paper. At the same time, different techniques viz. the Gaussianmixture
modeling (GMM), the subspace GMM (SGMM) [22] and the deep neural network
(DNN) [3] are employed to model the observation densities for the HMMs. In addition
to that, the feature and the speaker normalization techniques like the linear discriminant
analysis (LDA) [12], the maximum likelihood linear transform (MLLT) [8] and the
feature-space maximum likelihood linear regression (fMLLR) [5] are also explored.
For the detection of the vowels, three-class classifiers (vowel, nonvowel and silence)
are developed using the aforementioned acoustic modeling techniques. In the present
work, the speech sound units excluding the vowel are termed as nonvowels. The
classifiers are developed on the TIMIT database [9] using the proposed excitation
features. In order to detect the vowel regions, the given speech sample is forced-
aligned against a particular acoustic model. The first-pass hypothesis, generated by
decoding the given data on the same acoustic model, is employed for forced alignment
to simulate a realistic scenario. To determine the impact of semivowel and nasal sound
units on the detection of vowel regions, the correctly detected and spurious vowel
regions are also analyzed in detail.

The above-discussed studies are repeated on systems developed using the con-
ventional mel-frequency cepstral coefficients (MFCC) for the sake of contrast.
Interestingly, the vowel regions detected using the two kinds of features are observed
to be quite different, i.e., the evidences do not completely overlap. Motivated by that,
a novel scheme to combine the obtained evidences is also proposed in this work. The
proposed approach for combining the evidences is found to significantly improve the
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accuracy with which the vowel regions and their corresponding VOPs and VEPs are
detected. The salient contributions of this study can be summarized as follows:

(a) Exploring state-of-the-art statistical modeling approaches for the task of detecting
the vowel regions in a speech sequence.

(b) A novel front-end speech parameterization approach based on the temporal and
the spectral characteristics of the excitation source information.

(c) In order to enhance the accuracy of detecting the vowel regions, a technique to
combine the evidences obtained with respect to the MFCCs and the excitation
source features is also proposed.

The rest of the paper is organized as follows: The proposed excitation source features
for the detection of vowel regions are discussed in Sect. 2. The experimental evaluation
of the vowel detection and the detailed analysis of the detected vowel regions using the
VOPs andVEPs are presented in Sects. 3 and 4, respectively. The proposed approach is
compared with some of the existing VOP/VEP detection techniques in Sect. 5. Finally,
the paper is concluded in Sect. 6.

2 Excitation Source Features for the Detection of Vowel Regions

It is well known that the vowels in the speech signal are mostly produced by the
vibration of the vocal folds [34]. Due to a sudden closure of the vocal folds during
the production of vowels, the excitation is observed to be impulse like. The strength
of excitation in these regions is relatively higher when compared to other consonants.
Taking this aspect of speech production into account, several signal processing meth-
ods have been proposed in the literature for the detection of the vowel regions by
exploiting the excitation source information [18,24,25,28]. Mostly, the variations in
the energy associated with the linear prediction (LP) residual and the Hilbert envelop
(HE) of the LP residual are used as the features. In general, the excitation strength
at the start as well as at the end of the vowel regions in speech is characterized by
a sudden change in energy. Consequently, the change in energy at the point where
the vowel onset is observed can be used for detecting the vowels in speech [28].
Furthermore, the optimal threshold for the vowel–nonvowel classification generally
varies with the context of the spoken utterance and the environmental conditions as
mentioned earlier. For example, the variation in the excitation characteristics for a
high energy voiced consonant to vowel transition is completely different from that
for an unvoiced consonant to vowel transition. Therefore, a threshold-independent
vowel–nonvowel classifier may be developed by statistically modeling the excitation
characteristics of the vowel regions.

In the existing approaches based on the excitation source, the composite LP residual
signal is processed only in the temporal domain. The variation of the excitation strength
in different frequency bands is completely neglected. It is to note that the temporal
and the spectral characteristics of the excitation source vary in different frequency
bands [20,41]. The considered frequency bands in this work are derived by splitting
the analysis range of 0–4 kHz into 8 nonoverlapping bands of bandwidth 500 Hz each.
This is achieved by filtering the LP residual signal through a bank of band-pass filters
each having a bandwidth of 500 Hz. Narrowing the bandwidth does not provide more
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Fig. 1 The top panel shows a speech segment alongwith the referencemarking of different sound units (dot-
ted lines). The middle panel represents the corresponding LP residual signal. The bottom panel shows the
spectral energy in the LP residual corresponding to the 8 frequency bands considered in this work. The fre-
quency bands are derived by splitting the 0–4 kHz analysis range into 8 nonoverlapping bands of bandwidth
500 Hz each

discriminating information since there is not much variation in the dynamic range of
the LP residual spectrum. At the same time, increasing the number of filters results in
an increase in the number of coefficients in the feature vector. This, in turn, increases
the complexity of the classifiers. On the other hand, increasing the bandwidth results
in a degradation of the discriminative property of the features. For example, the energy
of the nasal sound units lies prominently in the 0–500 Hz region. Consequently, if the
chosen bandwidth is much greater than 500 Hz, the energy of some other sound unit
will be captured along with that of the nasals. The feature in that case will represent
not only the nasal, but also some other sound unit. This results in a degradation of
discrimination due to the merging of the energies being analyzed. The choice of 500
Hz is found to be more suitable through preliminary experimental studies. It is to note
that a slight variation in the bandwidth does not hamper the effectiveness of the derived
feature vectors much.

The variation in the spectral energy in different frequency bands is shown in Fig. 1.
In the case of vowel regions (/ux/, /iy/ and /ix/), a greater degree of variation in the
spectral energies for the considered frequency bands is evident from the figure. On
the other hand, significantly less variation is noticeable for the nonvowel regions (/t/).
Due to the nature of the LP residual signal (shown in the middle panel), the sub-
band energies for the nasal units (/m/ and /n/) are observed to be insignificantly small



2320 Circuits Syst Signal Process (2017) 36:2315–2340

in comparison with the vowels. Therefore, the features for the statistical modeling
of the excitation source information within vowels may be obtained by considering
these variations in the different sub-bands. Consequently, such acoustic features are
expected to be more discriminative.

The energy in the LP residual signal is mostly concentrated only in a part of the
residual signal around the instant of glottal closure [41,42]. Since the nature of the exci-
tation in the vowel regions is different, a better finer feature for the vowel–nonvowel
classification can be derived by processing only 2 ms portion of the residual signal
around the significant excitation. This results in another set of features different from
the one described above. Further, the performance of the statistical classifiers for the
vowel–nonvowel segmentation may be enhanced by combining these features with
those that better model the vocal tract system. Motivated by these factors, a front-end
speech parameterization approach for the detection of vowel regions in speech is pro-
posed in this work. The sequence of steps involved in the extraction of the proposed
features are described in the following subsections.

2.1 Detecting Instants of Significant Excitation Using Zero Frequency Filtering
Method

The front-end features proposed in this work rely on an accurate detection of the
glottal closure instants (GCIs). Among the several existing GCI detection techniques,
the zero frequency filtering (ZFF) method is noted to detect the GCIs with a much
better accuracy. At the same time, the ZFF-based method is found to be robust to
the variations in the environmental conditions [19,35]. The ZFF-based GCI detection
technique [19] exploits the fact that the excitation source exhibits impulse-like discon-
tinuities. The discontinuities due to impulsive excitation are spread uniformly across
all the frequencies, including the zero frequency. The ZFF method then filters the
speech signal to preserve the energy around the zero frequency which is mainly due
to the impulse-like excitation. The positive zero crossings of the ZFF signal give the
location of GCIs. Using the ZFF approach, the location of the GCIs can be obtained
from the speech signal s(n) by the following sequence of steps [19]:

– Determine the first difference x(n) of the speech signal s(n) where

x(n) = s(n)− s(n − 1). (1)

– Compute the output of a cascade of two ideal digital resonators at 0 Hz

y(n) = −
4∑

k=1

ak y(n − k)+ x(n) (2)

where a1 = 4, a2 = -6, a3 = 4, a4 = −1.

– Remove the trend, i.e.,
ŷ(n) = y(n)− ȳ(n) (3)
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where ȳ(n) = 1
(2N+1)

∑N
n=−N y(n) and 2N +1 corresponds to the average pitch

period computed over a longer segment of speech.

– The trend removed signal ŷ(n) is called the ZFF signal.

– The positive zero crossings of the ZFF signal will give the location of GCIs.

2.2 Extraction of Excitation Source Information of Vowels from the LP
Residual Signal

In the LP analysis of the speech signal, each sample is predicted as a linear combination
of the past m samples as follows [1,17,41]:

ŝ(n) = −
m∑

k=1

bks(n − k) (4)

where m is the order of prediction and the set of linear prediction coefficients (LPCs)
are denoted by {bk}m

k=1. The LPCs are computed by minimizing the mean square error
between the original and the predicted speech samples. The error between the predicted
samples ŝ(n) and actual speech samples s(n) is referred to as the LP residual signal.
The LP residual signal is obtained by passing the speech signal through a time-varying
inverse filter constructed using the LPCs. This inverse filter is given by the following
equation:

B(z) = 1+
m∑

k=1

bk z−k . (5)

The LP residual signal mostly contains the excitation source information [1,41]. The
accuracy in representing the excitation source by the LP residual signal, in turn,
depends on the order of prediction. Most of the studies presented in the literature show
that a 10th order prediction is sufficient for characterizing the excitation source infor-
mation in the vowel regions for a speech signal that is sampled at 8 kHz rate [28,35].

In Fig. 2, a segment of speech signal taken from a vowel region (Fig. 2a), its LP
residual derived using 10th-order LP analysis (Fig. 2b), the corresponding ZFF signal
(Fig. 2c) and the location of the GCIs derived from the ZFF signal (Fig. 2d) are shown.
From Fig 2b, it is evident that the LP residual energy is mostly concentrated in a small
region around the GCIs. The GCI locations given in Fig. 2d match accurately with
the high energy portions of the LP residual signal shown in Fig. 2b. Therefore, the
temporal characteristics of the excitation source in the vowel regions can be modeled
by considering the 2 ms regions around the GCIs. It is to note that, in the case of LP
residual, the maximum energy is concentrated in the 2 ms region around the GCI [41].
These regions canbe accurately detectedby anchoring the locationof theGCIs detected
by the ZFF method.
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Fig. 2 Display of the LP residual and glottal closure instant of a segment of vowel speech. aThe segment of
the vowel sound unit considered, b the LP residual signal using 10th-order LP analysis, c the corresponding
ZFF signal and d the GCIs derived from the ZFF signal

2.3 Extracting the Temporal and the Spectral Characteristics of the Excitation
Source

Since the speech signal varies slowly with respect to time, short-time analysis con-
sidering a frame duration of 20–30 ms with an overlap of 50% is generally employed
during the front-end parameterization step. In this work, a frame size of 20 ms with
a frame shift of 10 ms is considered during the computation of MFCC features. In
order to have an equal number of frames for the proposed approach as well, the same
frame size and frame shift are considered. The speech signal is processed through the
following sequence of steps for estimating the temporal and the spectral characteristics
of the excitation source information in the vowel regions.

Step I : The instants of significant excitation (GCIs) are detected by using ZFF
method.

Step II : The speech signal is processed in frames that are 20 ms in duration with
a frame shift of 10 ms. For each 20 ms block, 10th-order LP analysis is
performed to estimate theLPCs.A time-varying inverse filter is constructed
using these LPCs. The speech signal is passed through the inverse filter to
extract the LP residual signal.

Step III : Next, the LP residual signal is filtered through a bank of 8 nonoverlapping
filters each having a bandwidth of 500 Hz. This splits the LP residual
into 8 sub-bands. Feature vectors are then extracted by computing the
spectral energy in each sub-band considering a frame size of 20 ms with
50% overlap. This results in an 8-dimensional feature vector per frame
capturing the spectral variations in the LP residual signal.
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Step IV : Similarly, for each block of 20 ms, the GCI locations within that frame are
identified using ZFF.

– If one or more GCIs are found within an analysis frame, the regions that are
2 ms to the right of each GCI for all the sub-bands of the LP residual are
identified by anchoring these GCIs. For this, only those GCIs are considered
for which such 2 ms regions exist to the right of the GCI within the analysis
frame under consideration.

– The temporal energies are then computed within those regions. To do so,
Hamming-windowed regions that are 2 ms in duration are considered. Finally,
the average of the energy for all the GCIs within that frame is computed.

– If no GCIs are found within the analysis frame under consideration, the tem-
poral energies for all the sub-bands are computed by considering the central
portions of the analysis frame with a duration of 2 ms.

– This results in another 8-dimensional feature vector per frame capturing the
temporal variations in the LP residual signal.

Step V : To reduce the dynamicvariations, the logarithmof the spectral and temporal
energies is taken.

Step VI : The derived features are then concatenated to obtain a 16-dimensional
feature vector.

Step VII : The first- and the second-order temporal derivatives (the delta and delta–
delta coefficients) are then computed for the current feature vector by using
the two preceding and the two succeeding frames. The delta as well as the
delta–delta coefficients will also be 16-dimensional. These coefficients are
appended to the base features making the total feature dimension equal to
48 (16-dimensional base + 16-dimensional delta + 16-dimensional delta–
delta).

Since the analysis frames considered for the computation of the spectral and the
temporal energies are quite different in duration, the derived feature vectors turn out
to be different.

3 Vowel–Nonvowel Classification

Asmentioned earlier, different acousticmodeling approaches (GMM–HMM,SGMM–
HMM and DNN–HMM) have been explored in this work for the task of correctly
identifying vowels in speech signal. The Kaldi speech recognition toolkit [13,23]
was used to develop the vowel–nonvowel detection systems employing the different
acoustic modeling approaches. In the following, the details of the speech corpus used
in the presented study are discussed. This is followed by the description of the vowel–
nonvowel classification systems employed in this work for the detection of vowels in
a speech sequence.

3.1 Speech Corpus Employed

The system development and evaluation were done on the TIMIT corpus [9]. The
speech corpus was split into orthogonal sets following the standard Kaldi recipe.
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In order to train the acoustic model parameters, the speech data from 462 speakers
comprising of 3696utteranceswere used. The test set comprised of 192 utterances from
24 speakers. All the experiments reported in this paper were performed on 8 kHz re-
sampled data to simulate telephone-based speech interface. The training transcription
was modified to represent the possible vowels in the database as a single class. The
nonvowels were grouped together to represent the second class. The silence, the short
pause and the other nonspeech units (fillers) were grouped together to represent the
third class (silence). The objective of the presented study is to segment the given speech
signal into vowel, nonvowel and silence regions. Therefore, a three-class classifier
(vowel, nonvowel and silence) was trained on the TIMIT data using various statistical
modeling approaches. The spectral parameterization approaches employed for feature
extraction are discussed later.

3.2 Description of the Different Acoustic Modeling Techniques Used for
Vowel–Nonvowel Classification

In the work presented in this paper, an attempt is made to detect the accurate vowel
regions by exploring different acoustic modeling techniques. As mentioned earlier,
the three statistical approaches for learning the acoustic model parameters reported in
the literature are the GMM, the SGMM [22] and the DNN [3]. In all these approaches,
the temporal variation is captured using the hidden Markov model (HMM). Acoustic
modeling techniques based on subspace Gaussian mixture model (SGMM) and deep
neural network (DNN) are very recent developments in the domain of speech recog-
nition research. Both these techniques are reported to be superior to the GMM-based
approach. Motivated by the success of SGMM- and DNN-based approaches, their
effectiveness for the detection of the sequence of vowels and nonvowels in a given
speech signal is explored in this paper. Further, the effectiveness of various acoustic
modeling techniques in the determination of vowels, VOPs and VEPs in the given
speech data is also compared. In the following subsections, a brief description of
the SGMM- and the DNN-based acoustic modeling is presented. These discussions
closely follow the works reported in [3,11,21,22,32].

3.2.1 Subspace Gaussian Mixture Modeling

In the case of acoustic modeling based on GMM–HMM, each HMM state is modeled
using a dedicated mixture of multivariate Gaussians. Hence, there is no sharing of
parameters between the states. On the other hand, the SGMM-based acousticmodeling
approach facilitates parameter sharing among the states. As a result, the acoustic
model parameters can be robustly learned even with a smaller amount of training
data in the case of SGMM. The SGMM approach has some similarities with the joint
factor analysis used in speaker verification [14] as well as the model space adaptation
techniques like the eigenvoices [16] and the cluster adaptive training [7].

The acoustic model parameters in the case of SGMM represent a globally shared
subspace.A set of low-dimensional state-specificvectors, referred to as state projection
vectors {v j }, are trained fromdata to capture principal directions of acoustic variability.
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Themodel means and themixture weights are then derived using those state projection
vectors. It is to note that the covariances in the SGMM are shared among all the HMM
states and are represented by full covariancematrices unlike the diagonalmatrices used
in the case of GMM. Additional flexibility in the SGMM parameterization is provided
by introducing the notion of a substate within a state. To train the model parameters,
a single-state GMM called the universal background model (UBM) is learned on the
data from all speech classes pooled together. The subspace parameters M, v and Σ

are initialized in such a way that the means and covariances in each state for the first
iteration are the same as that of the UBM. The usual expectation–maximization (EM)
algorithm employing a maximum likelihood (ML) criterion is used to optimize the
parameters of the SGMM in an iterative manner.

3.2.2 Deep Neural Network

A major drawback of GMM-based acoustic modeling approach, as suggested in [11],
is its inefficiency in modeling the data that lie on or near a nonlinear manifold in
the data space. The artificial neural network (ANN), on the other hand, is reported
to have the potential to learn these models of data that lie on or near the nonlinear
manifold. Consequently, the deep neural networks containingmany layers of nonlinear
hidden units and a very large output layer are now being used formodeling the acoustic
variations in speech recognition systems [3]. In theDNN–HMMsystems, the posterior
probabilities of the senones (or the context-dependent tied state) are modeled using
the DNN. These posterior probabilities are then used in a HMM-based classifier. The
speech recognition systems based on theDNN–HMMmodeling paradigm are reported
to outperform the ones based on GMM–HMM.

Deep neural networks are created by stacking layers of restricted Boltzmann
machine (RBM) which is a undirected generative model. The joint probability of
a vector of observable variables (v) and a vector of latent/hidden variables (h) in the
case of an undirected model is given by a single set of parameters (W) via an energy
function E . After training an RBM on the data, the output of the hidden units can be
used as the input data for training another RBM. For each data vector v, the vector
of hidden unit activation probabilities h is computed. These hidden activation prob-
abilities are then used as the training data for a new RBM. Thus, each set of RBM
weights can be used to extract features from the output of the previous layer. The
initial values for all the weights of the hidden layers of the neural nets can thus be
generated using RBM training (the number of hidden layers being equal to the num-
ber of RBMs trained). This is called pre-training of a deep belief network (DBN).
A randomly initialized softmax output layer is then added, and all the weights in the
network are discriminatively fine-tuned using backpropagation to create a DNN. In the
case of an automatic speech recognition system, the softmax output layer has as many
nodes as the number of classes, i.e., the number of senones. For speech recognition,
the output unit j converts the total input x j into a class probability p j by using the
softmax nonlinearity given by

p(x j ) = exp(x j )∑
k exp(xk)

(6)
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where k is an index over all the classes. The senone likelihood p(x j ) is used with the
HMM modeling the sequential property of the speech. The DNNs can be trained by
backpropagating derivatives of the cost function, i.e., the cross-entropy between the
target probabilities and the output of the softmax function.

3.3 Vowel–Nonvowel Classification Using the MFCC Feature Vector

In the first level, the vowel detection systems using the MFCCs as the feature vec-
tor were developed. For the MFCC feature vector extraction, the speech data were
analyzed using a Hamming window of length 20 ms with frame rate of 100 Hz and
a pre-emphasis factor of 0.97. The 13-dimensional base MFFC features (C0 − C12)
were computed employing 23-channel mel-filterbank. Since the speech data used in
this work are sampled at 8 kHz rate, the number of filters is selected to be 23. In the
case of higher sampling rates, the number of filters should be modified accordingly.
The first- and the second-order temporal derivatives (the delta and delta–delta coeffi-
cients) were then appended, making the feature dimension equal to 39. The acoustic
model parameters were then learned on those 39-dimensional MFCC feature vectors.
The details of the employed statistical modeling techniques are given in the following.

3.3.1 Development of GMM–HMM, SGMM–HMM and DNN–HMM systems

The context-independent-monophone- and the context-dependent-triphone-based
acoustic modeling was performed using the 39-dimensional features (GMM–HMM
(monophone) and GMM–HMM (triphone)). For the context-dependent-triphone sys-
tem, crossword modeling with decision-tree-based state tying was employed. For
further improving the recognition performances, time splicing of the base MFCCs,
considering a context size of 9 (4 frames to the left and to the right of the central frame),
was done making the total feature dimension equal to 117. The dimensionality of the
derived time-spliced features was then reduced to 40 using LDA and MLLT. These
features were then employed in developing another context-dependent-triphone-based
recognition system (GMM–HMM (triphone, LDA–MLLT)). Speaker normalization
using fMLLR was also explored to further improve the performance. The fMLLR
transformations were generated for the training and test data using speaker adap-
tive training (SAT) [2] approach as suggested in [31]. A revised recognition system
was developed on the fMLLR-normalized features as well (GMM–HMM (triphone,
fMLLR–SAT)).

In the case of SGMM-based vowel–nonvowel classification system, the number of
Gaussians used for training the universal background model was selected as 400.
The number of leaves and Gaussians in the SGMM was chosen to be 9000 and
7000, respectively. The LDA–MLLT features followed by fMLLR-based normaliza-
tion were employed in the training of the model parameters. Discriminative training
using boostedmaximummutual information (MMI) was also explored in combination
with the SGMM.

For learning the DNN parameters, the 40-dimensional time-spliced features with
fMLLR-based normalization were further spliced over 4 frames to the left and right
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Table 1 Classification error rates for the vowel and nonvowel classifiers developed using different acoustic
modeling approaches explored in this work

Explored acoustic Error (in %)

modeling technique MFFCs Prop. Concat.

GMM–HMM (monophone) 20.14 22.83 20.32

GMM–HMM (triphone) 15.40 19.49 16.19

GMM–HMM (triphone, LDA–MLLT) 14.87 18.72 15.63

GMM–HMM (triphone, fMLLR–SAT) 14.55 18.81 15.84

SGMM–HMM 13.82 17.53 15.04

SGMM–HMM–MMI 13.56 17.96 14.57

DNN–HMM 15.61 18.79 16.42

Performances are givenwith respect to the systems developed using the conventionalMFCC feature vectors,
the proposed excitation feature vectors and the feature vectors obtained by their frame-level concatenation

of the central frame. The number of hidden layers was selected to be equal to 2 as the
amount of data were quite less. Increasing the number of hidden layers was not found
to be helpful. The number of nodes in the hidden layer was selected to be 300. The tanh
function was used to model the nonlinearities in the hidden layers with cross-entropy
being the optimization criterion. The initial learning rate was set to 0.015 which was
then reduced to 0.002 in 15 epochs. After reducing the learning rate to 0.002, extra
5 epochs of training were employed [43]. The minibatch size for neural net training
was fixed at 128.1

The recognition performances for the three-class classifier developed on theMFCC
features employing the discussed modeling techniques are given in Table 1. The error
rates given in Table 1 are computed in the same way as the word error rates with the
possible words being vowel, nonvowel and silence. The effect using different acoustic
modeling techniques is quite evident from the enlisted error rates.

3.4 Vowel–Nonvowel Classification Using the Excitation Source Feature

Having successfully developed systems using the MFCCs feature vectors, the detec-
tion systems using the proposed excitation source features were developed next. These
features are derived from the speech signal by following the sequence of steps as
described in Sect. 2.3. TheGMM–HMM,SGMM–HMMandDNN–HMMsystems on
the 16-dimensional base features extracted through the proposedmethod are developed
following the same procedure as described in Sect. 3.3. The recognition performances
for the various systems on the proposed features are also enlisted in Table 1. In addition
to that, the effect of concatenating the MFCC and the proposed feature vectors is also
explored in this work. To do so, for each frame, the 13-dimensional base MFCC fea-
tures and the 16-dimensional proposed excitation features were concatenated to derive

1 It is to note that, for all the discussed configuration parameters, the chosen values are taken from the
Kaldi recipe.
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a 29-dimensional feature vector. The statistical models were then trained on these 29-
dimensional vector treating them as the base features. The recognition performances
for the various systems trained on the concatenated features are also given in Table 1.

From the presented error rates, it can be concluded that the proposed excitation
features canbeused for developing the classification systems even though such systems
will be inferior to those developed using the MFFCs. Furthermore, the frame-level
concatenation of the two features is also helpful to a certain extent. Motivated by these
results, the classification systems developed using the two kinds of features were
employed for the detection of vowel regions in a given speech signal. It will be noted
from the studies presented in the following section that two kinds of features result in
different and, at times, nonoverlapping vowel regions for the same speech sequence.
Consequently, the evidences obtained from the two features can be combined to get
a better estimate of the vowel regions. In this regard, a novel approach of combining
the evidences that enhances the performances is also proposed.

4 Detection of Vowel Regions in Speech Signal

The frame-level alignments required to detect the vowel regions, the VOPs and the
VEPs were generated by the forced alignment of the test data with respect to the
trained acoustic models under the constraints of the first-pass hypothesis. This first-
pass hypothesis was obtained by decoding the test data on the trained acoustic models.
The use of first-pass hypothesis represents the real testing scenario. For the pur-
pose of evaluating the effectiveness of the proposed techniques, the true frame-level
alignments for the vowel regions are determined using the hand-labeled transcription
available with the TIMIT database. The metrics employed to compute the accuracy
with which the vowel regions were detected is described in the next subsection. This is
followed by a detailed analysis of the effectiveness of the two kinds of feature vectors
in the estimation of the VOPs and the VEPs. Further, we also propose a novel scheme
for combining the evidences obtained by using the two kinds of feature vectors in
order to get an enhanced evidence of the VOPs and the VEPs.

4.1 Metrics for Evaluating the Accuracy of the Detected Vowel Regions

The performances of the developed systems, in order to determine the vowel regions
and their VOPs and VEPs, are measured using the following metrics:

– Identification rate (IR) The percentage of reference vowel regions that exactly
match with the detected vowel regions.

– Spurious rate (SR) The percentage of detected vowel regions that lie outside the
reference vowel regions. The spurious rate is further broken into following three
categories:
i. SR for semivowels The percentage of reference semivowel regions that exactly

match with the detected vowel regions.
ii. SR for nasalsThe percentage of reference regions for the nasal unit that exactly

match with the detected vowel regions.
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iii. SR for others The percentage of nonvowel regions (excluding semivowels and
nasals) that exactly match with the detected vowel regions.

4.2 Detection of Vowel Regions Using the MFCC and Excitation Source
Features

As already mentioned, forced alignment of the test data with respect to the trained
acoustic models was used to generate the frame-level state alignments. These state
alignments were then employed to detect the vowel regions in the speech. The IR and
the SR for the two feature vectors with respect to the acoustic models developed using
the explored modeling approaches are enlisted in Tables 2 and 3. On analysis, the
MFCCs and the proposed feature vectors are observed to result in somewhat different
state alignments. Consequently, the possibility of combining the evidences in order to
obtain an enhanced accuracy in the detection of vowel regions was explored. One of
the ways to combine the evidences is to consider the union or the intersection of the
vowel regions detected by these two features. The performance in terms of the IR and
the SR for these two cases is also given in Tables 2 and 3. In the case of union, the
IR rate improves significantly in comparison with the individual features at the cost
of an increase in the SR. In this result, it is interesting to note that the improvement in
IR is significantly more when compared to the overall increase in SR. In the case of
intersection, on the other hand, the SR is reduced at the cost of a reduction in IR.

It is evident from these results that the vowel regions detected by these features are
much different, and even in some cases, there may be no overlap between them. By
a suitable combination of these features, the IR can be improved with a simultaneous
reduction in the SR. Motivated by these observations, the features were concatenated
at the frame-level in the feature domain. The concatenated feature vectors were then
used to learn the statistical models following the procedure described in Sect. 3.3.
Once the acoustic models were trained, forced alignment was used to detect the vowel
regions. The performances obtained by the use of the concatenated feature vectors
with respect to the different acoustic modeling methods in terms of the IR and the SR
are also given in Tables 2 and 3. The feature concatenation is observed to be superior to
the excitation source features but, at the same time, somewhat poorer when compared
to the MFFCs. This may be due to the significant diversity between the two kinds of
feature vectors.

In order to quantify the differences in the two kinds of acoustic features, canonical
correlation analysis (CCA) was performed. In the case of CCA, the sample canonical
coefficients for the two kinds of feature matrices are computed. The matrices consist
of same number of observations (rows), but number of columns (dimensions) may be
different. To derive the matrices, the feature vectors corresponding to the entire TIMIT
database were collected together. Separate matrices were created for the two kinds of
acoustic features, i.e., theMFCCs and the proposed features. The canonical correlation
coefficients between theMFCCs and the proposed features are shown in Fig. 3. Except
for the first coefficient, the canonical correlation turns out to be quite low. This means
that the proposed feature vectors capture information that is not represented through
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Table 2 Performances of the vowel detection systems developed using the different GMM–HMM-based
acoustic modeling approaches explored in this work

Acoustic modeling technique IR in % SR in %

Semivowel Nasal Other

GMM–HMM (monophone) MFCC 88.53 11.52 3.93 4.14

Excitation 82.15 10.32 5.11 7.10

Union 93.32 11.77 5.53 8.31

Intersection 77.36 7.06 2.24 1.34

Feat. Concat. 84.29 10.48 6.05 4.84

Prop. Comb. 89.82 10.97 4.10 3.53

GMM–HMM (triphone) MFCC 85.67 10.47 2.94 3.77

Excitation 81.03 9.87 4.35 5.98

Union 92.16 11.17 4.61 7.27

Intersection 74.55 6.25 1.62 1.04

Feat. Concat. 83.13 9.80 5.63 4.22

Prop. Comb. 86.95 9.99 3.18 3.14

GMM–HMM (LDA–MLLT) MFCC 84.63 10.55 2.30 3.54

Excitation 82.05 10.26 4.37 3.85

Union 91.85 11.57 4.44 5.33

Intersection 74.82 6.42 1.32 1.06

Feat. Concat. 83.34 9.46 4.91 3.65

Prop. Comb. 86.31 10.00 2.66 2.87

GMM–HMM (fMLLR–SAT) MFCC 84.32 10.58 1.97 3.54

Excitation 82.55 10.49 4.04 3.39

Union 91.61 11.71 4.06 5.11

Intersection 75.26 6.58 1.21 0.94

Feat. Concat. 82.87 9.55 4.68 3.87

Prop. Comb. 86.28 10.12 2.24 2.53

Performances are given for the conventional MFCC feature vectors, the proposed excitation feature vectors,
the feature vectors obtained by their frame-level concatenation and the proposed method of combining the
evidences. Performances are also given for the union and the intersection of the vowel evidences obtained
by using the MFCC feature vectors and the proposed excitation feature vectors. The frame-level alignments
employed in evaluating the performances are obtained by the forced alignment of test data with respect to
the considered acoustic models under the constraints of the first-pass transcription

the MFFCs. Since the first coefficient represents the signal energy in the case of both
the kinds of feature vectors, the canonical correlation turns out to be high.

4.3 Combining the Evidences

For all the acoustic modeling methods considered in this work, the MFCC features
are noted to perform better than the proposed excitation features. Furthermore, even
the frame-level concatenation of the features does not result in great improvements in
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Table 3 Performances of the vowel detection systems developed using the SGMM–HMM- and the DNN–
HMM-based acoustic modeling approaches explored in this work

Acoustic modeling technique IR in % SR in %

Semivowel Nasal Other

SGMM–HMM MFCC 83.18 10.32 1.52 3.93

Excitation 81.15 10.59 3.55 2.95

Union 90.94 11.70 3.58 5.04

Intersection 73.40 6.33 0.88 0.91

Feat. Concat. 82.63 9.38 3.97 4.09

Prop. Comb. 85.06 9.80 1.83 3.15

SGMM–HMM–MMI MFCC 83.10 10.32 1.52 3.70

Excitation 81.07 10.59 3.47 3.00

Union 91.00 11.72 3.94 4.97

Intersection 73.28 6.29 0.85 0.87

Feat. Concat. 82.37 9.33 3.87 3.93

Prop. Comb. 85.12 9.87 1.78 2.74

DNN–HMM MFCC 83.76 10.93 1.80 4.32

Excitation 83.06 11.15 4.14 4.25

Union 91.28 12.30 4.16 6.02

Intersection 75.54 6.85 1.01 1.41

Feat. Concat. 82.92 10.08 4.38 4.27

Prop. Comb. 85.90 10.31 2.18 3.94

Performances are given for the conventional MFCC feature vectors, the proposed excitation feature vectors,
the feature vectors obtained by their frame-level concatenation and the proposed method of combining the
evidences. Performances are also given for the union and the intersection of the vowel evidences obtained
by using the MFCC feature vectors and the proposed excitation feature vectors. The frame-level alignments
employed in evaluating the performances are obtained by the forced alignment of test data with respect to
the considered acoustic models under the constraints of the first-pass transcription

the IR and the SR. The IR and the SR for the vowel detection may be improved by
combining the vowel evidences obtained from both the kinds of features. Since the IR
and SR for the MFCCs are better than the excitation features, a higher weighting must
be given to the evidence obtained using theMFCC features. To achieve this, amethod is
proposed for combining the evidences. In the proposedmethod, the detected evidences
are first classified into two categories, i.e., the overlapping and the nonoverlapping
categories. This is followed by modifying the starting and ending points that is done
as follows:

(a) If the vowel evidences obtained by using the MFCCs and the excitation feature
exhibit a minimum overlap of 70%, then those are considered as overlapping
evidences. On the other hand, in the case of nonoverlapping evidences, the overlap
is less than 70%. In the case of overlapping evidences, the starting and ending
points of the combined evidence are selected as follows:
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Fig. 3 Bar graph showing the canonical correlation coefficients between the two kinds of acoustic features
explored in this work

– If the starting point of the vowel evidence detected by the proposed feature falls
within two analysis frames (240 samples for 20ms frame sizewith 10ms frame
shift) of the starting point of the vowel evidence detected by theMFCC feature,
then the staring point of final evidence is considered as the mean of these two
locations. Otherwise, the starting point of the vowel evidence detected by the
MFCC is considered as the starting point for that particular case.

– Similar steps are also followed for deciding the end points of the overlapped
vowel evidences.

(b) For both kinds of features, the nonoverlapping evidences that are a minimum of
100 ms in duration are identified and preserved in the final evidences without
any modification. Those nonoverlapping evidences that are less than 100 ms in
duration are treated as spurious detections and are eliminated.

The evidences for the vowel regions detected by using the MFCCs, the excitation
features, their frame-level concatenation and the proposed combination with respect
to the acoustic models trained via the GMM–HMM (fMLLR–SAT) and the SGMM–
HMM–MMI methods are given in Fig. 4. By comparing the detected vowel evidences
with the references, it can be observed that for both the modeling approaches, the
proposed method of combining the evidences helps in detecting the vowel regions
with far more accuracy when compared to that detected using each of the individual
features as well as their frame-level concatenation. As discussed earlier, in the case of
the excitation features, theVOPs are detected only after 1–3 glottal cycles. On the other
hand, in the case of the MFCC features, the evidences are detected before few glottal
cycles. For these two features types, not only the obtained evidences are different,
but also the confusion between the voiced region and the vowel is also different.
The observed differences may probably be attributed to that fact that the proposed
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Fig. 4 Illustrations depicting the effectiveness of the proposed method for combining the evidences. a A
segment of speech, “having a ball,” with reference markings for the sound units is shown. b The detected
vowel evidences obtained with respect to the GMM–HMM (fMLLR–SAT) models using the conventional
MFCC feature vectors, the proposed excitation feature vectors, the feature vectors obtained by their frame-
level concatenation and proposed combination at evidence level are shown. c The same set of detected
regions obtained by using the SGMM–HMM–MMI models are shown

excitation features and theMFCCsmodel the few frames at the vowel transitions quite
differently. Consequently, as it is evident from Fig. 4, the VOPs and VEPs obtained
using the proposed combination of evidences are more accurate when compared to
those detected by using each of the individual features. The performances in terms
of IR for the proposed combination scheme, obtained with respect to the explored
acoustic modeling techniques, are given in Tables 2 and 3, respectively. The results
show that for each of the acoustic modeling techniques, the proposed combination
scheme provides better IR with an overall reduction in SR.

4.4 Detection of Vowel Onset and End Points

In this section, the effectiveness of the explored acoustic modeling methods for the
detection of the vowel onset points (VOPs) and the vowel end points (VEPs) is
presented. The signal processing methods proposed in the literature suggest that an
accurate detection of VOPs and VEPs in the cases of semivowel–vowel transitions and
diphthongs is quite difficult [25,28].Also, the performances formost of the explicit sig-
nal processing techniques are relatively poor in the case of theVEPs [25,40]. The signal
characteristics at the VEP are significantly different from that at the VOP [25,40].
Unlike the VOP, the signal strength decreases slowly at the VEP. Due to this, detecting
the VEPs is more challenging than that of the VOPs [25]. This is mainly due to the
explicit use of the transition in the excitation strength as a feature vector in the earlier
reported works. The proposed approach, on the other hand, does not explicitly depend
on the transition in the excitation strength. In the presented work, since the statistical
properties of the excitation source and the vocal tract system are used for detection,
the proposed approach will detect these events with an enhanced accuracy. This also
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Fig. 5 The IR profiles for the VOPs with respect to the different GMM–HMM systems. The predefined
deviation is varied from 2 to 40 ms in steps of 2 ms. The IR is given for the MFCCs, the excitation features,
feature concatenation and the proposed combination of evidences. a IR for GMM–HMM (monophone)
system, b IR for GMM–HMM (triphone) system, c IR for GMM–HMM (LDA–MLLT) system and d IR
for GMM–HMM (fMLLR–SAT) system

helps in analyzing the missing and the spurious cases for the vowel evidences detected
by different acoustic modeling methods.

4.4.1 Metrics for Performance Evaluation

The starting and the ending points of the detected vowel regions are marked as the
VOPs and the VEPs, respectively. Using the manual markings given in the database as
the reference, the performances of the detected VOPs and VEPs are measured using
the following metrics:

– Identification rate (IR) The percentage of the reference VOPs/ VEPs that match
with the detected VOPs/ VEPs within the pre-defined deviation (in ms).

– Spurious rate (SR) The percentage of detected VOPs/ VEPs, which are detected
outside the vowel regions.

4.4.2 Performances for the VOP Detection

The identification rate (IR) for the VOP detection with respect to the explored GMM–
HMM-based acoustic modeling techniques is summarized in Fig. 5. The IR for the
SGMM–HMM and the DNN–HMM systems is given in Fig. 6. The pre-defined devi-
ation values considered in this study are varied form 2 ms to 40 ms in steps of 2 ms.
Among the different acousticmodeling approaches explored in this work, the SGMM–
HMM–MMI system provides the best IR. It is evident from these results that, for all
the deviations considered, the proposed method of combining the evidences provides
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Fig. 6 The IR profiles for the VOPswith respect to the SGMM–HMMandDNN–HMMsystems. The other
details remain the same as that for Fig. 5. a IR for SGMM–HMM system, b IR for SGMM–HMM–MMI
system and c IR for DNN–HMM system

a significant improvement in IR for all the explored acoustic modeling techniques. For
an instance, the IR with respect to the SGMM–HMM–MMI system for the case when
the deviation is 10 ms is 75.82, 68.09, 69.92 and 80.35% for the conventional MFCC
feature vectors, the proposed excitation feature vectors, the feature vectors obtained
by their frame-level concatenation and proposed combination, respectively. Similarly,
the IR for the 40 ms deviation case is 92.90, 89.87, 93.07 and 98.80%, respectively.
The spurious rate (SR) of the VOP detection for all the explored acoustic models is
given in Table 4. It is to note that the SGMM–HMM–MMI system provides the min-
imum SR for the MFCC feature vectors. The proposed combination further reduces
the SR along with a significant improvement in IR. Even though the feature vectors
obtained by the frame-level concatenation provide slightly lesser SR, the IR in this
case is significantly less when compared to that obtained by the proposed combination.

4.4.3 Performances for the VEP Detection

The identification rate (IR) of the VEP detection with respect to the explored acoustic
modeling techniques is summarized in Figs. 7 and 8. Similar to the case of VOP
detection, the SGMM–HMM–MMI system provides the best IR compared to all
other acoustic modeling approaches considered in this work. The proposed method of
combining the evidences provides significant improvement in IR for all the acoustic
modeling methods. Compared to the VOP, the proposed combination provides rela-
tively more improvements in IR for smaller deviations in the case of the VEP. For an
instance, the IR with respect to the SGMM–HMM–MMI system for the case when
the deviation is 10 ms is 73.00 and 82.22% for the MFCCs and the proposed com-
bination, respectively. In the case of the MFCCs and the proposed combination, the
IR for the VEPs is slightly poorer as compared to that of the VOPs. For the proposed
excitation features and the feature vectors obtained by frame-level concatenation, the
IR for the VEP detection are significantly less when compared to the IR of VOP.
The SR of the VEP detection methods is also given in Table 4. For all the acoustic
modeling techniques, the SR for the proposed excitation feature vectors is relatively
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Table 4 Spurious rate (SR) of VOP and VEP detection using different acoustic modeling approaches
explored in this work

Acoustic SR in %

modeling MFCC Excitation Feat. Prop.
technique Concat. Comb.

GMM–HMM VOP 7.17 9.19 5.48 6.06

(monophone) VEP 8.12 14.88 12.57 8.34

GMM–HMM VOP 6.86 9.12 5.46 6.15

( triphone) VEP 7.64 13.68 11.57 8.08

GMM–HMM VOP 6.98 6.37 4.07 5.95

(LDA–MLLT) VEP 6.69 11.39 9.86 7.03

GMM–HMM VOP 7.23 5.85 4.39 6.43

(fMLLR–SAT) VEP 6.72 11.03 10.40 6.92

SGMM–HMM VOP 6.78 5.12 4.43 5.66

VEP 6.04 9.21 9.10 6.20

SGMM–HMM–MMI VOP 6.54 5.65 4.42 5.48

VEP 6.13 9.77 8.85 6.40

DNN–HMM VOP 7.03 5.17 4.35 6.08

VEP 6.30 9.48 8.67 6.58

Performances are givenwith respect to the systems developed using the conventionalMFCC feature vectors,
the proposed excitation feature vectors, the feature vectors obtained by their frame-level concatenation and
the proposed combination of evidences. Performances are evaluated using the forced alignment under the
constraints of the first-pass transcription with respect to the models trained on 8 kHz re-sampled data
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Fig. 7 The IR profiles for the VEPs with respect to the different GMM–HMM systems. The other details
remain the same as that for Fig. 5. a IR for GMM–HMM (monophone) system, b IR for GMM–HMM
(triphone) system, c IR for GMM–HMM (LDA–MLLT) system and d IR for GMM–HMM (fMLLR–SAT)
system
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Fig. 8 The IR profiles for the VEPs with respect to the SGMM–HMMandDNN–HMM systems. The other
details remain the same as that for Fig. 5. a IR for SGMM–HMM system, b IR for SGMM–HMM–MMI
system and c IR for DNN–HMM system

higher in comparison with that of the MFCC feature vectors. This may be due to
the lesser differences in the excitation characteristics between the vowel and similar
high energy voiced consonants. The poor performance of the proposed feature for
the vowel–nonvowel classification compared to that of the MFCCs is mainly due to
the improper detection of the VEPs. Again, for all the acoustic modeling methods,
the proposed combination of evidences provides significant improvement in the IR
in comparison with that obtained by using MFCC features. At the same time, the SR
remains nearly the same.

5 Comparison with Existing Methods

As mentioned earlier, a number of explicit signal processing approaches have been
proposed over the years for the detection ofVOPs/VEPs [28,35,40]. In this section, the
identification and the spurious rates obtained by the proposed approach are compared
with some of the existing techniques.

For comparing the proposed VOP detection approach with the existing approaches,
two state-of-the-art methods [28,35] are considered. The front-end speech parameter-
ization employed in the first method (Method I) [28] consists of the following three
features viz. the Hilbert envelope (HE) of the LP residual signal, the sum of the ten
largest peaks in the discrete Fourier transform (DFT) and the modulation spectrum
energy of the input speech signal. As suggested in that work, the features are smoothed
and then enhanced by computing the slope using the first-order Gaussian difference.
The evidences for each of those features are obtained by individually convolving with
a first-order Gaussian difference (FOGD) operator. Finally, the respective evidences
are combined sample by sample to obtain the final evidence for the VOPs.

In the second existing VOP detection approach considered in this work (Method II)
[35], first the GCIs are determined using the ZFF method. Next, the DFT is computed
for the speech samples present in 30% of glottal cycle starting from the GCI. This
is followed by the computation of spectral energy within the frequency band of 500–
2500Hz.Mean smoothing is performed to smoothen out the fluctuations in the spectral
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Table 5 Comparison of the IR obtained by the use of existing techniques for determining the VOPs/VEPs
and the proposed approach

IR in % SR in %

VOP / VEP Method ± 10 ms ± 20 ms ± 30 ms ± 40 ms

VOP Method I [28] 60.02 73.84 81.69 89.27 8.53

Method II [35] 64.50 77.04 85.43 91.42 6.60

Prop. 80.35 91.32 97.26 98.80 5.48

VEP Method I [40] 56.69 71.16 78.80 84.37 7.57

Prop. 82.22 90.30 95.01 97.43 6.40

The predefined deviation is varied from 10 ms to 40 ms in steps of 10 ms. Also shown is the spurious rate
(SR) for the existing as well as the proposed techniques. In the case of the proposed approach, the enlisted
performances are with respect to the SGMM–HMM–MMI models

energy contour. In order to enhance the change at the VOP present in the smoothed
spectral energy, first-order difference is computed. Significant changes in spectral
characteristics are then detected by convolving with the FOGD operator.

In the case of VEP detection, the existing approach considered (Method I) [40] for
comparison happens to be slightly different from the VOP detection method described
above [35]. In that VEP detection technique, the unwanted peaks with smaller values
for the slope in the smoothed spectral energy contour are eliminated using a prede-
termined threshold. Moreover, the spectral characteristics are locally enhanced within
the region bounded by negative to positive zero crossing points. The valleys are then
detected after convolving with the FOGD operator.

The IR and SR for the VOPs/VEPs detected using the existing and the proposed
approaches are given in Table 5. In the case of explored existing techniques, for
the sake of proper comparison, the respective parameters for the computation of the
features and the evidences are chosen to be the same as described in those original
works [28,35,40]. In the case of the proposed approach, the enlisted performances
are with respect to the SGMM–HMM–MMI models employing the evidence level
combination. For both the cases (VOPs/VEPs), the proposed technique is noted to be
much superior to the existing explicit signal processing approaches. It is to note that
the performances for the existing approaches are observed to be poorer than those
reported in the respective original works [28,35,40]. This may be mainly due to the
fact that a different test set is employed in the studies presented in this paper than that
applied in those works. As already mentioned earlier, the TIMIT dataset was split into
orthogonal sets for learning the model parameters and testing using the standard Kaldi
recipe. It is quite likely that the chosen orthogonal test set is a much tougher set.

6 Summary and Conclusions

The work presented in this paper deals with the detection of vowel regions in a speech
signal. To do the same, a given speech signal is forced-aligned on trained acoustic
models to generate the frame-level state alignments. In this regard, seven different
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acoustic modeling approaches have been explored in this work. Furthermore, a front-
end feature extraction method is also proposed to extract the temporal and the spectral
characteristics of the excitation source. The acoustic models are developed using the
conventional MFCCs, the proposed excitation feature vectors and the feature vectors
obtained by their frame-level concatenation. In addition to that, the vowel regions
detected using all the explored features and acoustic models are analyzed in detail.
Finally, a novel method is proposed to combine the evidences obtained using the
MFCCs and proposed excitation feature vectors to enhance the detection of the vowel
regions and their corresponding VOPs and VEPs. The proposed method of combining
the evidences is noted to provide significant improvements in the performance for all
the acoustic modeling approaches explored in this work. In future, signal process-
ing techniques will be explored to extract the features that will further improve the
discrimination of the vowels from the semivowel and the nasal sound units.
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