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Abstract In the spectral parameter approximation (SPA) technique, the frequency
response of a variable filter is approximated by the frequency response of the Farrow
structure which is used to implement the SPA-based filter. In this paper, we propose
a new approach in the time domain for the design of variable cutoff frequency finite
impulse response filter using the SPA technique. We first design the practical filters
which satisfy the given transition bandwidth, passband ripple, and stopband attenua-
tion specifications and then approximate the coefficients of these filters by the impulse
response of the Farrow structure. Approximation problem is solved using the least-
squares technique. Various design examples are presented to illustrate the feasibility
and the effectiveness of the proposed time-domain approach when the desired speci-
fications are stringent. Interesting observations regarding the desired cutoff frequency
range, the order, and the number of the sub-filters in the Farrow structure are also
presented.

Keywords Farrow structure · Reconfigurable FIR filter · Spectral parameter
approximation technique · Variable cutoff frequency filter

1 Introduction

Digital filters that can change their frequency response characteristics based on the
application requirement are called as the variable digital filters. Such variable finite
impulse response (FIR) filters are required in many signal processing applications
such as radar, sonar, and control systems, adaptive systems, vibration analysis, audio
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and biomedical signal processing, and wireless communications. In a special case
of the variable FIR filters, the cutoff frequency of the filter needs to be varied, and
the passband ripple, the stopband attenuation, and the transition bandwidth should be
below predefined specified values.

For the variable coefficient filter, cutoff frequency is controlled by changing all the
coefficients of the filter. However, when the cutoff frequency needs to be changed
frequently, this approach becomes unsuitable for higher order filters due to the
tedious updating routine (large number of memory access operations) and huge mem-
ory requirement (to store all the filter coefficients corresponding to all the desired
responses). In practice, it is desirable to control the cutoff frequency using fewer
number of parameters to keep the updating routine simple. A number of such recon-
figurable filter design techniques have been developed to control the cutoff frequency
bymodifying the impulse response of the fixed-coefficient prototype filter. Details and
reviews of such reconfigurable filter design techniques can be found in [3,14] and the
references therein.

In the spectral parameter approximation (SPA) technique [2,4–12], the variable
filter is implemented using Farrow structure. The SPA-based filter has smaller group
delay, fixed transition bandwidth, requires very small number of variable multipliers
(to be used for the variable weights), and its cutoff frequency can be controlled through
only one variable parameter. The frequency response of the SPA-based filter is mod-
eled as a polynomial function of the cutoff frequency parameter (α). The frequency
responses of the fixed sub-filters in the Farrow structure are equivalent to the coeffi-
cients of the polynomial, and the frequency response (i.e., the cutoff frequency) of the
SPA-based filter is controlled by the variable α. The use of other polynomial functions
such as Chebyshev polynomial [10], shifted Chebyshev polynomial [8], Bernstein
polynomial [8], or shifted Legendre polynomial [8] has also been investigated in the
literature. The cutoff frequency (or equivalently the passband frequency, as the tran-
sition bandwidth is fixed) of the SPA-based filter varies in the desired tuning range as
α varies from 0 to 1.

The Farrow structure implementation of the SPA-based filter consists of L + 1
sub-filters, each of order N , as shown in Fig. 1. For the FIR filter design case, the
frequency response of the SPA-based filter, H(ω, α) is given by,

H(ω, α) =
L+1∑

k=1

N∑

n=0

αk−1hsk(n)e− jωn (1)

where hsk(n) is the impulse response of the kth sub-filter.
The objective here is to find the optimal coefficients hsk(n) such that the frequency

response of the SPA-based filter will approximate the frequency response of the ideal
filter for each cutoff frequency (in the desired tuning range), i.e., for each value of
α (in 0–1). The ideal filter is defined as the filter with magnitude equal to 1 in its
passband and 0 in its stopband. The approximation problem can be solved using the
least-squares (LS) [4,7,8,12] or minimax techniques [6,9–11], by incorporating the
desired peak to peak passband ripple (δp) and stopband attenuation (δs) constraints in
the problem formulation. Some other approaches such as vector array decomposition
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Fig. 1 Farrow structure implementation of SPA-based filter

[5], semi-infinite quadratic optimization [2], etc. have also been proposed to design the
SPA-based filter. The optimal solutions can be obtained from the closed-form formulae
[6–8,12], or by solving the system of linear equations obtained by the discretization
method [2,4,5,9–11].

Traditionally, the approximation problem for the SPA-based filter is formulated in
the frequency domain as explained above. In this paper, we propose a new approach
for the design of SPA-based filter in the time domain. We model the approximation
problem such that the optimal coefficients for the sub-filters are found so as to approx-
imate the impulse responses of the practical filters, i.e., the impulse responses of the
filters which satisfy the desired specifications on δp, δs, and transition bandwidth.
In Sect. 2, we present the proposed time-domain approach in detail. Various design
examples are presented in Sect. 3, along with the comparisons and some observations.
The concluding remarks are presented in the Sect. 4.

2 Proposed Time-Domain Approach for the Design of SPA-Based Filter

Let the cutoff frequency tuning range of the SPA-based filter be fcl to fcm, i.e., the
cutoff frequency varies linearly as fcl ≤ fc ≤ fcm for 0 ≤ α ≤ 1. Let the corre-
sponding passband and stopband ranges be fpl to fpm and fsl to fsm, respectively. In
this case, we will formulate the SPA-based filter design problem so as to approximate
the impulse response of the practical filter by the impulse response of the SPA-based
filter for the desired tuning range. We use the discretization approach to formulate the
approximation problem as follows.

First, design M practical filters, each of order N , with cutoff frequencies fcl, fcl +
� f, fcl + 2� f, . . . , fcm, and the transition bandwidth tbw, where � f = ( fcm −
fcl)/(M − 1). These filters are designed using the standard filter design algorithm
such as the Remez exchange algorithm or the Parks–McClellan algorithm [13].

Let the matrix of the impulse responses of the practical filters be denoted as

Gp =

⎡

⎢⎢⎢⎢⎢⎢⎣

h0,1 h1,1 h2,1 . . . hN ,1
h0,2 h1,2 h2,2 . . . hN ,2

. . . . .

. . . . .

. . . . .

h0,M h1,M h2,M . . . hN ,M

⎤

⎥⎥⎥⎥⎥⎥⎦
(2)
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where hi, j denotes the i th sample of the impulse response of the j th filter, i.e., i th
coefficient of the j th filter.

Discretize the cutoff frequency parameter, α, in M equidistant points in the range
0–1. The matrix of the impulse responses of the SPA-based filter is given by,

G = WGs (3)

where

W =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 α1 α2
1 . . . αL

1

1 α2 α2
2 . . . αL

2
. . . . .

. . . . .

. . . . .

1 αM α2
M . . . αL

M

⎤

⎥⎥⎥⎥⎥⎥⎦
(4)

where αi
j denotes the i th power of α j , with α1 = 0, and

Gs =

⎡

⎢⎢⎢⎢⎢⎢⎣

hs0,1 hs1,1 hs2,1 . . . hsN ,1
hs0,2 hs1,2 hs2,2 . . . hsN ,2

. . . . .

. . . . .

. . . . .

hs0,L+1 hs1,L+1 hs2,L+1 . . . hsN ,L+1

⎤

⎥⎥⎥⎥⎥⎥⎦
(5)

is the matrix of the coefficients of the sub-filters of the Farrow structure and hsi, j
denotes the i th coefficient of the j th sub-filter.

Thus the approximation problem can be stated as: Find the optimal coefficients hsi, j
such that the impulse responses in Gp are approximated by the impulse responses in
G. The system of linear equations, Gp = WGs, can be solved using the LS technique
to find the optimal coefficients hsi, j .

As, for α = 0 the impulse response of the SPA-based filter is equal to the impulse
response of the first sub-filter, in the proposed method, the first sub-filter in the Farrow
structure is designed to have cutoff frequency fcl and transition bandwidth tbw, i.e.,

{
hs0,1 . . . hsN ,1

} = {
h0,1 . . . hN ,1

}
(6)

Therefore, in the proposed method, the design problem further reduces to finding the
optimal coefficients for only the remaining L sub-filters. Therefore, it is sufficient
to model the differences between the M − 1 practical filters and the first practical
filter (i.e., the filter with cutoff frequency fcl) using the remaining L sub-filters of the
Farrow structure. Therefore, the matrices Gp, W , and Gs are modified as follows.

1. Matrix Gp:

Gp1(i, :) = Gp(1, :) − Gp(i, :) for i > 1 (7)
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i.e., all the elements in each of the rows (for rows other than the first row) are subtracted
from the corresponding elements in the first row.

Gp2(i, :) = Gp1(i + 1, :) for i = 1 to M − 1 (8)

i.e., the first row in the matrix Gp1 is removed, as it is quite redundant for the new
approximation problem. The matrix Gp2 is an (M − 1) × (N + 1) matrix.

2. Matrix W :

W1(i, :) = W (i + 1, :) for i = 1 to M − 1 (9)

W2(:, k) = W1(:, k + 1) for k = 1 to L (10)

i.e., the first row and the first column in the matrix W are removed, and W2 is an
(M − 1) × L matrix.

3. Matrix Gs:

Gs1(i, :) = Gs(i + 1, :) for i = 1 to L (11)

i.e., the first row in the matrix Gs is removed, and Gs1 is an L × (N + 1) matrix.
The optimal coefficients hsi, j (for the remaining L sub-filters) are then obtained by

solving the system of linear equations, given by Gp2 = W2Gs1. Further, in the case of
linear-phase filters, only half the matrices can be used due to the coefficient symmetry.

The magnitude response of the SPA-based filter designed following above proce-
dure is checked for the M values used for the filter design, as well as for arbitrary
values of α, to ensure that the desired specifications on δp and δs are satisfied. If
these specifications are not satisfied, the above mentioned design procedure can be
repeated by varying N and/or L such that the magnitude response of the SPA-based
filter satisfies the desired specifications on δp and δs.

The matrix W2 may be rank deficient, which sometimes (but not always) might
affect the LS solution. (However, this is equally applicable to the proposed as well
as existing methods utilizing LS technique [4,7,8,12]). For instance, the matrix W2
in design example 3 (in Sect. 3) is rank deficient (dimensions: 79 × 22, rank: 20);
however, the obtained results are not affected by its rank deficiency.

3 Design Examples

We present three design examples with total six cases (different tuning ranges and
different transition bandwidths) for the SPA-basedfilter design.One of the design cases
is a benchmark example considered throughout the literature [6–12]. In addition, five
more design cases are considered in this paper. For every case, the SPA-based filters
are designed using the proposed time-domain approach utilizing LS technique and the
conventional frequency-domain approach (as outlined in Sect. 1) utilizing the LS [4]
and minimax [9] techniques. For every SPA-based filter, the weights are the powers
of α (i.e., no special polynomial is used) and all the sub-filters of its Farrow structure
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are of equal order N . All the filter designs are based on the discretization method.
(Closed-form method also results in the same or approximately same complexity, and
hence, is not considered separately.) For every case, following points are considered
for the design and testing of the SPA-based filters.

1. Total M equidistant values of fc in the range fcl to fcm are used for practical filter
or ideal filter, i.e., M practical filters are considered for the proposed time-domain
approach-based filter design, and M ideal filters are used for the conventional
frequency-domain approach-based filter designs.

2. The set of corresponding M values of α (equidistant between 0 and 1) is referred
to as grid of αdes. Therefore, every SPA-based filter designed in each case is based
on the same grid of αdes.

3. For specifying the frequency response of the ideal filter to be used in the frequency-
domain approach-based designs, the frequency axis is discretized in 180 points.

4. Once an SPA-based filter is designed, its frequency response is evaluated for mul-
tiple sets of values of α (equidistant between 0 and 1), referred to as grid of αtest1,
grid of αtest2, grid of αtest3, etc.

5. Frequency response of the SPA-based filter is evaluated on the 180 frequency axis
points considered for the design as well as on a dense grid of 8192 frequency axis
points to ensure that the filter response satisfies the desired specifications.

6. Each filter is evaluated on grid of αtest1 = grid of αdes. Additionally, each filter
is evaluated on the dense grids of αtest2 = 10 × αdes and αtest3 = 20 × αdes, to
ensure that the filter response satisfies the desired specifications for values of α

other than that used for the filter design.
7. Therefore, all the filters that are designed for same grid of αdes are tested on the

same grids of αtest1, αtest2, αtest3, etc. in every case.
8. If the designed filter evaluated on various grids of αtest does not satisfy the desired

constraints on δp and δs, it is redesigned by varying the value of N and/or L .
9. A set of pairs of N and L is obtained by trying all possible pairs such that the

designed filter satisfies the desired constraints on δp and δs. An optimal pair from
this set is the one for which the number of multipliers required to realize the filter
is minimum. Note that for the symmetric coefficient sub-filters and even-valued
N , the total number of multipliers required to realize an SPA-based filter for a
particular pair of N and L is given by {(N/2 + 1) × (L + 1) + L}.
Based on these design examples, some interesting observations and comparisons

(in terms of the total number of multipliers required to realize the SPA-based filter)
are also presented.

3.1 Design Example 1 (Cases 1, 2, and 3)

Let the desired cutoff frequency range be fcl = 0.3 to fcm = 0.5. (All the frequency
values mentioned in this paper are normalized with respect to π .) For this cutoff
frequency range, we consider three cases (Case 1 through Case 3) for SPA-based filter
design corresponding to three transition bandwidth specifications of 0.2, 0.1, and 0.05.
Case 1 is same as that considered in the literature, i.e., cutoff frequency range = 0.2
and tbw = 0.2 [6–12]. For every case, let δp = 0.1 dB and δs = −45 dB.
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Table 1 Design example 1 (Case 1, Case 2, and Case 3)

Case 1 (tbw = 0.2)
(M = 21)

Case 2 (tbw = 0.1)
(M = 21)

Case 3 (tbw = 0.05)
(M = 100)

N L Total number
of multipliers

N L Total number
of multipliers

N L Total number
of multipliers

Proposed time-domain
approach—LS
technique

28 5 95 52 9 279 100 18 987

Frequency-domain
approach—LS
technique [4]

28 4 79 (−17%) 58 8 278 (0%) 116 18 1139 (+15%)

Frequency-domain
approach—minimax
technique [9]

26 4 74 (−22%) 50 8 242 (−13%) >120 >20 >1301 (> +32%)

For Case 1 and Case 2,M = 21 is used, i.e., grid of αdes = 21 equally spaced values
of α between 0 and 1. Once a filter is designed, its frequency responses are evaluated
for grids of αtest1 = αdes = 21, αtest2 = 210, and αtest3 = 420 equally spaced values
of α between 0 and 1. Additionally, its frequency responses are evaluated separately
for αtest4 = 30 equally spaced values of α between 0 and 1, and αtest5 = 60 equally
spaced values of α between 0 and 1. As the desired transition bandwidth specification
is stringent for Case 3, M = 100 is used, i.e., grid of αdes = 100 equally spaced
values of α between 0 and 1. Once a filter is designed, its frequency responses are
evaluated for grids of αtest1 = αdes = 100, αtest2 = 1000, and αtest3 = 2000 equally
spaced values ofα between 0 and 1.Additionally, its frequency responses are evaluated
separately for grid of αtest4 = 52 equally spaced values of α between 0 and 1, grid
of αtest5 = 200 equally spaced values of α between 0 and 1, and grid of αtest6 = 300
equally spaced values of α between 0 and 1.

The values of N and L so obtained, that result in the minimum number of total
multipliers required, for the filter designs for these three cases are summarized in
Table 1. The (±x) values indicate the percentage increase or decrease in the number
of multipliers required for the particular SPA-based filter when compared to the SPA-
based filter designed using the proposed time-domain approach.

3.2 Design Example 2 (Cases 4 and 5)

Let the desired passband frequency range be fpl = 0.05 to fpm = 0.5. For this
passband frequency range, two cases are considered as tbw = 0.2 and 0.1. For each
case, let δp = 0.1 dB and δs = −45 dB.

As the tuning range is wider, M = 46 is used for Case 4, i.e., grid of αdes = 46
equally spaced values of α between 0 and 1. Once a filter is designed, its frequency
responses are evaluated for grids of αtest1 = αdes = 46, αtest2 = 460, and αtest3 = 920
equally spaced values of α between 0 and 1. Additionally, its frequency responses are
evaluated separately for grid ofαtest4 = 21 equally spaced values ofα between 0 and 1,
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Table 2 Design example 2 (Case 4 and Case 5)

Case 4 (tbw = 0.2) (M = 46) Case 5 (tbw = 0.1) (M = 100)

N L Total number of
multipliers

N L Total number of
multipliers

Proposed time-domain
approach—LS technique

26 10 164 52 20 587

Frequency-domain
approach—LS technique
[4]

28 9 159 (−3%) 62 23 791 (+35%)

Frequency-domain
approach—minimax
technique [9]

26 9 149 (−9%) >68 >25 >935(> +59%)

Frequency-domain
approach—LS
technique—piecewise
polynomial [12]

30, 28 5, 5 196 (+20%) 60, 56 10, 9 650 (+11%)

Frequency-domain
approach—minimax
technique—piecewise
polynomial

28, 28 4, 4 158 (−4%) 50, 50 9, 9 538 (−8%)

grid of αtest5 = 60 equally spaced values of α between 0 and 1, and grid of αtest6 = 92
equally spaced values of α between 0 and 1. As the desired transition bandwidth
specification is stringent for Case 5, M = 100 is used, i.e., grid of αdes = 100 equally
spaced values of α between 0 and 1. The filter responses are evaluated for grids of
αtest1 = αdes = 100, αtest2 = 1000, and αtest3 = 2000 equally spaced values of α

between 0 and 1. Additionally, the filter responses are evaluated separately for grid of
αtest4 = 52 equally spaced values of α between 0 and 1, grid of αtest5 = 200 equally
spaced values of α between 0 and 1, and grid of αtest6 = 300 equally spaced values
of α between 0 and 1.

The values of N and L so obtained, that result in the minimum number of total
multipliers required, for the filter designs for these three cases are summarized in
Table 2. As the tuning range for this design example is wider compared to the tuning
range considered in most of the literature (which is same as the tuning range in the
design example 1), in this case we consider the SPA-based filter design using the
piecewise polynomial approach also (as suggested in [12] for LS technique). For a fair
comparison, we consider the piecewise approach for the frequency-domain design
with minimax technique also. In the piecewise polynomial approach, wider tuning
range is divided into two smaller tuning ranges, and two separate SPA-based filters are
designed and two Farrow structures are implemented for these two ranges. Therefore,
two values of N and two values of L (corresponding to the twoSPA-based filter designs
for the two equal smaller ranges) are mentioned in Table 2 for the filter designs based
on the piecewise polynomial approach (with 46 and 100 ideal filters being used for
each range for Cases 4 and 5, respectively). The (±x) values indicate the percentage
increase or decrease in the number of multipliers required for the particular filter when
compared to the SPA-based filter designed using the proposed time-domain approach.
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Table 3 Design example 3 (Case 6)

tbw = 0.05

N L Total number of multipliers

Proposed time-domain approach—LS
technique

104 22 1241

Frequency-domain approach—LS
technique [4]

126 32 2144 (+73%)

Frequency-domain approach—minimax
technique [9]

>122 >30 >1952 (> +57%)

3.3 Design Example 3 (Case 6)

The spectral parameter approximation andmodified coefficient decimation-based vari-
able digital filter (SPA-MCDM-VDF) in [3], utilizes an SPA-based filter as a prototype
filter. This prototype SPA-based filter needs to be designed for the cutoff frequency
range of 0.25–0.5. Therefore, for the third design example, we consider fcl = 0.25 to
fcm = 0.5, tbw = 0.05, δp = 0.1 dB, and δs = −45 dB.
For this case, M = 80 is used, i.e., grid of αdes = 80 equally spaced values of α

between 0 and 1. Once a filter is designed its frequency response is evaluated for grids
of αtest1 = αdes = 80, αtest2 = 800, and αtest3 = 1600 equally spaced values of α

between 0 and 1. Additionally, the filter responses are evaluated separately for grid of
αtest4 = 52 equally spaced values of α between 0 and 1, grid of αtest5 = 100 equally
spaced values of α between 0 and 1, grid of αtest6 = 200 equally spaced values of α

between 0 and 1, and grid of αtest7 = 300 equally spaced values of α between 0 and 1.
The values of N and L so obtained, that result in the minimum number of total

multipliers required, for the filter designs for these three cases are summarized in
Table 3. The (±x) values indicate the percentage increase or decrease in the number
of multipliers required for the particular filter when compared to the SPA-based filter
designed using the proposed time-domain approach.

The magnitude responses of the SPA-based filter (evaluated for grid of αtest7 = 300
values of α) designed (for M = 80, i.e., grid of αdes = 80 equally spaced values of
α between 0 and 1) using the proposed time-domain approach are shown in Fig. 2.
The zoomed and cropped versions of the responses are also shown in the insets of the
figure to show the passband ripples and the details of the transition bands. As can be
clearly seen, the desired specifications are satisfied by the filter for 300 values of α,
even though it is designed with M = 80.

3.4 Observations

In this section, we present some interesting observations about the degree of poly-
nomial, i.e., L , based on the results summarized in Tables 1, 2, and 3. The relation
between N and L becomes clear from Cases 1 through 3, and Cases 4 and 5. As the
value of N approximately doubles, the value of L also approximately doubles, i.e.,
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Fig. 2 Magnitude responses of the SPA-based filter in design example 3 designed using the proposed
time-domain approach with M = 80 and evaluated for 300 values of α

it suggests that L is directly proportional to N , and therefore, inversely proportional
to the transition bandwidth. (The filter order is inversely proportional to the transition
bandwidth [1].)

The relation between the tuning range and value of L becomes clear from Cases 1
and 4, Cases 2 and 5, and Cases 3 and 6, which suggest that the value of L is directly
proportional to the tuning range. As the tuning range approximately doubles (Case 1
and Case 4, and Case 2 and Case 5), the value of L also approximately doubles.

The cumulative effect of these relations is clear from Cases 1 and 5. As a result
of halving the transition bandwidth and approximately doubling the tuning range, in
Case 5 the value of L is approximately four times of that in Case 1.

3.5 Comparisons

For the comparison purpose, we consider the total number of multipliers required
for the SPA-based filter as the measure of complexity. For small tuning range and
wider or moderately wide transition bandwidths (Cases 1, 2 and 4), the frequency-
domain approaches (with the LS or minimax techniques) have slightly less complexity
compared to the proposed time-domain approach (on an average 11% less number of
multipliers). However, when narrower transition bandwidth is desired (Cases 3 and
6) or wider tuning range is desired along with moderately wide transition bandwidth
(Case 5), the frequency-domain approaches require, on an average, 45%more number
of multipliers compared to the proposed time-domain approach. As can be seen from
Table 2, in some cases, the frequency-domain approach with piecewise polynomial
requires up to 20%more number ofmultipliers compared to the proposed time-domain
approach.
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When absolute control over the cutoff frequency is desired on the entire Nyquist
band, the SPA-MCDM-VDF is advantageous [3]. This SPA-MCDM-VDF utilizes an
SPA-based filter as a prototype filter variable on the cutoff frequency range of 0.25–
0.5, and therefore, the design of SPA-based filter for the cutoff frequency range of
0.25–0.5, along with narrow transition bandwidth, i.e., Case 6, is of particular interest.
As evident from Table 3, the frequency-domain approach requires 57% more number
of multipliers compared to the proposed time-domain approach. Therefore, the SPA-
MCDM-VDF with the prototype filter designed using the time-domain approach has
similar savings in the number of adders and multiplexers (and therefore in total area)
when compared to the SPA-MCDM-VDF with the prototype filter designed using the
frequency-domain approach,whichhighlights the advantage of the proposed approach.

In the proposed method, as the first sub-filter is same as the first practical filter, we
already have a good estimate on the value N . Similarly, in case of existing methods
using frequency-domain approach, the value of N canbe estimatedbasedon the desired
specifications using the formula from [1]. Therefore, equipped with this knowledge,
we need to test only a few pairs (typically around 6–8) of N and L to find the pair
which satisfies the desired specifications. Then a few more pairs of N and L “in the
neighborhood”, i.e., pairs with values close to values of this initial pair which satisfies
the desired specifications are considered to find out the optimal pair. Even though the
offline design time, i.e., the time required to find the optimal filter coefficients for the
sub-filters in the Farrow structure is not critical, it can be mentioned that the offline
design time (for one pair of N and L) for the proposed time-domain approach and the
frequency-domain approach utilizing the LS technique is much shorter (difference of
two orders of magnitude) compared to the frequency-domain approach utilizing the
minimax technique. (However, this difference is the direct result of the difference in the
computational complexities of the LS and minimax techniques.) As mentioned above,
as multiple pairs need to be considered to find the optimal pair to design a filter sat-
isfying the desired constraints, the proposed method and frequency-domain approach
utilizing LS technique are significantly faster when compared to the frequency-domain
approach utilizing minimax technique.

The square of the difference between value of each of the sample of the impulse
response of the practical filter and the value of the respective sample of the impulse
response of the designed SPA-based filter is calculated to get total N+1 squared errors.
The average of these squared errors is the average squared error per coefficient for one
value of α (denoted as Eα). This average squared error Eα is calculated for each value
of α in grid of αtest1. The average of these Eα , termed as E1, is the average squared
error per coefficient per α. It is observed that the average squared error per coefficient
per value of α calculated for the SPA-based filter designed using the proposed time-
domain approach is negligible (maximum value is 1.36 × 10−7 for Case 4) and is
smaller by at least one order of magnitude when compared to that of the frequency-
domain approach (both LS and minimax). However, it should be kept in mind that the
error performance (either in time or in frequency domain) cannot be considered as a
metric for comparison, as each of these methods tries to minimize different type of
error (LS technique on impulse responses—proposed time-domain approach, whereas
LS andminimax techniques on frequency responses—conventional frequency-domain
approach).
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4 Conclusion

This paper presented a new time-domain approach for the design of spectral parameter
approximation based filter. In the proposed approach, the optimal coefficients for the
sub-filters in the Farrow structure are found so as to approximate the impulse responses
of the practical filters by the impulse response of the Farrow structure. Approximation
problem is solved using the least-squares technique. Filter responses are evaluated
for the values of spectral parameter used for filter design as well as for arbitrary
values. Various design examples illustrate the effectiveness of the proposed time-
domain approach compared to the conventional frequency-domain approach when the
desired specifications are stringent. Interesting observations about the tuning range,
the order and the number of sub-filters are also presented.
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