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Abstract Single-channel speech separation is a challenging problem that has been of
particular interest in recent years. Here the goal is to separate the target speech signal
from the interference signals, with high accuracy. We propose a new hybrid single-
channel speech separation system that applies adaptive coherent modulation filtering
for low-frequency subbands and iterative incoherent speech separation technique for
high-frequency subbands. In the adaptive coherent modulation filtering, an affine pro-
jection filter is applied to subband envelope in order to eliminate the interference
signal. The subband envelope is determined via demodulation of the subband sig-
nal using a coherently detected subband carrier based on the time-dependent spectral
center-of-gravity demodulation. The adaptive affine projection filter uses the sepa-
rated target signal obtained from the iterative incoherent speech separation system
as a reference signal. This system first obtains a rough estimate of target fundamen-
tal frequency range and then uses this estimate to segregate target speech. It then
improves both fundamental frequency range estimation and voiced speech separation
iteratively. Perceptual evaluation of speech quality, as one of the evaluation indices
investigated in this paper, indicates that the proposed system extracts the majority of
target speech segments with minimal interference and outperforms previous systems
in voiced speech separation.
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1 Introduction

In real-world environments, speech reaching our ears is almost never pure. Corruption
of speech by various types of acoustic interference, such as fan noise, music, or other
voices, poses a serious problem for many applications including automatic speech
recognition, telecommunication systems, and hearing aid design. While separating a
particular sound from a mixture of many sources is a major challenge for machines,
the human auditory system is able to perform such a task well, even in difficult and
cluttered acoustical environments. Since speech may be corrupted by various types of
noise and interferences, single-channel speech separation (SCSS) is one of the most
difficult problems among the speech enhancement methods. Separating speech from
interference using a single microphone is a particularly difficult task because only
one recording is available and one cannot explore the spatial information of sources
present in multi-microphone situations.

SCSSmethods can be categorized into the following groups: speechmodeling, non-
negative matrix factorization (NMF), computational auditory scene analysis (CASA),
and modulation filtering [30].

Model-based methods separate speech from interference by modeling source pat-
terns and formulating the separation as an estimation problem in a probabilistic
framework. Such methods estimate individual speech utterances or derive a time–
frequency (T-F) mask for segregation using source models [10,17,29]. To train the
models in thesemethods, vector quantization (VQ),Gaussianmixturemodels (GMM),
and hidden Markov models (HMM) are used. These methods work based on the prior
knowledge; accordingly, the performance of these systems is reduced when they are
applied to a new noise and speech signal condition. Therefore, they are inappropriate
in real-life applications.

In the NMF method, a nonnegative matrix, which is the representation of the noisy
speech signal, is factorized into two nonnegative matrices [6,24]. Unfortunately, for
highly overlapped sources, the performance of this method is not so good.

CASA has borrowed its considerable organization from perceptual principles;
hence, it does not use any a priori knowledge of the speakers in speech separation
[32,33]. CASA procedure can be implemented in two main stages: segmentation and
grouping [25,39,41]. In the segmentation stage, the input is decomposed into several
contiguous T-F segments originatingmainly from a single sound source. The grouping
stage sequentially combines segments that are likely to be generated from the same
source. Fundamental frequency is an important factor for speech separation in CASA
methods. But in the presence of interfering speech signals, the performance of multi-
pitch trackers degrades; this, in turn, deteriorates the performance of CASA method
[22,43].

Modulation analysis and filtering have been useful for modifying narrowband ana-
lytic signals and source separation [2,12,15,23]. Atlas et al. [4] and Schimmel et al.
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[38] have used modulation filtering to separate sound mixtures of musical instruments
based on different characteristics of the instrument sounds in modulation frequency
domain. In these methods, prior knowledge of the interference signal is required to
design amodulation filter; however, in practice there is no access to interference signal
in single-channel recording [16]. In [37], by assuming that the fundamental frequency
range is known and this range is constant in each frequency band, modulation spec-
tral analysis is used as a tool for producing a speech separation mask in modulation
spectrogram domain.

In modulation filtering methods, an input signal is divided into subband signals
via a filter-bank or a short-time Fourier transform (STFT). Then, each subband is
decomposed into a slowly varying modulator and a narrow-band carrier signal. Each
subband modulator signal is passed through a linear time-invariant filter and subse-
quently multiplied by the original unmodified subband carrier signal to obtain the
modulation filtered subband signals. Finally, a broadband modulation filtered output
signal is reconstructed by summing the filtered subbands.

Decomposition of a subband signal into its modulator and carrier using the Hilbert
transform [12] or a directmagnitude estimate of themodulator [40] is called incoherent
method [5,36]. It has been shown that the incoherent method causes distortion and
reduces the effectiveness of modulation filters [14,36]. This distortion occurs because
of three important limitations: (1) subbandmagnitude and phase signals usually exceed
bandwidth of the subband signal; (2) incoherent detectors force a conjugate symmetric
spectrumon themodulator, which is an unrealistic assumption formost natural signals;
(3)modulator domain of incoherent detectors is not closedunder convolution [35]. This
distortion can be avoided to a large degree by estimating amodulator and a carrier using
a coherent method (see [4,36,38] for details). The coherent approach decomposes a
subband signal into a modulator and a carrier by estimating a subband carrier signal
using an instantaneous frequency (IF) estimator and coherently demodulating the
subband signal by the carrier to obtain the subband modulator.

Motivated by the limitations of the methods summarized above, Mahmoodzadeh
et al. [28] proposed a combination of coherent and incoherent methods to develop
adaptivemodulationfiltering for voiced speech separation in a single-channel scenario.
In the system proposed in that paper, the subband signal is decomposed into the
modulator and carrier signals using an estimate of the IF based on the time-dependent
spectral center-of-gravity (COG), introduced by Clark [8]. In modulation filtering, an
analytic subband signal is modified by filtering themodulator and combining the result
with the original carrier. We apply an adaptive affine projection (AP) filter on each
subband modulator signal to separate the target speech from the interference signal.
This idea was presented in a preliminary form in [28], and now it is extended and
modified in this paper.

For the adaptive coherent modulation filtering, the reference channel is needed but
this is not available in single-channel recordings. To solve this problem, we propose an
iterative incoherent speech separation system to approximate the target speech signal.
The proposedmethod estimates the target fundamental frequency range and segregates
the target in tandem. It obtains a rough estimate of the target fundamental frequency
range and uses this estimate to segregate the target speech. With the segregated target,
we generate an accurate estimate of the fundamental frequency range and use it to
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improve the separation process. This means that the proposed system performs the
fundamental frequency range estimation and speech separation jointly and iteratively.

It is known that high-frequency critical bands have wider bandwidths compared
to low-frequency bands. Therefore, higher harmonics of speech signals have wider
bandwidth than lower harmonics [35]. This leads to difficulties for coherent carrier
estimators in correctly estimating carriers in high-frequency subbands. To avoid this
problem, in our proposed hybrid system, we employ coherent modulation filtering
for low-frequency subbands and incoherent modulation filtering for high-frequency
subbands.

We assess performance of the proposed method for different intrusion types and
signal-to-noise ratio (SNR) levels. The results show that the proposedmethod performs
well in single-channel speech separation.

The rest of the paper is organized as follows. Section 2 first describes coherent
and incoherent demodulation methods and then presents the proposed hybrid system.
Systematic evaluation and comparison studies are described in Sect. 3, and conclusions
are made in Sect. 4.

2 Proposed Speech Separation System

The block diagram of the proposed multi-stage system is shown in Fig. 1. In the
first stage, the wideband noisy speech signal is decomposed into a set of narrow-
band signals employing a uniform filterbank. Subsequently, narrowband noisy speech
signal is divided into modulator and carrier signals using the coherent demodulation
method. Then, the target signal is separated from interference using adaptive coherent
modulation filtering. In this stage, an adaptive AP filter is applied on each subband
modulator.

This filter requires a reference channel which is not available in single-channel
recordings. To solve this problem, as shown in Fig. 1, we use an estimated target signal
obtained from our proposed iterative incoherent speech separation system described
below. As shown in the last stage of Fig. 1, the hybrid system is used to separate
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the high- and low-frequency subbands. A detailed description of each stage and the
corresponding signals are presented in the following subsections.

2.1 Coherent and Incoherent Demodulation

The first step in modulation analysis and filtering is the decomposition of a narrow-
band signal into carrier and modulator (or envelope) signals [35]. Modulator is a
low-pass signal describing amplitude modulation of the signal, while carrier signal
represents frequency modulation of the narrowband signal. We denote a wideband
discrete-time signal by x[n] where n represents the discrete-time index. STFT gener-
ates a T-F representation of the signal x[n]. The narrowband signal Xk[m] is written
as:

Xk[m] =
K−1∑

n=0

x[n] w[mM − n]e− j2πnk/K k = 0, . . . , K − 1 (1)

where k denotes the subband (channel) index, m represents the time index, M is the
decimation factor, K represents the STFT length (equal to the number of subbands in
the filter bank), and w[·] denotes the analysis window with length L . STFT provides
a uniform filterbank for decomposing a broadband signal into a set of narrowband
subband signals.

Demodulation is defined as the process of estimating Mk[m] and Ck[m] for a given
signal Xk[m] for all m and k. The signal product model of the kth analytic band-pass
signal Xk[m] can be expressed as:

Xk[m] = Mk[m] · Ck[m] (2)

where Mk[m] and Ck[m] are the modulator and carrier signals of the kth subband,
respectively; these signals are obtained using either incoherent or coherent demodu-
lation approaches as follows.

In the incoherent demodulation method [35], the signal’s modulator is found by
applying an envelope detector to the signal as:

Mk[m] �= D {Xk[m]} (3)

where D is the envelope detector operator. For complex-valued subbands Xk[m], the
incoherent modulator signal is actually obtained using the magnitude operator [12]:

Mk[m] = |Xk[m]| (4)

Having Mk[m], the carrier signal is calculated from (2).
On the other side, in the coherent demodulation, the signal’s carrier is achieved by

applying a carrier detector to the signal as:

Ck[m] �= Dc {Xk[m]} (5)
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whereDc is the carrier detector operator. Based on the COGmethod [3,8], in coherent
demodulation method, the complex carrier is defined as:

Ck[m] = exp ( jφk[m]) (6)

where φk[m] is the phase of the carrier Ck[m]. Thus, the main step in computing the
coherent modulator is to find the phase of the carrier, φk[m]. The IF of the oscillating
signalCk[m] is defined as the derivative of the phase. Therefore, the phase is calculated
via the cumulative sum of the carrier frequency fk[m] as:

φk[m] =
m∑

q=0

fk[q] (7)

Hence, determination of the IF of the subband is essential in computing the modulator
and carrier signals. In the COG approach, fk[m] is defined as the average frequency
of the instantaneous spectrum of Xk[m] at time m as:

fk[m] =
∑R−1

r=0 z[r ] |Xk[r,m]|2
∑R−1

r=0 |Xk[r,m]|2 , (8)

where z[r ] is a weighting function defined as:

z[r ] =
{
2πr/R, 0 ≤ r ≤ R/2
2πr/R − 2π, R/2 < r < R

, (9)

and the instantaneous spectrum, Xk[r,m], is estimated as:

Xk[r,m] =
R−1∑

p=0

g[p]Xk[m + p]e− j2π(r/R)p r = 0, . . . , R − 1. (10)

where g[n] denotes the analysis window with length R.

2.2 Adaptive Coherent Modulation Filtering

Themain idea of this stage of the proposed system is the separation of target speech sig-
nal from the interference based on adaptive coherent modulation filtering. As depicted
in the multi-stage block diagram of Fig. 1, the first step in the adaptive coherent modu-
lation filtering is determination of the modulator and carrier parts of the noisy subband
signal using the COG demodulation method. Coherent detectors are able to adjust the
bandwidth of the carrier by estimating the IF of the signal and thereby adjust the
bandwidth of the modulator. Therefore, the complex modulator signal is closed under
convolution [35].

To separate the target from the interference signal, each subband modulator signal
of noisy speech is filtered using the adaptive AP filter as shown in Fig. 1. In each
subband, the filter coefficients of the adaptive filter are determined by the subband
affine projection algorithm. The LMS algorithm and its variants, that are traditionally
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the most common adaptation algorithms, are problematic in the sense of convergence
speed, especially in the case of colored inputs . Instead, AP converges to the true value
monotonically and much faster compared to the LMS [1,34]. Due to these reasons,
AP is chosen in this paper.

Figure 2 shows a prototype adaptive filter setup where Mk[m], Md
k [m], and ek[m]

are the input, the desired, and the output error signal vectors, respectively. The vector
wk[m] is the M ×1 column vector of filter coefficient at timem, in such a way that the
output, M̂k[n], is an estimate of the desired signal, Md

k [m]. The filter vector update
equation for the AP algorithm is given by:

wk[m + 1] = wk[m] + μYk[m]C−1
k [m]ek[m], (11)

where μ is the step size that determines the convergence speed, and the input matrix
Yk[m] is given by:

Yk[m] = [
yk[m], yk[m − 1], . . . , yk[m − p + 1]] , (12)

and p is the order of AP algorithm. The columns of matrix Yk[m] are furthermore
defined through

yk[m] = [Mk[m], Mk[m − 1], . . . , Mk[m − M + 1]] . (13)

Also, the output error signal, ek[m], and the autocorrelation matrix, Ck[m], are given
by:

ek[m] = Md
k [m] − Yk[m]wk[m], (14)

and
Ck[m] = YH

k [m]Yk[m] + δI, (15)

where the scalar δ is a regularization parameter and the vector of desired signal is
given by:

Md
k [m] =

[
Md

k [m], Md
k [m − 1], . . . , Md

k [m − p + 1]
]
. (16)

Theoretically, the desired modulator signal, Md
k [m], should be obtained by applying

the analysis filterbank on the desired signal d[n] and then decomposing the subband
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signal Dk[m] into the carrier and modulator signals Cd
k [m] and Md

k [m]. Obviously, a
replica or an estimate of the desired signal is necessary for adaptive coherent modu-
lation filtering. Since the desired signal is not directly available in the single-channel
case, as shown in Fig. 1,we employ the proposed iterative incoherent speech separation
system to obtain an estimation of the target speech signal.

2.3 Iterative Incoherent Speech Separation System

The main objective of iterative incoherent speech separation system is to separate the
target signal from the interference signal and estimate a relatively clean signal as a ref-
erence channel for adaptive coherent modulation filtering. This single-channel speech
separation system is implemented using a soft mask in the modulation spectrogram
domain. To make the soft mask, the determination of the fundamental frequency range
of the target speaker is necessary.

Precise estimation of the fundamental frequency range has detrimental effect on
the performance of the soft mask in separating the target signal from the interfering
ones. Nevertheless, interference signals reduce the performance of the fundamental
frequency range estimation algorithm. To overcome this limitation, we propose an
iterative system for speech separation.

In the proposed system, we first determine a rough estimate of the fundamental
frequency range in the modulation frequency domain based on the modulation spec-
trogram of the noisy speech. Speech separation is performed using the soft mask
obtained from the modulation spectrogram based on this initial estimate of the fun-
damental frequency range. The value of this mask in each subband depends on the
estimated fundamental frequency range in the same subband.

The separated signal is fed back to the input of the iterative system as a noisy
signal. Since the SNR of the new noisy speech has increased compared to the original
noisy speech, it is expected that the fundamental frequency range is estimated more
precisely in the new iteration. This in turn improves the separation performance of
the system. In order to evaluate the system performance, we utilize the PESQ index.
The experimental results show that after about seven iterations, the value of �PESQ
becomes ignorable.

The block diagram of the iterative incoherent speech separation system is shown
in Fig. 3. A detailed description of the iterative system follows.

As known, the performance of an adaptive filter improves as the correlation of the
reference and target signals increases. Hence, to increase the quality of the reference
channel signal, we preferably feed back the output of the iterative incoherent speech
separation system as a new noisy input signal. This helps to achieve a target signal
with a more acceptable quality in an iteration procedure.

When the output of the hybrid system is used as a new noisy input signal of the
iterative incoherent speech separation system, the performance of the adaptive filter
is not good enough in the first iteration. This can be justified by the low quality of
the reference channel signal in the first iteration. This requires additional iterations to
improve performance. Also, computational complexity of the hybrid system is high
compared with the iterative incoherent speech separation system.
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2.3.1 Fundamental Frequency Range Estimation in Modulation Frequency Domain

As shown in Fig. 3, determining the fundamental frequency range of the target
and interference speakers is the first step of the iterative incoherent system. This
is done using an onset and offset detection algorithm [19] in the modulation fre-
quency domain. Distribution of fundamental frequency energy in the modulation
spectrogram is an important feature in determining the fundamental frequency range.
Therefore, first the modulation spectrogram is calculated, and then, in the funda-
mental frequency range estimation stage, the modulation spectrogram intensity in
each subband is smoothed over the modulation frequency using a low-pass fil-
ter. After smoothing, the modulation spectrogram is segmented using the onset
and offset algorithm. Onsets and offsets associate to sudden intensity changes that
can be detected from the partial derivative of smoothed modulation spectrogram
intensity.

The peaks and valleys of the partial derivative of the signal are the best candidates
for onsets and offsets, respectively. Those onset candidates whose peaks are greater
than a threshold θon are accepted (for complete description of the method, see [27]).
Between two consecutive accepted onsets, an offset with the largest intensity decrease
is accepted.

Since the frequency components with close modulation frequencies of onsets or
offsets probably correspond to the same source, our system connects common onsets
and offsets into onset and offset fronts. An onset candidate is connectedwith the closest
onset candidate in an adjacent subband if their distance in modulation frequency is
less than a certain threshold; the same applies to the offset candidates. In the next step,
segments are formed by the matching individual onset and offset fronts (for more
details about the matching process, see Section 3.2.2 in [27]).

By segmentation of the modulation spectrogram of noisy speech, only segments
withmodulation frequencies in the range of [60,350]Hz are selected (formen, women,
and children, speaker’s fundamental frequency range is [60,350] Hz).

We firstly select the two segments with the least horizontal overlap in the modula-
tion spectrogram and largest modulation spectrogram energies. These two are called
segments A and B hereafter. Any other segment that is at least 80% overlapped with
segment A (or B) is grouped with the segment A (or B). The remaining segments are
omitted in the grouping procedure. In each subband, the range of the fundamental
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frequency is determined by the onset and offset fronts of the resulting group in that
subband [27].

2.3.2 Speech Separation

For a given noisy speech x[n], the fundamental frequency ranges in each subband k
for the target and interfering speakers are respectively denoted by PFk,t and PFk,i . To
produce a frequency mask for speech separation, the mean of the modulation spectral
energy is defined in the fundamental frequency range as the energy normalized by the
width of that fundamental frequency range for the target and interference, Ek .

By comparing the mean of modulation spectral energy of target and interference
speakers (i.e., Ek,t and Ek,i ), a frequency mask is calculated:

Fk = Ek,ts

Ek,ts + Ek,is
(17)

To construct a filter with linear phase, the frequency mask is transformed into the time
domain, which results in a filter, whose magnitude is Fk and the assigned phase is
φk[i] = i . The separated target signal is estimated by convolving the inverse DFT of
the filter with the modulator signal of the mixture signal and multiplying the results
by the carrier signal of the mixture signal [27].

2.4 Hybrid Coherent–Incoherent Speech Separation System

As known, in the high-frequency range of voiced speech, harmonics are generally
unresolved since the corresponding auditory filters have wide passbands that respond
to multiple harmonics. Psychophysical evidence suggests that the human auditory
system processes resolved and unresolved harmonics differently in nonequal width
subbands [31]. The bandwidth of each band-pass filter, � fc, is defined as:

� fc = 25 + 75 × [1 + 1.4( fc/1000)
2]0.69 (18)

According to Eq. (18), the speech signal has wideband carrier frequency in high-
frequency subbands, in which we have a bandwidth � fcinstead of single carrier
frequency fc. This shows that higher harmonics of speech signals have wider band-
widths compared with lower harmonics [31]. Therefore, in the coherent demodulation
method, COG, estimation of IF is problematic for wideband signals. This leads to
difficulties in estimation of coherent carrier in high-frequency subbands of speech
signals (see [8,26] for more details).

To solve this problem, we propose a hybrid coherent–incoherent system for single-
channel speech separation. As shown in Fig. 1, the proposed system uses the coherent
modulation filtering for separating low-frequency subbands of the target speaker
from the interference; in addition, the high-frequency subbands of the target sig-
nal are constructed using the proposed iterative incoherent speech separation system.
Therefore, the separated signal X̂k[m] obtained from the proposed hybrid system for
low-frequency subbands is constructed as:
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X̂k[m] = M̂k[m] · Cc
k [m] k = 1, . . . L , (19)

and for high-frequency subbands as:

X̂k[m] = Md
k [m] · Ci

k[m] k = L + 1, . . . K . (20)

where Cc
k [m] and Ci

k[m] are the carrier signals obtained from the coherent and inco-
herent demodulation methods, respectively. Experiments show that L = 2kHz is an
appropriate frequency for being a boundary to separate low- and high-frequency sub-
bands (the database used in the evaluation part is also used to compute the parameter
L).

The performance of the iterative incoherent speech separation system in separating
the subbands with high frequencies is superior to the coherent modulation filtering
system. Thus, the signal obtained from the proposed hybrid system is superior to that
obtained from the coherent modulation filtering system.

As stated, the complex modulator signal of the coherent system is closed under
convolution. Also, the real modulator signal of incoherent system is able to create
a modulation spectrum with high resolution and wide frequency bandwidth in the
modulation frequency domain. For the speech signal, this property may be used to
analyze the fundamental frequency in the modulation frequency domain [35]. Taking
advantage of these two properties leads to an increase in the performance of the hybrid
system.

3 Evaluation and Comparison

The proposed system is evaluated for voiced speech separation on a corpus containing
20 target utterances from the TIMIT database [13]. These utterances are mixed with
different interferences (filtered through the room impulse response) at different SNR
levels. The interference signals are: N0) 1-kHz pure tone, N1) white noise, N2) noise
bursts (which are periodic bursts ofwhite noise),N3) babble noise,N4) rockmusic,N5)
siren, N6) trill telephone, N7) female speech, N8) male speech, and N9) female speech
(taken from [9]) (N7, N8, and N9 are three speech signals with different fundamental
frequency ranges). As shown in Table 1, these interferences are classified into three
categories: 1) those with no periodicity; 2) those with quasi-periodicity; and 3) speech
utterances. It is mentionable that the whole mixed (speech + noise) data are practically
divided into 200-ms frames. Among these 200-ms frames, 150 frames are used for
the tuning of the system parameters (especially the parameters of adaptive filtering
process). The rest of these 200-ms frames are then used in the evaluation process.

To evaluate the proposed system, we use perceptual evaluation of speech quality
(PESQ), weighted spectral slope (WSS)) distance, and log likelihood ratio (LLR) as
objective evaluations that correlate well with subjective mean opinion score (MOS)
evaluations [18]. The value of the PESQ is limited to the interval [0,5]; higher values
of PESQ indicate the superior signal. In addition, a signal with lower values of WSS
and LLR is a better signal. The input signal is sampled at 16 kHz. The filterbank has
256 subbands with a prototype Hanning filter of 32-ms duration and a frame rate of 8
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Table 1 Category of
interference signals Category 1 White noise, noise bursts

Category 2 1-kHz pure tone, babble noise, rock music,
siren, trill telephone

Category 3 Female and male speech signals

Table 2 Speech separation results in different input SNRs for a mixture of the male target speaker and
white noise in terms of objective measures LLR, WSS, and PESQ

SNR(dB) −10 −5 0 5 10 15 Average

Mixture PESQ 1.82 2.03 2.05 2.23 2.43 2.73 2.21

WSS 42.38 34.65 29.18 26.23 21.20 16.33 28.32

LLR 4.76 3.08 3.00 2.26 1.64 1.17 2.65

Coherent system PESQ 2.02 2.35 2.51 2.59 2.65 2.74 2.43

WSS 41.81 36.88 25.97 23.63 20.57 20.13 28.16

LLR 0.71 0.67 0.62 0.60 0.59 0.58 0.62

Hybrid system PESQ 3.12 3.43 3.75 3.79 3.93 3.97 3.63

WSS 28.23 21.05 17.63 16.29 13.54 12.28 18.17

LLR 0.28 0.23 0.19 0.17 0.17 0.17 0.20

Iterative system PESQ 3.43 3.50 3.95 4.00 4.02 4.03 3.76

WSS 20.52 18.39 17.32 15.72 13.44 9.86 15.87

LLR 0.21 0.19 0.17 0.17 0.16 0.16 0.17

ms. The number of subbands depends on the required frequency resolution, which is
determined experimentally using the speech samples from TIMIT database.

Tables 2, 3, and 4 respectively present the performance of the proposed speech
separation system in terms of objective measures: PESQ, WSS, and LLR for different
SNRs (in dB) before and after the separation. The results are averaged for separated
target signal from the mixture of a target male speaker with a) white noise, b) babble
noise, and c) male speaker, which are selected from each category listed in Table 1.
The first row of each table shows PESQ, WSS, and LLR of noisy speech signal before
separation. The two next rows indicate performance of the coherent system (based on
modulation filtering) and the hybrid system using the incoherent speech separation
system without iteration. The last row shows performance of the proposed system
in which the hybrid system uses the proposed iterative incoherent speech separation
system.

By comparing the results of the coherent and hybrid systems, one can clearly con-
clude that the performance of the hybrid system is superior to that of the coherent
system. This is because the coherent system cannot separate the high-frequency sub-
bands of the noisy speech, while the hybrid system can improve the performance of
the coherent system using the incoherent speech separation system for high-frequency
subbands. This is particularly noticeable at low SNRs. Also, by comparing the results
of the hybrid and iterative systems, we conclude that the performance of the iterative
system is superior to that of the hybrid system. Evidently, using the iterative incoher-
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Table 3 Speech separation results in different input SNRs for a mixture of the male target speaker and
babble noise in terms of objective measures LLR, WSS, and PESQ

SNR(dB) −10 −5 0 5 10 15 Average

Mixture PESQ 1.67 1.69 1.75 1.91 2.22 2.55 1.96

WSS 59.14 48.96 39.48 34.73 28.17 19.93 38.40

LLR 2.68 2.27 1.67 1.40 0.99 0.61 1.60

Coherent system PESQ 0.84 1.17 2.02 2.35 2.44 2.65 1.91

WSS 67.31 49.61 46.66 39.70 30.98 26.25 43.41

LLR 0.75 0.69 0.68 0.63 0.62 0.60 0.66

Hybrid system PESQ 2.57 2.84 3.20 3.49 3.70 3.87 3.27

WSS 54.78 40.62 38.68 27.84 21.04 15.44 33.06

LLR 1.51 0.95 0.80 0.33 0.29 0.24 0.68

Iterative system PESQ 3.14 3.24 3.41 3.52 3.94 3.97 3.53

WSS 40.67 33.15 23.75 18.00 14.35 10.89 23.46

LLR 0.94 0.49 0.40 0.24 0.23 0.22 0.42

Table 4 Speech separation results in different input SNRs for a mixture of the male target and interfering
speakers in terms of objective measures LLR, WSS, and PESQ

SNR(dB) −10 −5 0 5 10 15 Average

Mixture PESQ 0.89 1.08 1.29 1.96 2.41 3.04 1.77

WSS 52.62 43.33 32.05 22.34 14.77 8.85 28.99

LLR 2.22 1.57 0.97 0.61 0.37 0.18 0.98

Coherent system PESQ 1.44 1.97 2.05 2.54 2.76 2.80 2.26

WSS 53.90 42.57 35.52 30.86 27.67 22.40 35.48

LLR 0.62 0.58 0.54 0.53 0.51 0.50 0.54

Hybrid system PESQ 2.73 2.91 3.22 3.36 3.66 3.72 3.26

WSS 37.60 33.61 23.99 23.13 17.71 12.67 24.78

LLR 0.37 0.35 0.32 0.28 0.27 0.23 0.30

Iterative system PESQ 3.16 3.27 3.40 3.54 3.70 3.92 3.49

WSS 32.35 27.28 22.97 15.89 11.81 8.58 19.81

LLR 0.36 0.33 0.30 0.23 0.23 0.22 0.27

ent system for estimating the reference channel for coherent filtering is the key to the
performance improvement.

As an additional benchmark, we have evaluated the proposed system on a corpus
of 100 mixtures composed of 10 target utterances mixed with 10 intrusions described
in the beginning of Sect. 3 [9]. This corpus is commonly used for CASA research
[7,11,42]. The database contains utterances from both male and female speakers. In
these experiments, we evaluate the performance of speech separation systems in terms
of PESQ, WSS, and LLR. Also, we employ three other measures, namely percentage
of energy loss (PEL), percentage of residual noise (PNR), and SNR [20].
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PEL measures the amount of the target speech excluded from the segregated speech
as:

PEL =
∑
n
e21(n)

∑
n
s2(n)

, (21)

PNR measures the amount of intrusion remaining in the segregated speech,

PEL =
∑
n
e22(n)

∑
n
x̃2(n)

, (22)

and SNR of the segregated target (in dB) provides a good comparison between the
waveforms, which is calculated as:

SN R = 10 log10

∑
n s

2(n)
∑

n

[
s(n) − x̃(n)

]2 . (23)

where x̃(n) is the estimated signal and s(n) is the target signal before mixing with
intrusion. e1(n) denotes the signal present in s(n) but absent in x̃(n), and e2(n) denotes
the signal present in x̃(n) but absent in s(n).

Figure 4 shows the average SNR in the case of each intrusion for the output of the
proposed system (the iterative system) compared with those for the original mixtures,
Hu and Wang system 2004 (HW’04) [20], Hu and Wang system 2010 (HW’10) [21],
and our pervious system, which is called the “incoherent system” [27], hereafter. The
average SNR of our proposed system, taken over all input SNR levels, is 18.73 dB.
All four systems show improvements compared to the original mixtures. The average
SNR improvement of the proposed system for the entire corpus compared with the
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Fig. 4 SNR results for segregated speech and original mixtures for a corpus of voiced speech and various
intrusions
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Table 5 Speech separation results for different methods in terms of objective measures LLR, WSS, and
PESQ for each intrusion (N0-N9) mixed with 10 target utterances

Intrusion N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 Average

Mixture PESQ 1.87 1.30 1.63 1.54 1.60 0.30 1.79 1.77 1.69 1.56 1.50

WSS 81.98 39.76 17.04 33.03 34.37 62.94 65.25 40.31 20.19 36.60 43.14

LLR 0.44 4.14 1.22 1.44 1.63 1.80 1.05 1.05 0.83 1.50 1.51

Proposed
system

PESQ 3.74 3.68 3.77 3.59 3.71 3.69 3.79 3.62 3.76 3.49 3.68

WSS 7.58 17.95 7.77 14.56 9.90 18.41 7.37 10.86 9.66 16.21 12.02

LLR 0.22 0.19 0.22 0.24 0.21 0.29 0.22 0.23 0.23 0.32 0.23

HW’04
system

PESQ 2.84 1.44 2.13 1.61 1.39 2.42 2.61 1.73 2.06 1.21 1.94

WSS 35.91 59.01 26.86 50.52 62.86 34.49 40.20 46.26 30.38 64.21 45.07

LLR 5.51 2.87 4.75 3.76 3.23 4.30 3.89 4.94 4.72 4.77 4.27

HW’10
system

PESQ 2.64 1.24 2.14 1.30 1.14 2.21 2.24 1.62 1.78 1.65 1.79

WSS 35.31 46.36 25.33 48.24 55.19 41.71 34.33 38.77 24.83 51.82 40.18

LLR 5.70 3.03 4.53 3.92 3.98 5.37 3.93 4.00 4.50 4.78 4.37

Incoherent
system

PESQ 3.17 2.82 3.10 2.69 2.98 3.02 3.06 2.85 3.04 2.75 2.94

WSS 20.61 28.97 12.02 24.68 17.08 30.18 14.13 29.89 20.85 34.07 23.24

LLR 0.45 0.53 0.39 0.64 0.50 0.72 0.43 0.54 0.64 1.43 0.62

HW’10 system is about 1.86 dB. The HW’10 system in turn performs 1.96 dB better
on average than HW’04 system. In addition, the proposed system shows 1.88 dB SNR
improvement over the incoherent system. Larger SNR improvements are obtained for
intrusions whose modulation spectra do not significantly overlap with those of the
target utterances (e.g., N0 and N5), whereas improvements are modest for intrusions
with significant overlap (e.g., N3 and N8). To analyze the significance of the results,
the p-value is calculated in the case of each noise for the results presented in Fig.
4 (i.e., the proposed system, HW’04, HW’10, and our pervious system). The results
show that the p-value in the case of N0, N2, N5, and N8 is very small which indicates
that the differences between the average performances of different separation systems
are highly significant. On the other hand, the p-value in the case of N1 and N3 is
close to 0.7, in N6 case is close to 0.5, and in the case of N4, N7, and N9 is close to
0.1.

Table 5 shows performance of the proposed, HW’04, HW’10, and the incoherent
systems in terms of objective measures of PESQ, WSS, and LLR for each intrusion
(N0-N9) mixed with the target speech at different SNRs (as presented in Fig. 4).
Several results are inferred from Table 5: 1) According to the table, the proposed
system achieves a higher PESQ score compared with other systems; 2) it is observed
that the proposed systemachieves about one unit improvement inPESQscore over both
of the HW’s systems for N0, N2, N5, and N6 intrusions and two units improvement
for other intrusions; and 3) the proposed system outperforms the other ones, as it is
evident from lower LLR and WSS scores.
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Fig. 5 Results of voiced speech separation. (a) Percentage of energy loss on voiced target. (b) Percentage
of noise residue

The ranges of LLR and WSS of the proposed system are (0.19–0.32) and (7.37–
18.41), while those for the HW’s systems are (2.87-5.70) and (24.83-64.21), respec-
tively. Comparing the results depicted in Fig. 4 and Table 5, it can be concluded that
although the SNRobtained from theHW’10 system is higher than that of their previous
method (HW’04), their PESQ scores are almost the same. This means that although
the HW’10 system achieves more noise elimination, it leads to more target signal can-
celation. In contrast, our proposedmethod has concurrently improved SNR and PESQ.

Figure 5a, b shows the average values for percentage of energy loss, PEL , and
noise residue, PNR , at a particular SNR level. By comparing the depicted results, it is
concluded that the energy loss percentage of the proposed system presents a significant
improvement over those of HW’s systems. At the same time, the percentage of noise
residue is lower than those of HW’10 system for all SNR’s and HW’04 system for -5
dB SNR.

As shown in Fig. 5, the proposed system segregates 93% of the voiced target energy
at 0 dB SNR and 99.3% at 15 dB SNR. At the same time, at 0 dB, 8% of the segregated
energy belongs to the intrusion. This number drops to 0.7% at 15 dB SNR. Although
the HW’04 system yields a lower percentage of noise residues (6% at 0 dB and 0.5%
at 15 dB, as Fig. 5b reveals), its percentages of target energy loss are much higher
(78.8% at 0 dB and 88% at 15 dB, see Fig. 5a). It is concluded that the proposed
system reduces the signal distortion but with a slight increase in PNR .

To help the reader verify the actual differences in the performance, a file has
been prepared including sample audio mixture signals (target speech + interfer-
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ence) and the results of the separation using the proposed system, HW’s sys-
tems, and the incoherent system. The file is available at http://pws.yazd.ac.ir/sprl/
Mahmoodzadeh-CSSP-SampleWaves.ppt.

4 Conclusion

This paper tackles the issue of single-channel speech separation, which is a very chal-
lenging problem. We propose a hybrid system of coherent and incoherent speech
separation methods for separation of target speech from the interference. In our
approach, the coherent method is used for the speech separation based on adaptive
modulation filtering. In this method, first the COG method decomposes the subband
speech signal into the modulator and carrier components for the coherent demodula-
tionmethod. Then, by using the adaptiveAPfiltering on each subband of themodulator
signal, the target speech is separated from the interference signal.

Our system applies an iterative incoherent speech separation system that simulta-
neously provides the reference channel for the adaptive coherent modulation filtering.
This method separates speech from the interference using a soft mask obtained in
the modulation spectrum domain. For this purpose, first the fundamental frequency
ranges of target and interference are determined in modulation spectrogram domain
using an onset and offset algorithm. Then, the soft mask is determined considering the
fundamental frequency range estimated in each subband and the modulation spectrum
energy of the target speech in that range. Also, considering the difficulties of coher-
ent carrier estimation in high-frequency subbands, we propose a system that employs
coherent modulation filtering for low-frequency subbands and incoherent modulation
filtering for high-frequency subbands.

In terms of computational complexity, the main extra cost of the proposed hybrid
system (compared to that of pervious incoherent speech separation system) arises from
the adaptive filter used in the adaptive coherent modulation filtering system. Since we
have employed the AP algorithm, whose computational complexity is close to LMS
algorithm, the excess computational complexity is ignorable. The time period for the
iteration and the processing of speech separation system is short.

It should be noted that the proposed system can also separate the quasi-periodic
unvoiced portions due to their proximity with the voiced parts; also, in practice, the
inability in separating the unvoiced portions does not have a large impact on the
performance of the system.

Evaluations and comparisons based on standard measures show that the proposed
hybrid system produces substantial SNR gains across different interferences and out-
performs similar separation methods.
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