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Abstract This paper deals with the problem of delay-dependent robust H, control for
uncertain systems with time-varying delays and norm-bounded parameter uncertain-
ties. Firstly, some new delay-dependent stability criteria are proposed by exploiting a
new Lyapunov—Krasovskii functional and free-weighting matrices method. Secondly,
based on the criteria obtained, a delay-dependent criterion for the existence of a mem-
oryless state feedback H, controller that ensures asymptotic stability and a prescribed
Hy, performance level of the closed-loop system for all admissible uncertainties is
proposed in terms of linear matrix inequalities (LMIs). These developed results enjoy
much less conservatism than the existing ones due to the introduction of delay segmen-
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tation approach to estimate the upper bound of the derivative of Lyapunov functional
without ignoring some useful terms that take into account information of the time-
delay. Finally, numerical examples are provided to demonstrate the effectiveness and
benefits of the proposed method.

Keywords H,, control - Delay-dependent criterion - Lyapunov—Krasovskii
functional - Uncertain system - Time-delay system

1 Introduction

During the past two decades, considerable attention has been devoted by the control
community in devising techniques for ascertaining stability of dynamical systems with
time-delays; refer [8,15,21,25,41], and the references cited therein. Time-delays are
associated in various physical systems like communication systems, air-craft stabi-
lization, nuclear reactors, population dynamics, ship stabilization and electric power
systems with lossless transmission lines; these delays are time-varying in nature, and
their presence in a system has an adverse impact not only on system performance,
but also on its stability. Depending upon whether or not the stability criteria for a
time-delay system contains the information of time-delay, the criteria can be classi-
fied, respectively, into two categories: namely, the delay-dependent stability criteria
and delay-independent stability criteria. Since delay-dependent criteria make use of
information on the length of the time-delay, they are less conservative than the delay-
independent ones. Hence, researchers have focussed on the delay-dependent stability
problem of time-delay systems, and many significant results have been reported in the
recent literature [1,3,32,36,45,47,48]. Also, the parameter uncertainties are inherent
features of many physical processes and often encountered in engineering systems;
so, their presence must be considered in realistic dynamics.

In recent years, the Hy, control concept was proposed to reduce the effect of the
disturbance input on the regulated output within a prescribed level and guarantee
that the closed-loop system is stable [4,13,14,33,34,38]. More recently, Hy, control
theory has been applied to an actual building in Tokyo, Japan, using a pair of mass
dampers to reduce the bending-torsion motion due to earthquakes [6]. Further, a liquid
monopropellant rocket motor with a pressure feeding system has been considered as
a numerical design example in [16,17,30]. In [40,46], the problem of controlling
the yaw angles of a satellite system with delays has been discussed. This satellite
system consisting of two rigid bodies joined by a flexible link was assumed to have
the state-space representations. Recently, Hy, optimal control techniques have been
found to be an effective solution to treat robust stabilization and tracking problems. See
[5,7,11,12,28,31,42]. An area of particular interest has been control of linear time-
delay systems. Fridman and Shaked [5] proposed a descriptor model transformation
of time-delay systems and used the bounding techniques from both Park and Moon
et al. for Hy, controller design. Following the technique of Moon et al. [16], Gao and
Wang [7] improved the results of [5]. In [12], Lee et al. proposed a delay-dependent
robust Hy, control, which was less conservative than that in [5], for uncertain linear
systems with state delay. Xu et al. [42] added null sum terms to Lyapunov functionals

Birkhauser



1838 Circuits Syst Signal Process (2017) 36:1836—1859

derivative and obtained less conservative results than those from previous methods
due to the avoidance of using any bounding technology. Jiang and Han [11] concerned
with the problem of robust Hy, control for systems with interval time-varying delay in
arange by employing the free-weighting matrix method. In all previous results when
estimating the upper bound of the derivative of Lyapunov functional, the derivative of
f?r ftt+9 1T (s)Zx(s)dsd@ is often estimated as 47 (1) Zx(t) — ftl_r T () Zx(s)ds

and the term — ftt:rr(l) T (s)Zx(s)ds is neglected, which may lead to considerable
conservativeness. In addition, the criteria in [11] are available only to systems with
fast time-varying delay. In [28,31], authors used the bounding lemma to deal with
the cross-terms. Therefore, there is room for further investigation. It is worth pointing
out that, up until now, there have been few results considering delay-dependent robust
H, control for uncertain nonlinear systems with time-varying delay and parameter
uncertainties, which remains open but challenging.

In this paper, the problem of H, control for uncertain systems with time-varying
delay is studied. Our aim is to design a memoryless state feedback control law such
that the closed-loop system is robustly asymptotically stable and the effect of the dis-
turbance input on the controlled output is less than a prescribed level for all admissible
parameter uncertainties. It is noted that these improved criteria are derived without
resorting to any model transformations and bounding techniques for some cross-
terms by using Lyapunov—Krasovskii functional method and the free-weighting matrix
method. Based on the improved criteria, a delay-dependent condition for the existence
of a state feedback controller that ensures asymptotic stability and a prescribed Hso
performance level of the closed-loop system for all admissible uncertainties is obtained
in terms of LMI. Finally, some illustrative examples are provided to show the effec-
tiveness and advantages of the developed method.

Notations The following notations will be used throughout this paper. R” and
R™™ denote the n-dimensional Euclidean space and the set of all n x m real matrices,
respectively. The notation X > 0 (respectively, X > 0), where X is symmetric
matrices, means that X is positive semidefinite (respectively, positive definite). The
subscript 7' denotes the transpose of the matrix. Ly[0, oo] is the space of square
integrable vectors on [0, co].

2 Problem Formulation

Consider aclass of linear systems with time-varying delays and parameter uncertainties
described by

x(t) =[A4+AAD)]x@) +[Ag + AAz(t)]x(t — Tt (1)) + Bu(t) + Byw(t),
z2(t) = Cx(t) + Cyx(t — t(t)) + Du(t) + Dyw(t),
x(t) = ¢((),Vt e[—h,0], (1)

where x(r) € R" is the state vector, u(t) € R? is the input vector, w(t) €
L,[0, oo] is the exogenous disturbance signal, and z(t) € R” is the controlled out-
put. A, Ag, B, By, C,C4, D, Dy, are known real constant matrices of appropriate
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dimensions. AA(¢) and AA,4(t) are unknown real matrices of appropriate dimensions
representing time-varying parameter uncertainties of system (1) and satisfy

[AA() AAq(t)]=EF(1)[G1 G,] 2)

where E, G1, G, are known real constant matrices of appropriate dimensions, and
F(t) € R is an unknown matrix function with Lebesgue measurable elements
satisfying

FT(OF@) <1, VYi>0 (3)

¢ (1) is the initial condition of system (1). 7(¢) is a continuous time-varying function
satisfying

O0<t(®=<h, @) =upu, “)

where & and @ are known constants.
For a prescribed scalar y > 0, we define the performance index as

J(t)=/0 [zT(s)z(s>—y2wT(s)w(s)] ds. 5)

We are interested in designing a memoryless state feedback controller
u(t) = Kx(t), (6)

where K € R™" is a constant matrix. The purpose of this paper is to develop a
delay-dependent Hy, conditions such that, for all admissible uncertainties satisfying
(2) and any t(r) satisfying (4),

(i) The closed-loop system is asymptotically stable for all admissible uncertainties;
(i) Under zero initial condition, the closed-loop system satisfies || z(¢) [2< ¥ |
w(t) ||2 for any nonzero w(t) € £,[0, co], where y > 0 is a prescribed scalar.

The following lemmas are necessary in the proof of the main results.

Lemma 2.1 ([9]). For any positive definite matrix M € R"*", scalars ho > h; > 0,
vector function w : [hy, hy] — R" such that the integrations concerned are well
defined, the following inequality holds:

t—h t—h T t—h
—(hy — hl)/ w! (s)Mw(s)ds < —(/ w(s)ds) M(/ w(s)ds),
iy t—hy t—hy

t
1 —h t
— —(h3 — 1) / / w! (s)Mw(s)dsdd
2 —hy Jit6

—hy ot T —hy ot
< —(/ / w(s)dsd@) M(/ / w(s)dsd@).
—hy t+6 —hy t+0
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Lemma 2.2 ([39]). Given matrices Q = QT, H, E with appropriate dimensions,
then

O+HFWOE+ETFT)HT <0

for all F(t) satisfying FT (t)F(t) < I, if and only if there exists a scalar . > 0 such
that

Q+rHHT + 7'ETE <.

Lemma 2.3 (Schur complement [2]). For a symmetric matrix
Si1 S12
S = ,
[ S 1T2 522 }
the following conditions are equivalent:
(1) S <O,

(2) S11 <0, and S, — S, 87, S12 < 0,
(3) S <0, and Si1 — S1255,' ST, < 0.

M

« M > 0, scalars T > 0, t(¢t) > O satisfying
0 < ©(t) < t, vector function x : [—7, 0] — R" such that the concerned integrations
are well defined, then

Lemma 2.4 [44] For any matrix

t
—z/ T@)Mi(0)da < ol (1)Qw (1),
-t

where

o) =[xT@) Tt —@) Tt -],

-M M-S S
Q=| * 2M+S+S" -S+M
* * -M

Lemma 2.5 [44] For any positive matrix Z, and for differentiable signal x in [o, B] —
R™, the following inequality holds:

P x(B) x(B)
/ T () Z% (u)du > x(a) Q x(e) ,
@ - ﬁffx(u)du ﬁlTaffx(u)du
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where
47 27 —6Z
Q=| % 4Z —6Z
x x 127

3 Main Results

Based on Lyapunov—Krasovskii functional approach, we first investigate a delay-
dependent stability condition for the following nominal system:

x(t) = Ax(t) + Agx(t — t(t)) + Byw(2),
72(t) = Cx(t) + Cyx(t — 1(2)) + Dyw(2). @)

Theorem 3.1 For given scalars h > 0,y > 0 and u > 0, system (7) is asymp-
totically stable and satisfies || z(t) o< y || w(t) |2 for any nonzero w(t) €
L5[0, 00) under the zero initial condition if there exist symmetric positive matri-

. X X VAR
ces Q = [Qijlsxs Qili = 1,2,...,6),[ . X;}Z =% z,

matrices P, M;, H;, Li, N;(i = 1,2, ..., 14), such that the following LMI holds:

Q:[HFT}<0, ®)

] , Z» and any

* —1
where

IT = (I1;j)15x 15,
T T h\2
M= Qn+ 05— 0u— 0l + X + (5) (03 + 04]
T h T
—Z1—4Zr + L1+ L +§(H1 + H)

h T o T hor hor
+2(M1-|-M1), Mpy=21—-S+L, —Li+Ni1+-Hy, +-M,,

2 2
r o hor hor
Ms=-0n+ Qi+ Qu—-0Qis+ X+l +5H +-M;,
Y hor  hoor
M4 =-0ui3+ Qis+S-2Z+ Ly =N+ Hy + 5 My,
h h h h
s = On +5Q14+§Q15+L5T+§H5T+§M5T+ATPT,
h h h h
H16=Lg+EH6T+§ 6T, H17=L7T~|—§H7T—}—§ 7T,

h h
HlS:QZTZ_Q2T4+L5+§Hg_H1+§Mg’

h h
H19=Q23—Q3T4+L9T+§ 9T+§M9T—M1’

Birkhauser



1842 Circuits Syst Signal Process (2017) 36:1836—1859

h h
My, =Q0u— 0L +LT,+-H — H + EMITO,

2
T h T h T
Hlu = Q25 - Q45 +L11 + EH“ + EM“ - Ml,
h h h h
My, =—-Li+L,+ EHIQ + EMITZ, M, =L5 - N+ EHlT3 + 5M1T3,
6 h h
Iy, = EZ2 +L{,+ §H1T4 + §M1T41

Myp=-2Z+S+8" —L,— LT + N, + NI,

My =LY+ NI, Tau=-S+2—LL+ NI — N,

Mys = —LI + NI + A} PT,

1—126=—L6T+N6T, H27=—L7T+N7T, H28=—L§+N3T—H2,
My = —Ly + NJ — Ms,

My, = LI+ Ny — Hy, Ty, = LT, + N]| — M,

My, =—L,— L, + NF,

My, = —L{z = N2+ N5, T, = —L{, + Njj.

33 = Xop — X11, I3 = —=X12 — N3,

Mg = —0 + 033 + 034 — Q35 — Hs,

M9 = — 02 + Q%3 + 034 — Q35 — M3,

M3, = —Qo4 + Q34 + Oy — Q)5 — H3,

M3, = — Q25+ 035 + Qus — Qs — M3, T3, = —L3,

M3, = —N3, Tag = X2 — Z1 —4Z> — Ny—N], Tlus=—NJ Te=—N{,
My = —N7, Tag=—03+ Q35— Ng — Ha,

My = —Q%; + 035 — Ny — My,

M4y = —Q34 + Qhs — Nig— Ha, Tlay, = — 035 + Q% — N} — My,
My, = —L4 — N},

T 6 T
H4; = —=Ng — Ni3, Ty = EZZ — Nig»
h* 9

hy2 ¢ )
Mss = (3) 101+ Qa1+ 5 05 + - Q6 + (21 + Z2)

64
T h T h T
—P—-P, H58=Q12+§Q24+§Q25_HS,
h T h T
[sg = Q13+§Q34+5Q35—M5,
h T h T
s, = Q14+§Q44+§Q45—H5,

h h
[5, = Q15+ 5Q45 + EQ; — Ms, Ts, =—Ls,
H5]3 = _NS’ HSIS = PBw, H66 = _le H68 = _H61
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Igg = —Mg, Ilg,, = —Hs,

Mg, = —Ms, T, = —Le, Ilg; =—Ns, Tl77 =—0>,

7 = —H7, Tly9 = —M37,

My, = —Hy, Ty, =—M;, Ty, =—L;— M},
My, = —N7, Tlgg=—Q3 — Hy— Hy

Mgo = —Hy — Mg, Tlg,, = —H], — Hs,

1-1311 = _HlTl — Mg, 1-1812 =—Lg— H1T2v

Mg, = —Ng — HY, Mg, = —H}, To=—04— My — M,

1-[910 = _H9 - Mﬂ)v

My, = —MJ, — My, Ty, = —Lg, T, =—Ng— ML,

T _ T
H914 = —M14, H1010 = _QS - H]O - H]O»
T T
ITyo,, = —Hjy — Mo, Ilig,, =—Lio— Hjp,
T
ITyo,; = —Nio — Hj3,

T T T
Mo, = —Hjy, Ty, =—-06— My — My, Ty, =—Li1 — My,

T
Iy, = —Ni1 — My3,

T T T
Iy, = —Miy, Iz, =—Lia—Lj,, Tp,;=-Lj;— N,

T _ T
g,y = =Ly, Iz, = —Ni3 — Ny,

12 5
—722, s, = —y71,

[CCi000000000000D,]".

_ T _
M3,y = —Niy, Thgy, =

—
ﬂ
Il

Proof Construct a Lyapunov functional candidate as follows:

Vx(@) = Vix(®) + Valx (1) + V3(x(@)) + Va(x (1)) + V5(x(@)) + Vs (x (1)), (9)

where

Vix(1) = &7 (1) Q& (1),

[ x(s) g X1 X2 x(s)
VZ(X(I))_/t_ﬁ [x(s_%):| |: * X22j||:x(s—%)

2

0t —b
Vae(r)) = 1 i1 (5) 01 (s)dsdd + 7T (5) 0% (5)dsdo,
2 1 Jive 2)n Jive

h
2

ho[o h [~
Va(x (1)) = 5/1«/ xT(s)ng(s)dst—l—E/
-4 Ji+0 —h

h2 0 0 t
Vi) = / , / / T (5) 05 (s)dsdindo
—-3J0 Ji4a

3h2 _h 0 t
+—/ 2// 7 (5) 06 (5)dsdando,
8 Jon Jo Jita

t
/ xT(s)Qax(s)dsde,
t+6
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0 t
Ve(x()) = h/ / )'cT(s)(Zl + Z»)x(s)dsdo,
—h Jt+6

where

t Py 0t
T (1) = [xT(t) / 7 (s)ds / " T (s)ds / / 7 (5)dsdo
-4 t—h -t Jite

/ / )%T(s)dsde}.

~h Ji+6

The time derivative of V (x;) along the trajectory of system (7) is given by
Vx(1) = Vi@®) + Vax(@) + V3 (0) + Vale(0) + Vs(x (1) + Vo(x(1)),

where

Vi(x (1)) =267 (1) Q& (1)

0 ' 011 Q12 Q13 Q14 QO
t
(s)d 11 Q12 Q13 Q14 Q15
ft,_,ix oo 07, 022 023 Q24 025
=2 Jo—i’ x(s)ds 01, 015 033 034 035

fi)% fztw x(s)dsdd g? 32;4 83;4 g‘}“ 345
s 55
_f—hz f,tJrg X (s)dsdo | 15 ¥25 X35 %45

B x(1)
x(t) —x@t -5
X x(t =% —x(t—h)

hx@) —x(@0) +x =%
L2430 —xt =5 +xt —h)

h

t 1—5
=27 00150 + 267000 [ | x5 + 27001 [ “x(syds
-3 t—h

0 t _hy
+25cT(t)Q14/ / 5c(s)dsd9+25cT(t)Q15/ 2/ x(s)dsdo
~tJite ~h Jit+0

3

2
x(s)ds

t r—

+xT ([0 + 0L 1) + 24T (1) 01, /

t— —h

L x(9)ds +2x7 (1) Q23 /
% t

0 t _hy
+2xT(t)Q24/h/ )%(s)dsd9+2xT(t)Q25/ 2/ £(s)dsdo
—4 Ji+o —h t+60

_2xT(t)Q12x(t - g)—sz(t — g)ng /tig x(s)ds
(b

T h 2
—2x (t— §)Q23 /t_h x(s)ds
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h 0 t h —% t
—_— T —_— v —_— T —_—— Y
2x (l 2) 02 / ) /z , x(s)dsdf — 2x (t 2) 075 /—h /t . X (s)dsdo

+2xT(t)Q13x(t — g)+2xr<t — g) Q2T3 /tt . x(s)ds

-2

h

=3
+2xT (t — —) Q3g/ x(s)ds
t—h
- h 0 t ) - h —% t )
4 2x (z— §)Q34/Z/t+9x(s)dsd9+2x (r— §)Q35 /41 /Hex(s)dsd@

t
—2xT(t)Q13x(t—h)—ZxT(t—h)Q2T3/ L x(s)ds
=7
h

t_
— T —h)Q3T3/ hz x(s)ds
t7

0t kb
—oxT(r — h)Q34/ / £(s)dsdd — 2x7 (1 — h)Q35/ 2/ i(s)dsdo
_% 146 —h  Jt+0

t =1
+2ﬁxT(z)Q14x(t) - 2ﬁxT(z)Q§4/ x(s)ds + 2'3xT(t)Q3T4/ " x(s)ds
2 2 -k 2 t—h

hop o [0 hor ot
+2-X" ()0 X(s)dsdf +2—=x" () Q45 x(s)dsdo
2 ~iJito 2 —n Jito

h

t t
+a (O[= 014 — Q1ulx () —2x" (1) 07, / , X)ds —2xT(1) 05, / Cx(s)ds
t—73 -

t—h

; ; U ; b .
—2x (t)Q44/ / x(s)dsd6 — 2x (t)Q45/ / X(s)dsdo
_% +6 —h t+60

+2xT (1) 0 14x (: - §)+2xT(t - g) o, /tl x(s)ds
-2
+2x ( ——)Q34/tgx(s)ds

L
+2xT Q44/ / %(s)dsdo + 2xT ( — —) Q45/ 2/ X(s)dsdé
+6 +6

h T h T ! h T
+22x (t)Q15x(t)+22x (t)QZS/ ’x(s)ds+22x (t)Q35/ x(s)ds
t—73 t—

h
h 0 t h 7% t
+2—xT(t)QZS/ / )'c(s)dsd9+2—ch(t)Q5T5/ / % (s)dsdo
2 i Jiyo 2 —n Jite

_ZxT(;)Q15x(t — %)—ZxT(z — g) QQT5 /ttg x(s)ds
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h
h =3
—2xT(r - =) 0oL x(s)ds
) 35

—2xT —ﬁ Q45/ / x(s)dsdo
2 b Jite

>

—2xT Q55/ 7/ x(s)dsdo
t+6
t
+2x (t)Q15x(t—h)+2xT(t—h)Q2TS/ L x(s)ds

=3
h

t_
+2xT(t—h)Q3T5/ " x(s)ds
t—h
h

+2xT(t—h)Q45/ / x(s)dsd9+2xT(t—h)Q55/
—5 J1+0

t
x/ X (s)dsdo, (19)
146
. x0 1 [Xn X x(1)
Vz(x(f)):[x(t_g)} |: * X22]|: (I——)i|
x(r - X X || x(t—3)
_[x(t—h)} [* Xzz}[x(f—h)} "

. hy\2 h (!
Vi) = (3) 3 O1Q1 + Qa1 — 5/,_3 £ (5)01%(5)ds
t_h
—g/ hz)'cT(s)Qz)'c(s)ds, (12)
t

h t
Vo) = (5) 5T 010+ 0k = 5 [ 476 0ux)as
=3
_h

h (72
——/ X" (s)Qqx(s)ds, (13)
2 t—h

. 9
v5<x(r>)=xT<r>[ Q5+—Q6}X(I)—— / / #7 (5) 05 (5)dsd6
3 i 7
/ / (s)Qex(s)dsdb, (14)
+6

t

Ve(x(t) = B4 (0121 + Za15(t) — h / ()21 (5)ds
t—h

t
—h/ 1T (5)Zo% (s)ds. (15)
t—h
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It follows from Lemma 2.1 that

x(s)ds) 01 (/[ , i(s)ds), (16)
(b

2

T -3
( x(s)ds) 0> (/I x(s)ds) (17)
t—h
h t rt
—E/F xT()03x(s)ds < ( x(s)ds) Q3(/tiﬁx(s)ds), (18)

—ﬁ/l () Qri(s)ds < —
2

[SESES

h [~
—f/ X (s)szc(s)ds <
2 Jien

2
h

T =5
x(s)ds) [on (/ x(v)dv) (19)
h2 0 t
f—/ / )&T(S)Q5)€(s)dsd6< / / x(s)dsdG) Q5(/ / x(s)dsd@)
8 —4 Jite +0 -2 Jt+6

SEESES

ho[12
——/ 27 () Qax(s)ds <
2 ),

(20)
3h2 —2 —2 —2
/ / X (s)Q6x(s)dsd6 < — / / x(s)dsd@) Q6(/ / x(s)dsd@)
+6 +6 +6
21
By Lemma 2.4, we get
t
—h/ T (s)Z1x(s)ds
t—h
x(1) 'r—z, z,-5 S x(1)
< | x(t — (1) « 2721+ S+ST —S+27Z, || x¢t—7@) |. 22)
x(t — h) * * -7 x(t —h)
By Lemma 2.5, we get
t
—h/ 1T (s)Zox (s)ds
t—h
(1) "'raz,27, 62, x(t)
< — x(t —h) x 4Z) —6Z, x(t —h) . (23)
[l x(s)ds x o« 127, 3L, x(s)ds

From the Leibniz—Newton formula, the following equations are true for any matrices
M, N, L, H, P with appropriate dimensions:
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t
0= 2§T(t)L|:x(t) —x(t—1(t)) — / )'c(s)ds:|, (24)
t—1(t)

r t—t(t)
0= 2§T(I)N x(t —t() —x(@—h) —/ X(s)dsi|= 0, (25)
t—h

t 0 t
0= 2§T(t)H ﬁ)c(t) —/ x(s)ds —/ / )'c(s)dsd@i|: 0, (26)
L2 - ~bJite
- t
/ )'c(s)dsd9:|= 0, 27
t+6

h =5
0=2cTM| =x@) —/ x(s)ds —/
t—h —h
0= 2xT(z)P[—x(z) + Ax(t) + Agx(t — (1)) + wa(t):|= 0, (28)

|
(S~

| 2

where

¢ (t)—[x @) xT(t — () xT(t—g) Ta—hn @) / 7 (s)ds
h

1—% t t—
/ 2)& (s)ds/ xT(s)ds / xT (s)ds / / T (s)dsdo
-4 t—h +0
/_,/ 17 (s)dsdo
+6

t—t(t) t
/ T (s)ds / 1T (s)ds / xT(s)ds wT(t)i|. (29)
t—1(t) t—h t—h

Combining from (10) to (28) together, we have
V() = ¢80 — 2" 0)20) + v w Owo), (30)
where Q; = 1+ I''T'T. IT and T are defined in Theorem 3.1. O
Based on (8) and by Schur complement, (30) implies that
V) = =" 0200 + y*w” Ow@). (31)

Integrating both sides of (31) from #( to ¢, we obtain

t
zT(s)z(s)ds—i—/ ysz(s)w(s)ds. (32)

fo

t
wn—wms—/

fo

Then, letting + — oo and under zero initial condition, we obtain from (32) that

/ ZT(S)Z(S)dSS/ y2wT (s)w(s)ds.
4]

fo
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Therefore, J(t) < 0, and hence || z(¢) [|2< y || w(¢) |2 is satisfied for any nonzero
w(t) € L]0, 00).

Remark 1 To reduce the conservatism, Lemma 2.1 is used to deal with the deriva-

. . . w2 0 t.T . . . 0 t

tive of Vs(x(1)), i.e., =% f_% Ji40 %" () Q5i(s)dsdd is bounded with —(f_g Jivo
T

)é(s)dsde) 0Os (fi)g ftt_ke)'c(s)dsde). Similarly in the derivative of Vs(x (7)), the

_h h T
term —% Jo2 [l %7 (s) Q6 (s)dsdd is bounded with —( [ f,f+6x(s)dsd9)

_h
0Os ( s fzt+9 )'c(s)dsdé’), which yields less conservative results in the proof of The-

orem 3.1.

Remark 2 By dividing the discrete delay interval [—#, O] into [—h, — %] and [—%, 0],
then different functionals were chosen on each subintervals. % f 0 j7+9 T Q1x(s)

dsd® was on the subinterval [— h ,0], andh s £+6 1T (s) Q2% (s)dsdd was on the

subinterval [—h, — %]. We can see that this division provides extra freedom for discrete
delay terms and reduces the conservatism. It was similar to division for other integral
terms.

Theorem 3.2 For given scalars h > 0,y > 0 and pu > 0, system (1) without con-

trolled output is asymptotically stable and satisfies || z(t) o< y || w(t) |2 for any

nonzero w(t) € L2[0, 00) under the zero initial condition if there exist scalar A > 0,
Xn X

* X 22:| Za

symmetric positive matrices Q = [Q;jlsxs, Qi(i =1,2,...,6), |:

Z*l ; , Z» and any matrices P, M;, H;, L;, N;(i = 1,2, ..., 14), such that the
1

following LMI holds:
nrfry
x* —10 <0, (33)
* x —Al

where

IT = (T1;j)15x 15,
M =Qn+0hL—-0u—-0l,+Xu+ ( ) [Q3 + Q4]
—Z1—4Zy + L, +L1T+5(H1 + HD)

h T T
+2(M]+M] )+)\.G1 Gl,
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T h T h T T
Mo=27Z1-8S+L; —L1+N1+§ 2 +§M2 +A1G| Ga,

My =—2Z1+S+8" —Ly,— LY + Ny + N +1G1G,.

and other terms are the same as in Theorem 3.1.

Proof Replace A, Ay in (8) with A + AA(t), Ag + AA4(t), respectively. Then, the
uncertain system (1) is equivalent to the following condition

Q+ T F)T. + TTFT(nrl <o, (34)
where

ry=[0000PE0000000000]",
Fe=[G1G2,0000000000000].

By Lemma 2.2, there is a necessary and sufficient condition to satisfy the inequality
(34) and there exists a scalar A > 0, such that

Q+r7'r,rl +ar’r, <o. (35)

Now, by applying Schur complement (35) is equivalent to (33). This completes the
proof of Theorem 3.2. O

Remark 3 If B = By, = 0 and without controlled output, system (1) is simplified as

x(t) =[A+AAW)]x(@) + [Ag + AAG(O)]x(t — (1)),
x(t) = ¢(1), V1t € [—h,0]. (36)

Corollary 3.3 For given scalars h > 0 and n > 0, system (36) is asymp-
totically stable, if there exist scalar A > 0, symmetric positive matrices Q =

g i X1 X2 _|Z S .
[Qijlsxs, Qi(i = 1,2,...,6),|: « Xo 2, = « 7y , Z» and any matrices

P, M;, Hi, L;, Ni(i = 1,2, ..., 14), such that the following LMI holds:

mry
[* _M]<o, (37)

where IT = (I1;;)14x14-

Proof By taking C = C; = By, = D,, = 0 in the proof of Theorem 3.2, we can
obtain (37) for the stability of system (36) and the proof is omitted here. O
Remark 4 Different from [28,31], the double-integral term in the Lyapunov functional
is divided into two parts, i.e., h f?h ftl+9 T Z1x(s) + h fi)h ftl+9 1T () Z2x(s). As
a result, there are two integral terms, & [/, 7 (s)Z14(s) and h [, &7 (5)Z2x(s),

contained in V (x(?)). Then, two different integral inequalities are adopted to deal with
these two integral terms, respectively, which may lead to less conservative results.
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4 State Feedback H,, Control

Using the stability criteria derived in the last section, we now design a feedback
controller gain K to make system (1) robustly asymptotically stable with the norm
bound y.

Theorem 4.1 For givenscalarsh > 0,y > 0and > 0, system (1) is asymptotically

stable and satisfies || z(t) |l2< y || w(t) |2 for any nonzero w(t) € L5[0, 00) under

the zero initial condition if there exist scalar ). > 0, symmetric positive matrices
|,z

& X :| , Z> and any

Q = [Qijlsxs, Qii = 1,2,...,6>,[ . 2,

matrices P, M;, H;, L;, Nij(i = 1,2,...,14), L > 0, Y such that the following LMI
holds:

?_(11?:(12] 7 |:Zl S
’ a —

n r’ ry
x =1 0 <0, (38)
* x =AMl
where
I = (I1;)15x15,

; _ _ _ i} _ h\2 - _ _ _
My =0+ 00— 0u—0f,+Xu+ (5) [Q3+ Q4] — Z1 —4Z,

S LT

+L1+L1+§(H1+H1)

h - 2Ty A TR L

+§(M1+M1), H12=Zl—S+L2—L1+N1+§H2 +§M27

5 5 5 5 v R
Miz3=—-0n+ 013+ 0is— 015+ X2+ L3 +§H3 +§M3,
= 3 5 S rm iT o Par e
H14=—Q13+Q15+S—222+L4—N1+§H4 +§M4,

3 h h - cro har Moy T, yTpT
Mis = Qu+50Qu+ 5015+ Ls + S Hs +-Ms + XA + Y7 B,

_ h - h - _ - h - h -
Me=LL+-A +-m], Ty;=L1+ -8 +-MmT,

2 2 2 2

- - - h - _ h -
Mg = 0, — 0%y + L§ + 5 A — i+ M,

_ _ o ho-n h - i}
Mg = Q23—Q3T4+L9T+§H9T+5M9T—M1,

- _ - h - - h -
Mg = O — Ol + Liy + 5 Hip — Hi + 2 M,

5 5 L LY N I A
Hl]. = Q25 - Q45+L11 +§H11 +§M11 — M,

- - h - h - - - - h - h -
T T T T T T
Hl]Z = —L1+L12+§H12+5M12, H]|3 —L13—N1+§H13+5M13,
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M = 220+ L+ 5 A, + 2t
My =-2Z1+84+8" — Ly — LY + N, + NT,
12[23 =—Z3T+N3T, 1:124=—S‘+Z1 —I:Z+1\_/4T—1\_/2,
1:125 = —l_,ST —l—]\_fsT ~|—XAZ;,
My =—LL + NI, Ty =LY + NI, Tyg=-LI+N - m,,
My = —igr + 1\79T — Mo,
1:1210 = _l_*lTO + NlTO - I'_IZ’ 1:[211 = _l_'lTl + NlTl - M2v
1:[212 = —l_,z - Z{z + Nsz,
1:[213 = _I:1T3 - N2 + N1T3’ I:[2|4 = _l_‘{él + NIY;P
M33 = X — Xi1, Mag=—X1p— N3,
Mg = =03, + 033 + 034 — 035 — Hj,
M3 = =003 + Q3Tg + Q3T4 - QgTs — Ms,
M3, = —Q0o4+ Q3 + QL - st — Hj,
M3, = =025 + 035 + Qus — Q5T5 — M3, T, =L,
M3, =—N3, Mu=-Xpn—2—4Z,—Ny— N,
flys = — NI flag = N7
My =—N;. Mg=—-03;+ 035 — Ny — Hy.
Mo = —Q3T3 + Q3T5 - 1\79T — My,
M4y = =03+ Q4s — Ny — Hy. Tlay, = =035 + Q5 — N} — Ma,
1:[412 = _l_‘4 - Nlrzv
= Y oT 7 6 oT
M43 = —Na — N3, Tlyy, = EZZ — Niy,
4 4
Mss = (g)z[Ql + 02] + Z—4Q5 + 96%@6 +h*(Zi+Z) - X - X",
= A h~r  h-r 7 = A h—¢  hr Y
[sg = Q12 + §Q24 + §Q25 — Hs, Ilso= Q3+ §Q34 + §Q35 — Ms,
- ~ har  hap -
s, = Q14 + §Q44 + §Q45 — Hs,
_ - h - h -7 - _ _
M5, = Q15+ §Q45 + 5Q55 - Ms, Ils, =—Ls,
Ms, = —Ns, Ms5 =By, Ie=—01, Ieg=—Hs,
Mg = —Mg, T, = —H,
M6, = —Ms, T, = —Le. Mg =—Ne, 77 =-0,
Mg = —Hy, Tlyg = —My,
1:1710 = _1:177 I:1711 = _M7’ 1:[712 = _1:7 - MITZ’
My, = —N;. Tgg=—03 — Hy— Hy
1:189 = —H9T — Mg, 1:1810 = —HITO — I'_Ig,
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Mg, = —AL — Mg, T, = —Lg — Y,
Mg, = —Ns — HY, Mg, = —H},, o =—04— My — MJ,
H910 == _H9 - Mlzg)’

1:1911 = _MITI - M9’ 1:1912 = _l—'9’ l:[913 = _N9 - MITS’ l:[914 = _M1T4’
1:11010 = _QS - 1:110 - gfg):

Mo, = —H|} — My, T, =—Lio— Hfy, Tho,, =—Nio— Hf,
1:11014 = _H17;19 l:11111 = _Q() - Mll - M1T]a 1:11112 = _Lll - Msza

N, vl
i, = =N — Mj3,
My, =ML, T,=—Lyp—LL,, TMp,=-L—-N
1114 = 14> 1210 = 12 12 1213 = 13 125
-7 _ _
H1214 = _L14’ Hl313 = _N13

_ _ _ _ 12 - _
—N1T3, H1314=—N1T4, H14]4=—722, H1515=—V21,
I =[CX C;X000000000000D,x]"
=[0000EX0000000000]"

Proof Assume that a proportional feedback controller is employed, i.e., u(t) = Kx(t).

Replacing A and C with A + BK and C 4+ DK in (33), respectively, and then

pre- and post-multiplying them with diag (L --- L I [ ) and its trans-
14

pose, setting P = L~! Q,/ = LQ,/L (@, j =1,2,. 5) Q, LQ,LT(z =

1,2,...,6), XU—LXUL X1 =LXpLT X22—LX22L Z1=LZ|L",§ =

LSLT Zz = LZ,L" M; = LM;LT H;, = LH,LT L, = LL;L", 1\7- =
LN, LT(G =1,2 14 and Y = KLT, the proof can be completed. O
5 Numerical Examples

In this section, some numerical examples are provided to demonstrate that the proposed
methods in this paper are effective and are improvements over some existing methods.

Example 1 Consider the following system with time-varying delays:

x(t) = Ax(t) + Agx(t — T(1)) + Byw(1),
z2(t) = Cx(t) + Cyx(t — t(1)).

where

A —0.6238 —1.0132 A= —0.5011 —0.7871 C— 0.2134 —0.0191
| 2.0116 —0.2106|’ | —0.3002 0.5231 ~10.1119 —0.1665

B — —0.4326 0.1253 C,— 0.0816 0.1290 D — 00
¥ =] —1.6656 0.2877 " ¢ T [0.0712 0.0669 | vloofr
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Table 1 Maximum upper bound of % for different values of y (Example 1)

y 2.0 2.5 3.0 35 4.0 45

[42] 0.4203 0.4779 0.5146 0.5401 0.5589 0.5733
[31] 0.4734 0.5237 0.5545 0.5754 0.5904 0.6018
[28] 0.9094 0.9302 0.9446 0.9553 0.9635 0.9700
Theorem 3.1 0.9425 0.9814 1.0354 1.0569 1.0742 1.0833

Table 2 Maximum upper bound of % for different values of y with y = 4 (Example 1)

I 0.1 0.2 0.3 0.4 0.5 0.7 0.9
[42] 0.5258 0.4863 0.4377 0.3755 0.2917 0.2686

[31] 0.5562 0.5153 0.4651 0.4009 0.3826 0.3826

[28] 0.9311 0.9149 0.9078 0.9040 0.9017 0.8992 0.8985
Theorem 3.1 1.0525 1.0126 0.9846 0.9354 0.9165 0.9021 0.9013

To compare our results with those in [28,31,42], we use Theorem 3.1 with © = 0, and
Table 1 gives the comparison results on the upper bound of the time-delay for given
y among [28,31,42] and Theorem 3.1. Through the comparison in Table 1, it is clear
that the method proposed in this paper gives less conservative results than those in
[28,31,42].

For 1 > 0, Table 2 shows the comparison results between [28,31,42] and Theorem
3.1 in this paper for given y = 4. It is seen from Table 2 that the stability criterion
proposed in this paper is much less conservative than that in [28,31,42].

Example 2 Consider the following uncertain system with parametric coefficients as
follows:

x(t) =[A4+AA@D)]x(@) + [Ag + AAZ(D)]x(t — T(2)) + Byw(t),
z2(t) = Cx(t) + Cyx(t — 1(t)) + Dyyw(t),

with
A [—3:0242 27527 28409 —12355]  , _[—0.9043 0.4325
T | 0.8104 —4.3988 | —9.8952 —0.1443 YT —0.7774 0.1846 | °
o - [—0:9647 —1.6555 1.2723 0.2718 p. | 01352 —1.0236
~ [ 0.8245 —0.8378 " 0.4810 —0.2368 ¥ [—0.0125 0.3368
1.5
E:_O.S], G1=[0.203], =[0.102].

We assume p = 0; then by solving LMI (33) in Theorem 3.2, Tables 3 and 4 tabulate
the maximum allowable upper delay bound / for a prescribed y and the minimum
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g:::;?iif ;\z/[?(?rl I;?Felrzﬁf f/zrilues 4 30 40 6.0
of y (Example 2) [42] 0.1677 0.2406 03024
[18] 0.2243 0.2711 0.3141
[28] 0.4743 0.5086 0.5384
Theorem 3.2 0.5132 0.5574 0.5871
Table 4 Minimum allowabl
foarbgfven h. (Ex;lmp?e g) ey h o1 0.2 03
[42] 2.5209 3.3495 5.8767
[18] 2.4699 2.7626 5.1596
[28] 1.1009 1.1646 1.3861
Theorem 3.2 0.7983 1.0548 1.2574
boundoth forghven s * 03 09
(Example 3) [43] 0.9428 0.8189
[35] Theorem 2 0.9428 0.8189
[35] Theorem 1 0.9561 0.8919
[28] 0.9682 0.9103
Corollary 3.3 0.9954 0.9324

allowable y for a prescribed delay bound 4, respectively. It can be seen that these
comparisons show that Theorem 3.2 for delay systems with uncertainties in this paper

is less conservative than those in [18,28,42].

Example 3 Consider a time-delay system (36) with the parameters as follows:

55 el o]

20
A:[o —1]’ Ad

0.1 0
Gz:[o 0.3]

1.6 0
0 0.05

For different 1, maximum delay bounds obtained by Corollary 3.3 are listed and
compared with the results of the existing works in Table 5. From Table 5, it can be
shown that our results for this example also give larger upper bound of time-delay

than the ones in [28,35,43].

Example 4 Consider a time-delay system (1) with the following parameters:

00 —1 -1
AZ[OJ’ Ad:[o —0.9] BZ[

00
Cd—|:00:|, D =0.1.

0
1

ol

], c=[o1].
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Table 6 Comparison results for Example 4 with y = 0.1287

[12] [42] [37] [31] Theorem 4.1.

h 1.25 1.38 1.4075 1.4142 1.6254
Gain matrix K [0.6407 —89.1149] Not given Not given [—0.4396—-9.4901] [—0.0058 —2.3516]

Table 7 Comparison results for

Example 4 with /i = 0.999 Vimin Feedback gain
[37] 0.6331 [0—4.8400]
(5] 0.1287 [0—1.0285 x 10%]
[12] 0.1015 [3.6828 —827.0898]
[31] 0.00025 [0 —10.0000]
Theorem 4.1. 0.00005 [0 —4.3568]
Table 8 Comparison results for Example 4.
[29] [37] [31] Theorem 4.1 [12] [42] [31] Theorem 4.1.
h 0.2 0.2 0.2 0.2 0.8 0.9 1.03 1.21
Ymin 0.66 0.1093 0.0071 0.0025 0.05 0.03 0.03 0.02

We consider this example in the following two cases.

Case 1: AA=AA; =0.

For y = 0.1287, u = 0, by solving LMI (38), Table 6 shows the comparison results
between [12,31,37,42] and Theorem 4.1.

For h = 0.999, u = 0, the comparison results between [5,12,31,37] and Theorem
4.1 are listed in Table 7.

Case2: | AA[|I<0.2,] AAs [|<0.2,

Choose G, G, and E as

10 02 0
Gl:Gz:[Ol}’ E:[o 0.2]’

Also, for different & and y,,;,,, Table 8 shows the comparison results between [12,29,
31,37,42] and Theorem 4.1. From Tables 6, 7, 8 one can seen that our method proposed
in this paper gives less conservative than the methods in [31] and the state feedback
gain obtained in this paper is smaller than the corresponding ones in [5,12,31].

6 Conclusion
This paper has investigated the problem of delay-dependent robust H, control design

for time-varying delay system. Based on the Lyapunov—Krasovskii functional and
free-weighting matrices approach, sufficient conditions have been obtained as a set of
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linear matrix inequalities. Numerical examples have been provided to show the less
conservativeness of the proposed method. By utilizing the proposed idea of this paper,
future works will focus on stabilization for various dynamic systems with time-delays
such as Markovian jumping complex networks [19,20], robust nonfragile control [15,
22], exponential dissipativity system [23,24], Hy, filtering system [27], polytopic
systems [10] and networked control systems [26].
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