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Abstract The sine signals are widely used in signal processing, communication tech-
nology, system performance analysis and system identification. Many periodic signals
can be transformed into the sum of different harmonic sine signals by using the Fourier
expansion. This paper studies the parameter estimation problem for the sine combina-
tion signals and periodic signals. In order to perform the online parameter estimation,
the stochastic gradient algorithm is derived according to the gradient optimization
principle. On this basis, the multi-innovation stochastic gradient parameter estimation
method is presented by expanding the scalar innovation into the innovation vector
for the aim of improving the estimation accuracy. Moreover, in order to enhance the
stabilization of the parameter estimation method, the recursive least squares algorithm
is derived by means of the trigonometric function expansion. Finally, some simula-
tion examples are provided to show and compare the performance of the proposed
approaches.
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1 Introduction

The sine signal is a single frequency wave and is used widely in the communica-
tion technology, signal processing and filtering [25] and system identification [2,37].
Many period signals under certain conditions can be decomposed into the sine com-
binations with different frequencies, amplitudes and phases. The signal modeling
is estimating the characteristic parameters of the signals from the measured data.
The sine-wave parameter estimation problems have been received much attentions.
For example, Belega et al. [3] studied the accuracy of the sine-wave parameter
estimation by means of the windowed three-parameter sine-fitting algorithm; Chen
et al. [5] studied the multi-harmonic fitting algorithm based on four parameters sine
fitting to improve the global convergence; Li et al. [19] derived a gradient-based
iterative identification algorithm for estimating parameters of the signal model with
known and unknown frequencies. Some of these methods are based on the statistic
analysis. This paper considers the optimization algorithm for estimating the signal
parameters.

The mathematical model is the basics of controller design [36,39]. Many identifica-
tion algorithms can estimate system parameters and system models [15,26]. In general,
the identification algorithm is derived by defining and minimizing a cost function
[27-32,35]. The parameters to be estimated are defined as the parameter vector. Then,
the parameter estimates can be obtained by means of optimization algorithms. The
identification algorithms have been used widely in industrial robot, signal processing
and network communication [8,41]; Guo et al. [14] investigated the recursive identi-
fication method for finite impulse response systems with binary-valued outputs and
communication channels; Janot et al. [16] addressed a revised Durbin—Wu—Hausman
test for the industrial robot identification; Zhao et al. [43] studied the multi-frequency
identification algorithm to identify the amplitude and phase of a multi-frequency sig-
nal. This paper studies the application of the identification algorithm to the signal
modeling.

In system identification, some identification algorithms focus on reducing the com-
putation load and enhancing the accuracy [40]. Since the gradient optimization method
only needs computing the first-order derivation, the gradient identification algorithm
has low computation load [10]. However, the gradient algorithm has low computation
accuracy. Many improved gradient algorithms have been proposed for enhancing the
computation accuracy. Andrei [1] illustrated an adaptive conjugate gradient algorithm
for large-scale unconstrained optimization by minimizing the quadratic approximation
of the objective function at the current point; Deng et al. [ 7] developed a three-term con-
jugate gradient algorithm for solving large-scale unconstrained optimization problems
by rectifying the steepest descent direction with the difference between the current
iterative points and the gradients; Necoara et al. [24] devised a fully distributed dual
gradient method based on a weighted step size and analyzed the convergence rate.
Although these improved algorithms can polish up the convergence rate and the esti-
mation accuracy, the computation load is heavy.

The innovation is the useful information that can improve the parameter estima-
tion accuracy. It can promote the convergence of the algorithms during the recursive
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process. In order to enhance the estimation accuracy by using more innovation,
the multi-innovation theory is used widely in the system identification. Mao et
al. [23] studied a data filtering-based multi-innovation stochastic gradient algorithm
for Hammerstein nonlinear systems; Zhang et al. [42] considered a multi-innovation
auto-constructed least squares identification method for 4 freedom ship maneuvering
identification modeling; in this paper, the multi-innovation method is expanded into
the signal modeling for the sine-wave or periodic signals.

In general, the identification methods are divided into the online identification and
the off-line identification. The iterative identification methods are used to the off-line
identification [12,38]. In view of the online identification, Li et al. [22] studied a
parallel adaptive self-tuning recursive least squares algorithm for the time-varying
system; Ding et al. [11] developed a recursive least squares parameter identification
algorithms for nonlinear systems; Ding et al. [ 13] studied arecursive least squares para-
meter estimation method for a class of output nonlinear systems based on the model
decomposition; Ding et al. [9] presented a least squares algorithm for a dual-rate state
space system with time delay. Considering the advantages of the least squares algo-
rithm, a recursive least squares parameter estimation algorithm is derived to estimate
the parameters of a periodic signal.

The major contributions of the work in this paper are listed in the following.

— This paper studies the problem of the parameter estimation. The proposed methods
can be used not only for the sine combination signals but also for other periodic
signals. These parameter estimation methods can be used in signal processing and
signal modeling.

— On the basis of the gradient searching, a stochastic gradient (SG) parameter esti-
mation algorithm is presented. In order to improve the estimation accuracy and the
convergence rate, a multi-innovation stochastic gradient (MISG) parameter estima-
tion algorithm is presented by means of expanding the scalar innovation into the
innovation vector.

— For the purpose of enhancing the algorithm stabilization and the parameter esti-
mation accuracy, a recursive least squares (RLS) algorithm is derived using the
trigonometric function expansion. This technique transforms the nonlinear opti-
mization into the linear optimization. Therefore, the algorithm stabilization is
improved significantly.

The rest of this paper is organized in the following. Section 2 derives the SG
method. Section 3 deduces the MISG algorithm. Section 4 gives the RLS parameter
estimation algorithm. Section 5 provides some examples to illustrate and compare the
effectiveness of the proposed parameter estimation methods. Section 6 draws some
concluding remarks.
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2 Stochastic Gradient Method

Let us introduce some notation.

Symbol Meaning

X7 The transpose of the vector or matrix X

0 (k) The estimate of @ at recursion k

A=X Le., X := A, X is defined by A

tr[X] The trace of the square matrix X

X1l IX)1% = XX

e(k) The innovation scalar at recursion k

E(p, k) The innovation vector, i.e., the multi-innovation at recursion k
@(k) The information vector at recursion k

D(p, k) The information matrix at recursion k

Consider the combination sine signals with different frequencies, phases and ampli-
tudes:

y(t) = ar sin(wit + ¢1) + az sin(wzt + ¢2) + - - - + ap sin(w,t + @), (1)

where ai, a», ..., a, are the amplitudes, w1, wy, ..., w, are the frequencies and
b1, ¢2, ..., ¢n are the phases. These parameters are the characteristic parameters of
the combination sine signals. The goal is to estimate these parameters by means of
presenting new identification methods.

Suppose that the frequencies of the combination sine signals are known, then the
phases and amplitudes are to be identified. Define the parameter vector

0 = [a17a27 "'7a}’l’ ¢17¢25 "'7¢n]T E Rzn

In the identification test, assume that the sampling period is & and the sampling time
is t; := kh. The measured data are represented as {tx, y(tx)}. Let y(k) := y(#) for
simplification. Define the difference between the observation output and the model
output:

e(k) == y(k) — Zai sin(wikh + ¢;).

i=1
Then, define the cost function

J(0) = %82(]().

Taking the first-order derivative of J (@) with respect to 6 gives

grad[J(0)] := ag—‘(f)
_ 0J(@@) a9J(0) 0J(@) 0J(0) 0J(H) aJ@ 7" R
o  9a T day  0dr  agn T 0w | -
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0O) _ _ Gn(wikh + ¢i)e(h),
Bai
a;(;g) = —q COS(Q)ikh+¢i)8(k)7 i = ],2,...,”»

Define the information vector

(k) := [sin(wikh + ¢1), ..., sin(w,kh + @), aj cos(wikh + ¢y),
<y an cos(wpkh + ¢p)]" € R,

Letk = 1,2, ... be arecursive variable and let é(k) be the estimate of @ at recursion
k. Utilizing the gradient search and minimizing the cost function J (@), we have the
SG parameter estimation algorithm:

A A o (k
0k +1) =0(k) + %e(k), )
e(k) = y(k) — D" a; (k) sin(wikh + ¢i (k)), 3)

i=1
@ (k) = [sin(khowr + ¢1(k)), ..., sin(kho, + ¢, (k)),
a1 (k) cos(wikh + ¢ (k)), ..., an (k) cos(@akh + ¢ (kNI",  (4)
rtk+1) = rk) + 190>, r©0) =1. )

The steps of computing the parameter estimate Ok + 1) using the SG method are as
follows.

1.

ke

To initiate: let k = 0, preset the recursive length L and let 9(0) be an arbitrary
small real vector.

Collect the measured data y (k).

Compute @ (k) using (4) and compute r (k 4 1) using (5).

Compute e (k) using (3).

Update 9(k + 1) using (2), if kK = L, then terminate the recursive procedure;
otherwise, k := k + 1, go to Step 2.

3 The Multi-innovation Stochastic Gradient Algorithm

For the SG algorithm, the SG algorithm has low computation accuracy. In order to
enhance the computation precision, more measurement data are utilized to the algo-
rithm at each recursion. The dynamical window data scheme is adopted to derive the
MISG algorithm. The dynamical window data are a batch data, and the data length
is p. In the SG algorithm, e(k) is called the scalar innovation. This innovation can
promote the algorithm estimation accuracy.
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Consider that the dynamical window data with length p are y(k), y(k —
1), ..., y(k — p + 1). Expand the scalar innovation e(k) into the innovation vector

y(k) = X7y @i (k) sin(@ikh + ¢ (k)
E(p.k) = .y(k — 1) =27 ai(k)sin((kh — h)w; + ¢i(k)) .
yk=p+1) - Z?:l a; (k) sin((kh — ph + h)w; + q;l. k)

where a; (k) denotes the estimate of a; and <;3,~ (k) denotes the estimate of ¢; at time
t = kh. Expand the information vector into the information matrix

D(p.k):=[pk), ok —1),....,0k—p+1)] e R¥*P,

According to the gradient searching, the MISG parameter estimation algorithm is
listed in the following:

. s P(pK)
0k +1) =6(k) T 1)E(p,k), (6)
E(p, k) =[e(k),e(k —1),...,e(k — p+ DI, (7N
e(k—i) = y(k —i)— D a;(k)sin((k — Yho; + ¢j(k), i=0,1,....p—1,
j=1
(8)
D(p. k) =[0k), ok —1),...,0( —p+ 1], 9
ok — i) = [—sin((k — DHhwy + $1(k)), ..., —sin((k — ) hwn + ¢p(k)),
—a1 (k) cos((k — hwi + ¢1(k)), . .., —an(k) cos((k — i Yhw,
4 GN', i=0,1,...,p—1, (10)
rk+ 1) =r()+®(p. O r0) =1 (11)

The steps of computing the parameter estimate 0k + 1) using the MISG method
are as follows.
1. To initiate: preset the recursive length L and the innovation length p; let é(O) be
an arbitrary small real vector.
Collect measured data y(k); compute ¢ (k — i) using (10); form @ (p, k) using (9).
Compute e(k — i) using (8) and form E(p, k) using (7).
Compute r(k + 1) using (11).
Update the parameter estimate é(k + 1) using (6), if K = L, then terminate the
recursive procedure; otherwise k := k + 1, go to Step 2.

s »n

4 The Recursive Least Squares Algorithm

The least squares optimization method is widely used in system identification. This
paper expands this method to the signal modeling. It is obvious that the sine combi-
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nation signal is a nonlinear function with respect to the parameters to be estimated. In
order to derive the recursive least squares algorithm to estimate the parameters of the
combination sine signal, rewriting the sine combination signal in (1) gives

y(t) = aj cos ¢ sinwit + aj sin g1 cos w1t + ap cos ¢, sin wot

~+ay sin ¢y cos wat + - - - + a, cos P, sin w,t + a, sin ¢, cos wyt. (12)

Let ¢; := aj cos ¢;, d; := a; sin ¢;, thus y(¢) can be expressed as

n
y(t) = Zci sin w;t + d; cos w;t.
i=1

Define the parameter vector
0 :=l[c1.di,c2,da. ... cn dy]" € R™.

In the identification test, the sampling time is #; := kh and the measured data length
is L. The observation output data are y(k) := y(kh),k=1,2,....
Define the information vector

(k) := [sinwikh, cos wikh, sin wykh, cos wrkh, ..., sin w,kh, cos w,kh]" € R2",

Define the criterion function
1 k
o 20
J(@) = 3 Ele (J)s
j:

where e(j) := y(j) — @' ())0.
Define the stack output vector Y and the stack information vector @, respectively,

y(D) @'(1)
2 T2

k= y( ) S Rk, P, = ¢ @ € Rk*2n,
y(k) 0" (k)

Then, the criterion function can be rewritten as
JO) = S1Ye ~ @01,

Minimizing the criterion function J (@) gives the least squares parameter estimate
0(k) = (¢£¢k)_1tszk. (13)
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Obviously, the least squares estimate 9(k) involves computing the inverse matrix
(9,2 1)~ L. In order to avoid computing the inverse matrix, this paper develops a RLS
algorithm to estimate the parameters of the combination sine signal for the online
estimation. Define a matrix

k
P7l(k) = @[ @ =D 0(j)e" (). (14)
j=1
Rewriting (14), we have
k—1
P (k) =D 0(Ne" () + 0()e" (k). (15)

j=1

Ulteriorly, Eq. (15) can be represented as

k
PR =P k=) + 009 ) =P~ (0) + D 0()e' (),
j=1

where P~1(0) = pol > 0, po = 10°.
Y k
Because Y, = e RY, @, =
BT [y(k) } ¢ [

D

wT(k)} e R Eq. (13) can be

represented as

0(k) = P(k)®}Y}

. D1 ] [Yio

=P [qf(k)} [y(k) ]

=PK)[Pi—1Yi—1 +ok)yk)]

= P(K)[P~ (k — DP(k — 1)®;_1Ys_1 + @(k)y(k)]
=P)[P (k= DOk — 1) + (k) y(k)]
[P

= P() k) — ()" ()10 (k — D +Pe )y k)
=0k — 1)+ P(k)pk)[yk) — ¢" (k)0 (k — D]

In order to avoid computing the inverse matrix P~ (k), we use the matrix inverse forum
A+BC) ' =A"'BU+CA™'By 'CA L to P~ (k) = P L (k — 1) + @(k) @™ (k),
and have X
Pk — Do(k)o™ (k)P(k — 1
P = Pk — 1) — ( Yo (k)g™ (k)P( ) (16)
1+ @()Pk — De(k)

Introducing the gain vector L(k) := P(k)¢ (k) and multiplying by ¢ (k) both side of
(16), we have
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Pk — Do®)g~ (k)P (k — 1)} ")
1+ @(k)P(k — De(k)
9Pk — De(k) }

1+ o(k)Pk - Do) |

P(k)p (k) = [P(k -D-

= P(k — Do(k) [1

From the above analysis, we obtain the following equation

Pk — 1ok

L) = P(k — Do(k) [1_ @ (k)P( e (k) ]
1+ @(k)P(k — De(k)

However, the parameters in the parameter vector @ are not the characteristic parameters

of the combination sine signal. According to the previous definition ¢; := a; cos ¢,

d; = a; sin ¢;, the estimates of the characteristic parameters a; and ¢; are computed
by

ai (k) = /2 (k) + d? (k). ¢ (k) = arctan z:gg

Let, (k) := [a1(k), ..., an(k), p1(k), ..., ¢n(k)]" € R?" denote the estimates of the
characteristic parameters of the combination sine signal.
Finally, we obtain the RLS algorithm:

0(k) = 0k — 1) + L) [y(k) — o) (k — 1)], (17)
P(k — Do(k)
Lk) = , 18
) = T o Pk = Dol (15)
P(k) = P(k — 1) — LIO[P(k — Do()]", P©0) = pol, (19)
@ (k) = [sin w1 kh, cos wikh, sin wykh, cos wpkh, ..., sinw,kh, cos w,kh]", (20)
i (k) = /é2(k) + d>(k), ¢ (k) = arctan ‘f"(k), =1,2,....n, 1)
! ! ¢i(k)
0, (k) = [a1(k), g1(k), . .., an(k), dn()]". (22)

The steps of computing the characteristic parameter estimate are as follows.

1. To initialize: let k = 0 and preset recursive length L; let 9(0) be an arbitrary small

vector; let pg = 10°.

Collect the measured data y (k).

. Compute ¢ (k) using (20); compute P(k) using (19).

. Compute L(k) using (18).

. Update the parameter estimate é(k) using (17) and obtain the characteristic para-
meter estimate @ (k) using (21)—(22), if k = L, terminate the recursive procedure
and obtain the parameter estimate ] (k); otherwise, go to Step 2.
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5 Ilustrative Examples

Example 1 Consider the combination sine signals with four different frequencies,

y(t) = 1.8sin (0.07¢ 4+ 0.95) + 2.9sin (0.5¢ + 0.8) + 4 sin (2 + 0.76)
+2.5sin (1.6t + 1.1),

where a; = 1.8, ap = 29,a3 = 4, a4 = 2.5, 1 = 095, ¢, = 0.8, ¢3 = 0.76,
¢4 = 1.1 are the true values of the parameters to be estimated and w; = 0.07rad/s,
wr = 0.5rad/s, w3 = 2rad/s, ws = 1.6rad/s are the known angular frequency.

Case 1 The MISG method simulation.

Use the proposed MISG algorithm to estimate the characteristic parameters of the
combination sine signals in this example. In the simulation, the white noise sequence
with zero mean and variance o> = 0.20? is added to the signal. The sampling period
is h = 0.2, and the data length is L = 2000. In order to test the performance of the
MISG algorithm, three different innovation length datawith p =1, p =4and p =6
are adopted. The parameter estimates and their estimation errors § := || ] (k)—0|/16]
are listed in Table 1. The parameter estimation errors § := ||é(k) —0])/116]| versus k are
shown in Fig. 1. In addition, the estimated signal and the actual signal are compared
for testing the estimation accuracy. The comparison results are shown in Fig. 2, where
the dot-line denotes the estimated signal and the solid-line denotes the actual signal.

Case 2 The RLS method simulation.

Next, the proposed RLS algorithm is used to estimate the characteristic parameters.
In the simulation, the white noise sequence with zero mean and variance o2 =0.10%,
o2 = 0.50? are added, respectively, to the combination sine signal. In the simulation,
the sampling period is & = 1s and the data length is L = 2000. The parameter
estimates and their estimation errors § := ||9(k) — 6])/110|| are shown in Table 2. The
parameter estimation errors versus k are shown in Fig. 3.

For the purpose of testing the performance of the proposed RLS method, the esti-
mated combination sine signal obtained by the RLS method and the actual combination
sine signal are shown in Fig. 4.

Example 2 In this example, a period signal is provided to test the proposed parameter
estimation method. Consider a period square wave with the following description,

A,
£ = [_A .

where T = ZT” s, A = 2. The period square wave is shown in Fig. 5.

=<

01

IA I~
DNA

t
=

)

Using the Fourier expansion, this square wave can be expanded into the sum of
odd harmonics. According to the Fourier expansion formula, the coefficients are,
respectively
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Fig. 1 The MISG estimation error § versus k
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Fig. 2 The MISG fitting curves
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Fig. 3 The RLS estimation error § versus k of Example 1
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As aresult, when i is even number, b; = 0; when i is odd number, b; = %. Therefore,

the Fourier expansion is given by

4A 1 1 1
f@t)=— (sina)ot—l— gsin3w0t+ gsin5wot+-~~+ —sinnwot—i—-'-).
g n
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Fig. 5 The square signal wave

where wy is the fundamental harmonic frequency and wy = 27/ 7. The fundamental
harmonic frequency equals the frequency of the square wave.
Taking the 1, 3, 5, 7 harmonics, we have

4A ( . 1. 1. |
f(@) = — (| sinwot + = sin 3wt + — sin Swpt + = sin Twpt | .
14 3 5 7

4A .__ 4A

Leta) := "7, a2:= 37, a3 == ‘5‘—? and a4 1= %, f(t) becomes

f(t) = ay sinwot + ay sin 3wt + a3 sin Swot + a4 sin Twot .

In the above equation, the amplitudes are unknown, while the phases are zero.
Using the proposed RLS parameter estimation method to estimate parameters aj, az,
a3 and ag4, the parameter estimates and their estimation errors § := ||é(k) —0]/10]
are displayed in Table 3. The parameter estimation errors versus k are shown in Fig. 6.

Choosing the estimated parameters with k = 2000 and o> = 0.20%, we obtain the
following function

f(t) = 2.54441 sin 3t + 0.84968 sin 9t 4- 0.51463 sin 15¢ + 0.36396 sin 21¢.

The estimated square wave and the original square wave are shown in Fig. 7.
From the simulation results, we can draw the following conclusions.

1. Table 1 and Fig. 1 show that the parameter estimates obtained by the MISG method
become more accurate with the increasing in the innovation length p.

2. When p = 1, the MISG method degenerates into the SG method. From the last
column in Table 1, it can be seen that the MISG method has higher accuracy than
the SG method.

3. The parameter estimation errors given by the RLS algorithm become smaller with
the increasing in k—see Figs. 3 and 6. The parameter estimation accuracy is related
to the noise variance. The larger the noise variance is, the lower the parameter
estimation accuracy is.

4. The fitting curve given by the RLS method is more closed to the actual signal curve
than the fitting curve given by the MISG method—see Figs. 3 and 4. This means
that the RLS algorithm has more effectiveness than the MISG method.
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Table 3 The RLS parameter estimates and the estimation errors for the square wave

2

o k ai a) a3 as § (%)
0.202 100 2.53543 0.87808 0.52064 0.38648 1.46108
200 2.52737 0.86779 0.51471 0.38923 1.35828
500 2.52902 0.85563 0.51159 0.36131 0.69080
1000 2.53433 0.84849 0.51734 0.36078 0.53985
1500 2.54359 0.85424 0.50934 0.36927 0.29887
2000 2.54441 0.84968 0.51463 0.36396 0.20979
1.002 100 2.49124 0.99509 0.56601 0.47729 7.30539
200 2.45096 0.94367 0.53637 0.49101 6.79139
500 2.45918 0.88286 0.52078 0.35144 3.45399
1000 2.48574 0.84713 0.54950 0.34875 2.69923
1500 2.53202 0.87591 0.50954 0.39124 1.49433
2000 2.53616 0.85309 0.53595 0.36468 1.04895
True values 2.54648 0.84883 0.50930 0.36378
1 C T T T T T T T T T -
09 B
0.8 B
0.7 B
0.6 4
“© 05}) .
04 R

0 200 400 600 800 1000 1200 1400 1600 1800 2000
k

Fig. 6 The RLS estimation error § versus k of Example 2

6 Conclusion

This paper considers the parameter estimation problems of the periodic signals based
on the combination sine signals. According to the gradient searching, the SG parameter
estimation algorithm for the combination sine signal is derived. On the basis of the
SG algorithm, the MISG parameter estimation method is proposed for improving the
estimation accuracy. Furthermore, the RLS parameter estimation algorithm is derived
for enhancing the estimation accuracy by the function expansion. The simulation
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Fig. 7 The RLS square wave fitting curves of Example 2

results show that the MISG algorithm and the RLS method can estimate the signal
parameters. Because the RLS algorithm is derived by means of the linear optimization
while the MISG method is deduced by means of the nonlinear optimization principle,
the RLS algorithm has higher accuracy and stabilization than the MISG method.
The method used in this paper can be extended to analyze the convergence of the
identification algorithms for linear or nonlinear control systems [6,20,21] and applied
to hybrid switching-impulsive dynamical networks [18] and uncertain chaotic delayed
nonlinear systems [17] or applied to other fields [4,33,34].
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