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Abstract This letter studies the tracking performance of a stochastic gradient-based
adaptive algorithm, namely the maximum correntropy criterion algorithm, where a
random walk is used to model the non-stationarity. In our analysis, we use the energy
conservation argument to derive expressions for the steady-state excess mean square
error (EMSE). We consider two different cases for measurement of noise distribution
including the Gaussian noise and general non-Gaussian noise. For the Gaussian case,
we derive a fixed-point equation that can be solved numerically to find steady-state
EMSE value. For the general non-Gaussian case, we derive an approximate closed-
form expression for EMSE. For both cases, unlike the stationary environment, the
EMSE curves are not increasing functions of step size parameter. We use this observa-
tion to find the optimum step size learning parameter for general non-Gaussian case.
The validity of the theoretical results are justified via simulation results.
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1 Introduction

Over the last several years, adaptive filters have been used inwide range of applications
[8]. In general, an adaptive filter uses a sequence of input vectors un ∈ R

1×M and
desired samples dn ∈ R, n = 1, 2, . . . to find the optimal weight vector wo ∈ R

M×1

that minimizes a cost function. In stationary environment, at every time instant n, dn
is related to the input vector un with a regression model as

dn = unwo + vn (1)

where vn, n = 1, 2, . . . are samples of the measurement noise signal, which are
assumed to be zeromean, independent, identically distributed, and independent of
the input signal un . So far, numerous adaptive filters have been developed in the liter-
ature. However, since its invention by Widrow and Hoff [16], the least mean squares
(LMS) algorithm is perhaps the most widely used adaptive filter due to its simplicity,
robustness, and ease of implementation. The LMS algorithm has been developed based
on the minimum mean square error (MMSE) criterion as the cost function, defined by

JMMSE(w) � E[e2n] (2)

where en is instantaneous error signal which is given by

en = dn − unw (3)

Besides, the LMS algorithm uses the steepest descent method with simple stochastic
approximations and provides an iterative solution for (2) as

wn = wn−1 + μuT
nen (4)

where μ > 0 is a suitably chosen step size parameter. Although the MMSE-based
adaptive filters work well for Gaussian data, they exhibit performance degradation for
nonlinear models and non-Gaussian situations, especially when the data are disturbed
by impulsive noise [12]. To address these issues, recently information-theoretic met-
rics, such as entropy and mutual information, have been introduced as cost functions
for adaptive filters. For example, the given algorithms in [5–7] have been developed
based on the minimum error entropy (MEE), wherein the filter weights are updated in
a way to minimize the entropy of the error signal. The main problem of MEE-based
adaptive filters is their high computational complexity. On the other hand, the adap-
tive filters that rely on maximum correntroy criterion are able to exploit higher-order
moments of the data with low complexity as the LMS algorithm [1,2,9,10,13–15,17].

Different aspects of adaptive filters under the maximum correntropy criterion have
been studied in the literature. For example, steady-state performance of MCC algo-
rithm has been studied in [3]. In [4], convergence behavior of a fixed-point algorithm
under maximum correntropy criterion has been studied. This paper investigates the
tracking performance of the MCC algorithm in non-stationary environment where
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random walk model is adopted for the optimal parameter variation. In our analy-
sis, we use the energy conservation argument, while the EMSE is considered as
performance metric. Two different distributions including the Gaussian and general
non-Gaussian measurement noise distributions are considered for measurement noise.
For the Gaussian case, we show that EMSE is given by a fixed-point equation, while
for the general non-Gaussian case, we can derive an approximate closed-form expres-
sion for EMSE. For both cases, unlike the stationary environment, the EMSE curves
are not increasing functions of step size parameter. For the general non-Gaussian case,
we find the optimum step size parameter which minimizes the EMSE. The validity of
the analysis is demonstrated by several computer simulations.

The remainder of this paper is organized as follows. In Sect. 2, we briefly introduce
the MCC algorithm. In Sect. 3, tracking analysis of the MCC algorithm is provided.
In Sect. 4, we present simulation results to verify our theoretical analysis, and we
conclude in Sect. 5.

Notation We adopt small boldface letters for vectors and bold capital letters for
matrices.

2 The MCC Algorithm

As we mentioned in the introduction section, the MCC algorithm relies on the corren-
tropy as the cost function. For two random variables X and Y , correntropy is defined
as

V (X,Y ) � E [κσ (X − Y )] (5)

where κσ (·, ·) is a shift-invariant Mercer kernel with the kernel width σ . A popular
kernel in correntropy is the Gaussian kernel which is given by

κσ (x, y) = 1√
2πσ

exp

(
− (x − y)2

2σ 2

)
(6)

To obtain the correntropy from (5), the joint distribution function of (X,Y ) is required
which is usually unknown. In practice, only finite number of samples {xi , yi }, i =
1, 2, . . . , N from X and Y are available. Thus, a sample estimator for correntropy can
be defined as

V̂ (X,Y ) = 1

N

N∑
i=1

κσ (xi − yi ) (7)

For adaptive filtering, correntropy between the desired signal, dn , and filter output,
unwn−1, is used as the cost function. Using the Gaussian kernel and definition of error
en , the cost function becomes

Jcorr( j) = 1√
2πσ

1

N

j∑
i= j−N+1

exp

(
− e2i
2σ 2

)
(8)
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The MCC algorithm can be obtained from (8) by applying gradient ascent approach
and approximating the sum by the current value N = 1 as [3]

wn = wn−1 + μ exp en

(
− e2n
2σ 2

)
uT
n (9)

Note that as σ → ∞ the MCC algorithm in (9) tends to the LMS algorithm.

3 Tracking Analysis of MCC Algorithm

To begin the analysis, we first assume that in a non-stationary environment, the vari-
ation in the optimal weight wo follows a random walk model as

wo
n = wo

n−1 + qn (10)

where qn is an i.i.d. vector with positive-definite autocorrelation matrix Q = E[qqT]
and is independent of {ui , di } for all i < n and also of initial conditions {w0, w̃0}. We
consider again the update equation of MCC algorithm with a general function of the
error signal en as

wn = wn−1 + μuT
n f (en) (11)

For further reference, we define the weight error vector w̃n and a priori error signal
ea,n as follows

w̃n � wo
n − wn, ea,n � unw̃n (12)

Note that the steady-state excess mean square error is defined in terms of ea,n as

ξ = lim
n→∞E

[
e2a,n

]
(13)

By subtracting wo
n from both sides of (11), we get

w̃n = wo
n − wn−1 − μuT

n f (en)
(a)= w̃n−1 + qn − μuT

n f (en) (14)

where (a) follows by replacing wo
n from (10). Equating the weighted norm of (14)

and taking expectation from the resultant equation we have

E

[
‖w̃n‖2

]
= E

[
‖w̃n−1‖2

]
− 2μE

[
unw̃n−1 f (en)

] + μ2
E

[
‖un‖2 f 2(en)

]

+ E

[
‖qn‖2

]
+ E

[
w̃T
n−1qn

]
︸ ︷︷ ︸

1©
+E

[
qT
nw̃n−1

]
︸ ︷︷ ︸

2©
−2μE

[
qT
nu

T
n f (en)

]
︸ ︷︷ ︸

3©
(15)
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To evaluate the term 1© first note that w̃n−1 can be rewritten as

w̃n−1 = wo
n−1 − wn−1 =

⎛
⎝wo−1 +

n−1∑
j=0

q j

⎞
⎠ − wn−1

So we have

E
[
w̃T
n−1qn

] = E

⎡
⎣

⎛
⎝wo−1 +

n−1∑
j=0

q j

⎞
⎠

T

qn

⎤
⎦

︸ ︷︷ ︸
=0

−E
[
w∗
n−1qn

]
︸ ︷︷ ︸

=0

= 0 (16)

where for the first terms in (16), we used the assumption that qn is independent
of all qk for k < n and of initial value wo

0. Moreover, as wn−1 depends on data
{u0,u1, . . . ,un−1, d0, d1, . . . , dn−1} and all are independent of qn we can conclude
that the second term equals zero. Similarly we have 2© = 3© = 0. Finally, using
E

[‖qn‖2] = E
[
Tr

[
qnqT

n

]] = Tr [Q] we obtain the following energy conservation
relation

E

[
‖w̃n‖2

]
= E

[
‖w̃n−1‖2

]
−2μE

[
ea,n f (en)

]+μ2
E

[
‖un‖2 f 2(en)

]
+Tr [Q] (17)

To derive ξ we consider the following assumptions.

Assumption 1 The a priori error ea,n is zero mean and independent of the measure-
ment noise vn .

Assumption 2 The filter is long enough such that ea,n is Gaussian, ‖un‖2 and is
asymptotically uncorrelated with f 2(en).

Note that Assumption 2 enables us to rewrite the third term in the right-hand side of
(17) as

lim
n→∞E

[
‖un‖2 f 2(en)

]
= Tr [Ru] lim

n→∞E

[
f 2(en)

]
(18)

As in this paper our aim is to evaluate the steady-state tracking performance of MCC
algorithm, at the steady-state we have

lim
n→∞E

[
‖w̃n‖2

]
= lim

n→∞E

[
‖w̃n−1‖2

]
(19)

So we can simplify (18) at the steady-state as

2 lim
n→∞E

[
ea,n f (en)

] = μTr [Ru] lim
n→∞E

[
f 2(en)

]
+ μ−1Tr [Q] (20)

In the following analysis, we consider two different cases for measurement noise
distribution.
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3.1 Gaussian Noise

In this case,we assume thatmeasurement noise vn has zero-meanGaussian distribution
with variance σ 2

v . Then, we can evaluate limn→∞ E
[
ea,n f (en)

]
using the following

result from the Price theorem [11]

Lemma 1 Let x1 and x2 be scalar real-valued zero-mean jointly Gaussian random
variables and assume functions h and g so that h(x1, x2) = x1g(x2). Then, using the
Price theorem, the following equality holds

E [h(x1, x2)] = E[x1x2]E
[
dg

dx2

]
(21)

Now, we can evaluate limn→∞ E
[
ea,n f (en)

]
with x1 = ea,n and x2 = en = ea,n +vn

as

lim
n→∞E

[
ea,n f (en)

] = lim
n→∞E

[
ea,n f (ea,n + vn)

]

= lim
n→∞E

[
e2a,n

]
E

[
f ′(en)

]

= 1√
2πσe

∫ ∞

−∞

(
1 − e2n

σ 2

)
exp

(
− e2n
2σ 2

)
exp

(
− e2i
2σ 2

e

)
den

= 1√
2πσe

∫ ∞

−∞

(
1 − e2n

σ 2

)
exp

(
− e2n
2σ 2

total

)
den

= σ 3

(ξ + σ 2
v + σ 2)

3/2 (22)

with σ 2
total = σ 2

e σ 2

2σ 2
e +σ 2 . Similarly, we can evaluate E[ f 2(en)] as

E

[
f 2(en)

]
= 1√

2πσe

∫ ∞

−∞
e2n exp

(
− e2n
2σ 2

total

)
den = σ 3(ξ + σ 2

v )

(2ξ + 2σ 2
v + σ 2)

3/2 (23)

Replacing (22) and (23) in (20) gives

2ξ

(ξ + σ 2
v + σ 2)

3/2 = μTr [Ru] (ξ + σ 2
v )

(2ξ + 2σ 2
v + σ 2)

3/2 + 1

σ 3μ−1Tr [Q] (24)

It must be noted that although the steady-state EMSE satisfies the above equation, a
closed-form expression for EMSE cannot be extracted from (24) as it is not an explicit
function of step size. However, we can find ξ numerically by solving the following
fixed-point equation

ξ = μTr [Ru]

2

(ξ + σ 2
v )(ξ + σ 2

v + σ 2)
3/2

(2ξ + 2σ 2
v + σ 2)

3/2 + μ−1Tr [Q] (ξ + σ 2
v + σ 2)

3/2

2σ 3 (25)
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Remark 1 As the kernel size σ → ∞, the EMSE value ξ given by (25) tends to the
EMSE expression of the LMS algorithm, i.e.,

lim
σ→∞ ξ = μTr [Ru] σ 2

v + μ−1Tr [Q]

2 − μTr [Ru]
= ξLMS (26)

3.2 Non-Gaussian Noise

To derive the theoretical expression for general non-Gaussian noise data, we consider
again the steady-state relation (20). Similar to the Gaussian noise case, we again need
to evaluate E[ea,n f (en)] and E[ f 2(en)]. For the first moment, we have1

E
[
ea,n f (en)

] ≈ E
[
ea,n( f (vn) + f ′(vn)ea,n)

] ≈ ξE[ f ′(vn)] (27)

Similarly, for the second moment we have

E

[
f 2(en)

]
≈ E

[
( f (vn) + f ′(vn)ea,n + 1

2
f ′′(vn)e2a,n)

2
]

≈ E

[
f 2(vn)

]
+ ξE

[
f (vn) f

′′(vn) + ( f ′(vn))2
]

(28)

The required terms f ′(vn) and f ′′(vn) are given by

f ′(vn) =
(
1 − v2n

σ 2

)
exp

(−v2n

2σ 2

)
, f ′′(vn) =

(
v3n

v4n
− 3vn

σ 2

)
exp

(−v2n

2σ 2

)
(29)

Replacing (27) and (28) in (20) result in the desired EMSE expression for general
noise distribution as follows

ξ =
μTr [Ru]E

[
v2n exp

(−v2n
σ 2

)]
+ μ−1Tr [Q]

2E
[(

1 − v2n
σ 2

)
exp

(−v2n
2σ 2

)]
− μTr [Ru]E

[(
1 + 2v4n

σ 4 − 5v2n
σ 2

)
exp

(−v2n
σ 2

)] (30)

Remark 2 The given expression for EMSE in (30) is not an increasing monotonic
function of μ. This can be easily verified by witting it as

ξ = μA + μ−1B
C − μD (31)

1 We use the Taylor expansion of f (en) as f (en) = f (vn) + f ′(vn)ea,n + 1
2 f ′′(vn)e2a,n + o(e2a,n).
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with

A = Tr [Ru]E

[
v2n exp

(−v2n

σ 2

)]
(32a)

B = Tr [Q] (32b)

C = 2E

[(
1 − v2n

σ 2

)
exp

(−v2n

2σ 2

)]
(32c)

D = Tr [Ru]E

[(
1 + 2v4n

σ 4 − 5v2n
σ 2

)
exp

(−v2n

σ 2

)]
(32d)

By setting the first derivative of the above equation to zero (i.e., dξ
dμ = 0), we obtain

the following equation
ACμ2 + 2BD − BC = 0 (33)

The optimum step size for which the ξ takes its minimum is the positive root of (33).

4 Simulation Results

In this section, we provide the simulation results in order to verify the theoretical
analysis. To this end, we consider a system identification setup which involves deter-
mining the coefficients of an unknown filter with length M = 10. The input vector
un is generated from a Gaussian process with covariance matrix R = I. For the non-
stationary environment, we assume a randomwalk model withQ = 10−4Iwith initial
vector w0 = 0. We use a Gaussian kernel with size σ = 2. The steady-state EMSE
curves are generated by performing the MCC algorithm for 10,000 iterations and then
averaging the last 200 samples.

For the Gaussian case, we assume that measurement noise in (1) is zero-mean
Gaussian noise with variance σ 2

v = 0.1. The steady-state curve for Gaussian case
is shown in Fig. 1. We can observe that the simulation result matches well with the
theoretical expression given by the Eq. (25). We can also see that the EMSE curve
is not monotonic increasing function of step size parameter. It is worth noting that
similar to LMS algorithm, the requirement of step size for convergence rate, time-
varying tracking accuracy and convergence precision (steady-state performance) is
contradictory. When μ is too small, convergence rate is slow and the MCC algorithm
cannot track the optimal weight variations, which, in turn, results in large steady-state
EMSE. Increasing μ improves convergence rate and tracking accuracy and reduces
the steady-state EMSE. Finally, as μ increases further, oscillation occurs during the
convergence and the steady-state performance deteriorates again.

Note further that for this case an optimum step size value cannot be obtained from
(25) as it is not an explicit function of step size.

For the Gaussian case, we consider two different distributions for measurement
noise including (1) uniform distribution, where the uniform noise is distributed over
[−1 + 1], and (2) exponential distribution with mean parameter λ = 2. The other
simulation parameters remain unchanged. Figure 2 shows the EMSE curves for both
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Fig. 1 Comparing theoretical and simulation EMSE for Gaussian noise: uniform distribution (left), expo-
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Fig. 2 Comparing theoretical and simulation EMSE for non-Gaussian noise

of the non-Gaussian noise distributions. As it is seen from Fig. 2, the EMSE obtained
from the simulation nicely fits the theoretical result obtained earlier. Moreover, for
both cases the optimum values given by (33) are very close to the optimum values
given by simulations.

5 Conclusions

In this paper, we studied the tracking analysis of MCC algorithm, when the optimum
weight vector varies according to a random walk model. Our analysis, which relies
on the energy conservation approach revealed that, independent of the measurement
noise model, the EMSE curve is not an increasing function of step size parameter.
Therefore, in non-stationary environments it is vital to select an appropriate step size
to achieve an acceptable performance. The simulation results were in good agreement
with the analysis.
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