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Abstract This paper considers the parameter identification for a special class of
nonlinear systems, i.e., bilinear-in-parameter systems. Based on the hierarchical iden-
tification principle, a hierarchical stochastic gradient (HSG) estimation algorithm is
presented. The basic idea is to decompose a bilinear-in-parameter system into two
subsystems and to derive the HSG identification algorithm for estimating the system
parameters by replacing the unknown variables in the information vectors with their
estimates obtained at the previous time. The convergence analysis of the proposed
algorithm indicates that the parameter estimation errors converge to zero under per-
sistent excitation conditions. The simulation results show that the proposed algorithm
is effective.

Keywords Parameter estimation - Gradient search - Hierarchical identification -
Performance analysis - Bilinear-in-parameter system

1 Introduction

Parameter estimation algorithms are often obtained through minimizing a criterion
function. The gradient search, least squares search and Newton search are the use-
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ful tools for solving nonlinear optimization problems [15,23,44—-46]. Nonlinearities
exist widely in industrial processes [21]. Typical nonlinear systems are the block-
oriented systems, including input nonlinear systems [25,30,38,42], output nonlinear
systems [11,41] or Wiener nonlinear systems [9], input—output (i.e., Hammerstein—
Wiener) nonlinear systems [2,31] and feedback nonlinear systems [14]. When the
static nonlinear part of the block-oriented systems can be expressed as a linear combi-
nation of the known basis functions, the corresponding systems are the Hammerstein
systems, Wiener systems and their combinations [16,40]. A direct method of iden-
tifying the block-oriented nonlinear systems is the over-parametrization method [3].
By re-parameterizing the nonlinear systems, the output appears to be linear on the
unknown parameter space so that any linear identification algorithms can be applied
[4]. However, the resulting identification model contains the cross-products between
the parameters in the nonlinear part and those in linear part, leading to estimate more
parameters than the nonlinear system.

In the area of system identification, linear-in-parameter output error moving aver-
age systems are common, for which Wang and Tang [36] presented a recursive least
squares estimation algorithm and discussed several gradient-based iterative estima-
tion algorithms using the filtering technique [37]; Wang and Zhu [39] presented a
multi-innovation parameter estimation algorithm. The system that includes the prod-
uct terms of parameters is called the bilinear-in-parameter system. Bai and Liu [5]
discussed the least squares solution of the normalized iterative method, the over-
parametrization method and the numerical method for bilinear-in-parameter systems;
Wang et al. [24] revisited the unweighted least squares solution and extended to iden-
tify the case of colored noise; Abrahamsson et al. [1] presented a two-stage method
based on the approximation of a weighting matrix and discussed the applications to
submarine detection. Other methods include the Kalman filtering-based identification
approaches [10,23].

The convergence of identification algorithms is a basic topic for system identi-
fication and attracts much attention. Recently, an auxiliary model-based recursive
least squares algorithm and an auxiliary model-based hierarchical gradient algorithm
have been proposed for dual-rate state space systems [12] and for multivariable Box—
Jenkins systems using the data filtering [32—34]. The modeling and multi-innovation
parameter identification has been proposed for Hammerstein nonlinear state space
systems using the filtering technique [35]; a recursive parameter and state estima-
tion algorithm has been proposed for an input nonlinear state space system using
the hierarchical identification principle [29]; an auxiliary model-based gradient algo-
rithm has been reported for the time-delay systems by transforming the input—output
representation into a regression model and its convergence was studied [13]. The con-
vergence analysis of the hierarchical least squares algorithm has been analyzed for
bilinear-in-parameter systems [26]. On the basis of the work in [26], this paper derives
a hierarchical stochastic gradient (HSG) algorithm for bilinear-in-parameter systems
based on the decomposition idea and analyzes its performances.

The rest of this paper is organized as follows. Section 2 presents an HSG algo-
rithm for bilinear-in-parameter systems. Section 3 analyzes the performance of the
HSG algorithm. Section 4 provides an illustrative example to show that the proposed
algorithm is effective. Finally, a brief summary of the main contents is given in Sect. 5.
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2 System Description and the HSG Algorithm
Consider the following bilinear-in-parameter systems [5,26],
y(t) =a'F()b+v(1), ey

where y(t) is the system output, F () € R™*" is composed of available measurement
data, v(¢) is a white noise sequence with zero mean and finite variance o2anda =
lai,az,...,ay,]" € R" and b = [by, by, ..., b,]" € R" are the unknown parameter
vectors to be estimated.

For the identification model in (1), assume that m and n are known, and y(¢) = 0,
v(t) = 0 for ¢ < 0. Note that for any pair Aa, b/A , the system in (1) has the identical
input—output relationship, so the constant A has to be fixed. Without generality, we
adopt the following assumption.

Assumption 1 A = ||b||, and the first element of b is positive, i.e., by > 0, where the
norm of the vector X is defined by 1X1]2 := [ X X"].

Define the vector ¥ (¢) := F(t)b € R", ¢(t) := F"(t)a € R". Then Eq. (1) can
be written as

y(®) =y (a+ (), @)

or

y(t) =" b+ v(1). 3

Define the following two cost functions:

Ji@@) = |ly(t) — ¥ (Hal?,
J(b) = [y(t) — @"(1)b|*.

Using the negative gradient search and minimizing Ji(a) and J>(b), we obtain the
estimates a(¢) of a in Subsystem (2) and b(¢) of b in Subsystem (3) at time #:

i O
a0 = a( = D+ =0 [0~ $T a6 = D] )
W = =D+ 1O 1O =1, )
bty = bt — 1)+ 2D [y — o™ (0)b( —

by = bt~ 1+ 75 [y 97 0b ~ 1], (©)
120 = 12t = D) + g2, 12(0) = 1. ™

Since the vectors ¥ () and ¢(f) contain the unknown parameter vectors b and a,
the algorithm in (4)—(7) is impossible to implement. This problem can be solved by
replacing b and a with their corresponding estimates b(r — 1) and a(¢ — 1) at time
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t — 1. Letting ¥ (1) := F()b(t — 1) € R™ and (1) := F'(1)a(t — 1) € R", we have
the following HSG algorithm for bilinear-in-parameter systems in (1):

i) = a0+ TP 6w pFobe -] ®
r1(t)
710 = ri = D+ IFObG ~ DI, n(0) = 1, ©
Fr(a( — 1) N A
o bw—@a—nFobc -], a0
P =2 =)+ IFOa@~ DI, £20) = 1. an

b(t) = bt — 1)+

The initial values are taken to be a(0) = 1,,/ po, 13(0) = 1,/ po, where py is a large
number, e.g., po = 10°.

3 The Convergence Analysis

Lemma 1 [8] Assume that the nonnegative sequences T (t), n(t) and ¢ (t) satisfy the
inequality

T@) <T@—=1)+n) =)

o o0
and Y n(t) < oo, then we have Y {(t) < oo and T (t) is bounded.
=1 =1

The proof of Lemma 1 is straightforward and hence omitted.

Theorem 1 For the system in (1) and the HSG algorithm in (8)—(11), assume that v(t)
is a white noise sequence with zero mean and variances o>, and there exist an integer
N and two positive constants ¢ and ¢ such that the following persistent excitation
conditions hold:

N—1 2 N .
Y+ DY+ )
Al > I,, as.,
(AD) ZO e+ cily, as
& G+ NG+ )
A2 > I, as.,
(A2) Z; G+ erl,, as

Then the parameter estimation errors converge to zero, i.e.,
la(t) —al — 0, [b(t) —b| — 0.
Proof Define two parameter error vectors:

at):=a(t)—aecR", (12)
b(t) := b(t) — b e R". (13)
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Substituting (1) and (8) into (12), we have

i) = a — 1)+ YD [y — a7 — HF b — 1)]

ri() L

—at-1+ YO (e rb —at — HF Wb — 1) + v(t)] (14)
ri(t) L

=alt—1)+ m _—~T(t - 1)F(t)l§(t —-1) - aTF(t)E(t -1+ v(t)]
ri(t) L

NN O

=ta =1+ S [R0 — 80 + o), (15)

where

51(6) = @'t — DF ()bt — 1) € R, (16)
£1(1) :=a"F()b(t — 1) € R. (17)

Taking the norm of both sides of (15) and using (16) yield

N 2
la@))* = ‘&(t -+ ;/,1_8 [-51(0) — &) +v(D)]
2a"(t — DY
g - DIP+ 22 DYO s s+ 0]
r1(1)
HV}U)HZ [51(0) — &) +v(n)]

ri(t)
= la — DI* + 2311—(?)) [<51() — &)+ v(0)]

N 2

+ M [-51(0) — &)+ v(0)] (18)

Define y,(t) := a"(t — 1)F(t)5(t —1) eR,&(@):=a"(t —1)F(¢)b € R. Similarly,
we have

b(t) =b(t — 1) + % [<52() — &) +v(0)],
-2 . 2 2%
o] = [ = ]+ 220 [-5200 - 20+ 0]
Jeol” [=52() — £26) + ()] (19)
r3(t)

) Birkhduser



1398 Circuits Syst Signal Process (2017) 36:1393-1405

Let 7(r) := [|a(t)||* + ||b(r)||>. Using (18), (19), (9) and (11) gives

Y1()

T(0) =l = DIP + 208 [-510 &0 + 0]
Lol s ~
o IO+ 0+ 70420060 = 251000 - 26000
22
+ |ba - v|"+ ”“)[ 52(1) = () + v(0)]
[0OF 12+ 200 4 020 4 25 :
H o [BO+80 + 20 + 25080 - 202000 — 28000
2

N 2
_Ta—1- | 2 52
= T(t 1) {I’l(t) rlz(t) :| yl (t)

- yi@) [v(r) — &(1)]

o 20

”'/,(I)H 2 2 - le®]*] -,
20 [sl(r>+v(t)—%(r)v(r)]—[r T :|)’2(l)
L (201 l[eol®

+2[r2(t) rg(t)} 20 [u(0) = £200) 5L

[0+ 0 28000

—1 2
—TG—1)— [M} 20+ 2 D5 i - a0]

ri(t) rit)

H"’(”H 2o L2 P+ -1
TN 620+ 020 — 2610000 - [T} 0
2
#&z(t)[v(t) £2(0) + 120 I E2(1) +v2(1) — 262 (V1))
r2(0) r2()
1 = 1)
T(r—l)—$y%(>+ ‘12() 510 () — £1(1)]
(620 + ()~ 2610000)] - — = 0)
GRS ()
2 1
+ rzrg() L5200 00~ £2001 + “‘”2(())” [0+ 0 — 28000
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2ri(t —1) .

1
=Te-D—y@® - 5O+ yi(®v(r)

1(1) ri(r)

ol
r3(t)
y5(t) +

|20+ 0]

L ¥i (t)v(t)
ra(t) r3(t)

||<o< )|?
Vz()

(620 +v20) = 280v0)], (20)

where

y@t) = Mylmaaw i )yzu)sz(z)
ri(t) r3(t)

When $1 > g or 52 > g or y(t) < 0 (e is a given positive number), we let a(t) :=
a(t —1)and b(t) = b(t — 1), and thus we have T'(t) = T(t — 1). When 51 8 and
52 < eand y(t) = 0, since v(¢) is a white noise with zero mean and variance o2, and

F@),a(t —1), b(t — 1), r1(t), r2(t), &1(¢) and &>(¢) are independent of v(z), taking
expectation of both sides of (20), we have

=2 =2
Y@ o yy(t)
E[T <E[Tt-1D]—-E
[T()] [Tt — 1] |:r1(t) + rz(t)]

20)
+E Hrz(,)H ”"’(Z)H (0% +e). 1)
1
From (9), we have
wﬁ()”z Hon
o 1YY ! & F() — it — 1)
; ri(t) <Zr1(t)r1(t—1) ; r@ri@—1)

= Z|: ! } = ! < 00, a.s.
rt—1)  ri) r (0)  r1(c0)

Similarly, from (11), we have

Hence, summation of the last term of the right-hand side of (21) from # = 1 to co is
finite. Applying Lemma 1 to (21), we conclude that E[T'(¢)] converges to a constant.
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So there exist a constant C > 0 and 7y such that E[T (¢)] < C for t > t3. From (21),

it follows that

oo [ 2 <2
Z (@) +)’2(t) - 00
— | @ n@

Note that r; () > 0 and r(t) > 0, we have

) ) =2
t t t

Z—yl()<oo, Z—yz()<oo, lim —yl()zo, lim —=——

(1) (1) =0 7y (1) =00 1y (1)

Define the identification innovation
e(t) = y(t) —a"(t — DF()b(t — 1) € R,
From (14), we have

¥ (1)

a(t) =a(t —1
a(t) =a(t )+r1(t)

e(t).
Replacing ¢ in (23) with ¢ 4- j and successive substitutions give

a(t+])—a(r)+z'”gj: ; (t+1i).

Using (16), it follows that

1) = @T(r)é(r —1),
i+ ) =97 + pHae+j— 1.

Substituting (24) into (25) gives

¢a+1muw—ma+n—¢mr+)22¢0+)

3 (1)

(t+1),

=0.

(22)

(23)

(24)

(25)

(26)

Squaring and summing for j from j = 1 to j = N — 1, dividing by r;(t + j), and

using (A1), (24) and (26), we have

N—

@l < a Z t:i:ﬁﬁt)” M aw
_ NZ_ @O+ NP+ )
o ri(t+Jj)
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Circuits Syst Signal Process (2017) 36:1393-1405

1401

_ - 2
<N‘1 252(t + j) 2 vi+pl ZWH) i
h j=1 ri(t+j) ri(t+j) ri(t+1i)
oy 2fpa+rn
257t + ) o o
= _1 _
= r@+j) i+ j) lat+j—1) —am]
v ogas sy 4fFe+i
2y1 (D) B ) 5 ~ 5
~X _1 ,
) S| e+ e+ (1 +j = DI+ jawiP)

Since E[T ()] = E[la(®)|* + [1b()|*] <

C, we have E[||la()|*] <

expectation and the limit of both sides of (27), it follows

lim E[H&(t)llz] < lim —E
11— 00 11—

N-1

—1

257 (t+J)

~ 2
3C [+ )|

rl(t+J)

ri(t+j)

27)

C. Taking the

Assume that tlim 9t + )2/ (t+ j) = 0. Using (22) gives tlim E[la@®))?]=0
— 00 — 00

Similarly, we can obtain tlim E[||5(t) 2] = 0. This completes the proof.
—00

m}

In order to improve the convergence rate of the HSG algorithm, we introduce a

forgetting factor A (0 < A <

the forgetting factor HSG (FF-HSG) algorithm, which is as follows:

1) in (8)—(11) and the corresponding algorithm is called

) = a@ — 1)+ LW =D [y(z) &'t = DF ()bt — 1)] . (29)
ri(t)
N 3
@ = - D+ |[Fobe -] no =1, 29)
b(t) =b(t — 1)+ Fwae -1 [y(t) —a'(t — DF)b(r — 1)] . (30
r3(t)
r3(t) = ar3(t — 1) + | F (a(t — 1)|}3, r3(0) = 1. (31)

Obviously, when the forgetting factor A = 1, the FF-HSG algorithm is reduced to the
HSG algorithm; when A = 0, the FF-HSG algorithm is degenerated to the hierarchical
projection algorithm.
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4 Example
Consider the following bilinear-in-parameter system with m = 2 and n = 3,

y(t) =a"F()b+ v(1),
F) = fu@ —1) ult =Dt —D =1
") = fu —2) ut =2) ult —2) udc=2) |°
a = [2.06,1.00]", & =[0.70,+/0.02,0.70]",
0 = [a, b]" = [2.06, 1.00, 0.70, +/0.02, 0.70]",

where ||b|| = 1. In simulation, we generate a persistent excitation sequence with
zero mean and unit variance as the input u(¢) and take v(¢) to be an uncorrelated
noise sequence with zero mean and variance o> = 0.10%. Taking the data length
L = 3000 and using the HSG algorithm to generate the parameter estimates a(¢) and
I;(t) from the input—output data {y(z), F(¢): t = 1,2, 3...}, the parameter estimates
and their estimation errors are given in Tables 1, 2 and 3, and the estimation error
8= ||é —0]/]10|| versus ¢t is shown in Fig. 1.
From Tables 1, 2, 3 and Fig. 1, we can draw the following conclusions.

1. The estimation errors become smaller with time 7 increasing—see Tables 1, 2 and
3.

Table 1 HSG parameter estimates and errors

t aj ap by by b3 S (%)
100 2.47333 0.63015 —0.06240 —0.37051 0.96447 44.22049
200 2.34054 0.65929 —0.06626 —0.31078 0.87249 40.34286
500 2.15692 0.72103 —0.06489 —0.24159 0.77122 36.32918
1000 2.15413 0.76091 —0.05511 —0.21729 0.78665 35.17235
2000 2.14295 0.81131 —0.04479 —0.18204 0.80072 33.76856
3000 2.14314 0.84939 —0.03665 —0.15628 0.81488 32.85750
True values 2.06000 1.00000 0.70000 0.14142 0.70000

Table 2 FF-HSG parameter estimates and errors (A = 0.98)

t aj ap by by b3 § (%)
100 2.33101 0.74668 —0.13624 —0.33429 0.78811 41.41640
200 2.10318 0.90948 —0.09174 —0.19064 0.78149 34.74696
500 2.02914 0.98394 —0.00056 0.04603 0.81754 28.71770
1000 2.08670 1.05831 0.15974 0.13009 0.86222 22.72502
2000 2.06186 1.01743 0.33061 0.13268 0.81696 15.52644
3000 2.03174 0.99991 0.43990 0.14740 0.77379 10.88153
True values 2.06000 1.00000 0.70000 0.14142 0.70000
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Table 3 FF-HSG parameter estimates and errors (A = 0.95)

t aj a) by by b3 8 (%)
100 1.99873 0.96017 —0.21533 —0.25200 0.71296 39.98278
200 2.09083 1.15735 —0.08182 —0.00391 0.82813 32.86776
500 2.03160 1.01576 0.10155 0.17291 0.78998 24.28724
1000 2.10602 1.07287 0.38946 0.15304 0.82141 13.79053
2000 2.07128 1.01429 0.58451 0.13520 0.74008 4.95243
3000 2.06078 1.00344 0.65243 0.13840 0.70962 1.95123
True values 2.06000 1.00000 0.70000 0.14142 0.70000
04
0.35
0.3
025
2]
02}
0.15
0.1}
0.05
O 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Fig. 1 HSG estimation errors § versus ¢ with different forgetting factors

2. The FF-HSG algorithm has faster convergence rates than the HSG algorithm, and
the convergence rates increase for appropriate small forgetting factors—see Fig. 1.

5 Conclusions

This paper investigates the performances of the HSG algorithm for bilinear-in-
parameter systems. The theoretical analysis shows that the estimates converge to the
true values under the persistent excitation conditions, and the simulation results verify
the proposed convergence theorem. The method used in this paper can be extended to
analyze the convergence of the identification algorithms for linear or nonlinear control
systems [7,19,20,43] and applied to hybrid switching-impulsive dynamical networks
[18] and uncertain chaotic delayed nonlinear systems [17] or applied to other fields
[6,27,28].
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