
Circuits Syst Signal Process (2017) 36:1027–1051
DOI 10.1007/s00034-016-0336-1

Highly Parallel Modular Multiplier for Elliptic Curve
Cryptography in Residue Number System

Shahzad Asif1 · Yinan Kong1

Received: 6 July 2015 / Revised: 3 May 2016 / Accepted: 4 May 2016 / Published online: 19 May 2016
© Springer Science+Business Media New York 2016

Abstract This article proposes a novel architecture to perform modular multiplica-
tion in the Residue Number System (RNS) by using sum of residues. The highly
parallel architecture is implemented using VHDL and verified by extensive simula-
tions in ModelSim SE. The pipelined and non-pipelined versions of the design are
implemented on ASIC and FPGA platforms to allow a broad comparison. The pro-
posed architecture requires only one iteration to complete modular multiplication and
achieves 12–90% less delay as compared to the existing RNS and binary modular
multipliers. The complexity of the proposed design is also less than the existing state-
of-the-art RNS-based modular multipliers. The high scalability and flexibility of the
proposed architecture allows it to be used for a wide range of high-speed applications.

Keywords Residue Number System (RNS) · Modular multiplier · Montgomery
multiplier · Cryptosystem · RSA · Elliptic curve cryptography (ECC) · High speed

1 Introduction

1.1 Background

One can argue that public-key cryptosystems become more secure as the advances
in hardware speed up the computation of cryptographic algorithms. Take the RSA
cryptosystem as an example. The effort of cracking RSA through factorisation of
the product of two large primes approximately doubles for every 35 bits at a key
size of 210 bits [12]. However, adding 35 bits to the key only increases the work

B Shahzad Asif
shahzad.asif@mq.edu.au

1 Department of Engineering, Macquarie University, Sydney, NSW 2109, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-016-0336-1&domain=pdf
http://orcid.org/0000-0003-2668-7886

1028 Circuits Syst Signal Process (2017) 36:1027–1051

involved in decryption by 10%. Thus, speeding up the hardware by just 10% makes
the cryptosystem about twice as strong without any other extra resources [26]. Speed,
therefore, is an important goal for public-key cryptosystems. Indeed, it is essential
not just for cryptographic strength but also to clear the large number of transactions
performed by central servers in electronic commerce systems.

This work aims to speed up public-key cryptosystems by accelerating their fun-
damental operation: the multiplication X = A × B followed by a reduction modulo
M , X mod M = 〈X〉M , where A, B and the modulus M are all n-bit positive inte-
gers. This is the most frequent operation in elliptic curve cryptosystems (ECC) [15].
In RSA, it is the only operation required to implement the modular exponentiations
which constitute encryption and decryption [36]. The Residue Number System (RNS)
[41] offers advantages for long wordlength arithmetic of this kind by representing
integers in independent short wordlength channels.

Indeed, implementing public-key cryptosystems usingRNS is an interesting avenue
of research [6,25]. The drawback to this approach is RNS modular reduction which
is a computationally complex operation. Early publications [42] avoided it altogether
by converting from RNS representation back to a positional system, performing mod-
ular reduction there, and converting the result back into RNS. Later, algorithms using
look-up tables [23,39,40,43] were proposed to perform short wordlength modular
reduction. Most of these avoided converting numbers from RNS to positional sys-
tems, but were limited to 32-bit inputs [9,19,46] by tables available. The work in [1]
uses Chinese remainder theorem (CRT) to perform modular reduction within RNS
channels; however, no implementation results are given for their proposed algorithm.
Another alternative is the use of core function to perform RNS-based modular mul-
tiplication [27]. More recently, variations of Montgomery’s reduction algorithm [31]
have been developed which work entirely within a RNS [5,17,34].

Montgomery’s reduction algorithm is only one of the alternatives available in posi-
tional number systems [28]. This raises a question: can any of the other reduction
algorithms from positional number systems be applied to RNS? This paper provides
an answer in the affirmative by presenting an RNS reduction architecture which uses
sum of residues reduction with a fast implementation on FPGA.

Early attempts in positional number systems reduce Z = A × B modulo M by
finding a sum of residues modulo M [16,44]. If Z = ∑

i Zi then we have
∑

i 〈Zi 〉M ≡
Z mod M . Although this does not produce a fully reduced result, it is possible to
determine bounds for intermediate values such that the output from one modular
multiplication can be used as the input to subsequent modular multiplications without
overflow.

We use this sum of residues method for modular multiplication regarding large
integers in the RNS, with the advantage that all of the residues 〈Zi 〉M can be evaluated
in parallel. The proposed novel algorithm performs the modular reduction completely
within the RNS channels without any conversion to/from binary number system ensur-
ing high-speed operation.

The rest of the paper is arranged as follows: Section1.2 highlights our contribution
to the topic of modular multiplication in RNS. Section2 briefly explains the represen-
tation and benefits of residue number system. Section3 describes the Barrett algorithm
used in the proposed design to perform modulus operation within each RNS channel.

Circuits Syst Signal Process (2017) 36:1027–1051 1029

Section4 explains the development of the proposed algorithm to perform modular
multiplication in RNS. Section5 describes the implementation of the proposed algo-
rithm and comparison with RNS-based modular multipliers. The work is concluded
in Sect. 6.

1.2 Contribution

This paper makes the following contributions.

1. Confinement of all the computations of modular multiplication within the RNS
channels without any long wordlength operations or conversion to a positional
number system.

2. Proposal of a novel algorithm that can perform modular multiplication in a sin-
gle iteration. The proposed architecture − based on this algorithm − is the first
hardware implementation of a single iteration modular multiplication.

3. A high scalability of the proposed algorithm and architecture of the modular mul-
tiplier. The dynamic range of the modular multiplication can be easily decreased
or increased by changing the RNS channel width or number of channels in the
proposed algorithm. This allows easy scale-up of the architecture by adding addi-
tional RNS channels to the existing architecture. The paper provides the detailed
analysis and criteria to compute the pre-computed values required to construct
modular multipliers of different wordlengths.

2 The Residue Number System

A Residue Number System [42] is characterised by a set of N co-prime moduli
{m1, ...,mN } with m1 < m2 < · · · < mN . In the RNS a non-negative integer A
is represented in N channels: A = {a1, a2, ..., aN }, where ai is the residue of A with
respect to mi , i.e. ai = 〈A〉mi = A mod mi . The wordlength of mi (in bits) − which
defines the RNS channel width − is denoted by w. Within the RNS there is a unique
representation of all integers in the range 0 ≤ A < D where D = m1m2...mN . D is
therefore known as the dynamic range of the RNS. Two other values, Di and 〈D−1

i 〉mi

are commonly used inRNScomputations and areworth defining here. Di = D/mi and
〈D−1

i 〉mi is its multiplicative inverse with respect to mi such that 〈Di × D−1
i 〉mi = 1.

If A, B and C have RNS representations given by A = {a1, a2, . . . , aN }, B =
{b1, b2, . . . , bN } andC = {c1, c2, . . . , cN }, then denoting * to represent the operations
+, − or ×, the RNS version of C = A * B satisfies

C = {〈a1 * b1〉m1 , 〈a2 * b2〉m2 , . . . , 〈aN * bN 〉mN }. (1)

Thus, addition, subtraction and multiplication can be concurrently performed on the
N residues within N parallel channels, and it is this high-speed parallel operation
that makes the RNS attractive. There is, however, no such parallel form of the mod-
ular reduction regarding large modulus used in public-key cryptosystems. In order to
implement RNS-based public-key cryptosystems, it is of utmost importance to devise
an algorithm which can perform fast modular multiplication in RNS.

1030 Circuits Syst Signal Process (2017) 36:1027–1051

3 The Modular Reduction within RNS Channels

In Eq. (1), all the operations are accomplished by performing basic operations (addi-
tion, subtraction or multiplication) first and a reduction modulo for a channel modulus
mi second. Compared with the modular reduction, these basic operations of addition,
subtraction and multiplication are trivial. This section explains how Barrett modu-
lar reduction algorithm [8] is used in our implementation to perform this modular
reduction within RNS channels.

The relationship between division andmodular reduction ismade explicit in Eq. (2).

z = c mod m = c −
⌊ c

m

⌋
× m. (2)

where c is 2w bits, m is the w-bit modulus and �x� returns the largest integer smaller
than or equal to x . To differ from the large modular multiplication over the whole
RNS discussed in Sect. 4, lower case letters are used here to imply this is an operation
running within a RNS channel mi . Barrett algorithm, proposed for positional number
system in [7] and [8], gives a fast computation of the division y = ⌊ c

m

⌋
as

y =
⌊ c

m

⌋
=

⌊
c

2w+v
2w+u

m

2u−v

⌋

,

where u and v are two parameters. Furthermore, the quotient y can be estimated with
an error of at most 1 from

ŷ =
⎢
⎢
⎢
⎣

⌊ c
2w+v

⌋ ⌊
2w+u

m

⌋

2u−v

⎥
⎥
⎥
⎦ .

The value K =
⌊
2w+u

m

⌋
is a constant and can be pre-computed.

The algorithm used in our implementation is shown in Algorithm1 where u and v

are set to w + 3 and −2, respectively, as suggested by [14] and [13]. The bounds on
the quotient, input and output for these specific values of u and v are calculated to be
w + 3, 2w + 2 and w + 1, respectively [13].

Algorithm 1 Barrett modular reduction algorithm
Require: m � RNS channel modulus
Require: u = w + 3, v = −2

Require: K =
⌊
22w+3

m

⌋

Ensure: z ≡ c mod m
c1 =

⌊
c

2w−2

⌋

c2 = c1 × K

y =
⌊

c2
2w+5

⌋

z = c − y × m

Circuits Syst Signal Process (2017) 36:1027–1051 1031

4 Modular Multiplication in Residue Number System

This section derives our main RNS modular multiplication (MM) algorithm using a
sum of residues. More upper case variables reappear denoting large operands involved
in modular multiplication over the whole RNS.

4.1 Moduli Selection

In our application, RNS is used to accelerate a 256-bit modular multiplication; there-
fore, the dynamic range D of the RNS should be no smaller than 512 bits so that the
product of two 256-bit numbers does not overflow. One important rule to be consid-
ered is the uniform distribution of this 512-bit dynamic range into the N moduli. The
smaller the RNS channel widthw, the faster the computation within RNS and themore
remarkable the advantage of RNS. Therefore, we want w to be as small as possible.
In this paper, the N moduli are selected to be the same wordlength. This means that
the dynamic range of the RNS system is evenly distributed into the N moduli.

A lot ofwork in the literature has been using themoduli in special forms, e.g. pseudo
Mersenne numbers [10], or in the form of 2w±1 [32]. However, this work only focuses
on general moduli rather than special ones to demonstrate that fast implementation
of modular multiplication does not have to rely on the special characteristics of the
moduli, which is shown by our proposed algorithm.

4.2 Sum of Residues Reduction in the RNS

To define an RNS modular reduction algorithm, we start with the Chinese remainder
theorem (CRT) [42]. Using the CRT, an integer X can be expressed as

X =
〈

N∑

i=1

Di 〈D−1
i xi 〉mi

〉

D

, (3)

where D, Di and 〈D−1
i 〉mi are pre-computed constants. Defining γi = 〈D−1

i xi 〉mi in
(3) yields,

X =
〈

N∑

i=1

γi Di

〉

D

=
N∑

i=1

γi Di − αD. (4)

Reducing this modulo the long wordlength modulus M yields

Z =
N∑

i=1

γi 〈Di 〉M − 〈αD〉M

1032 Circuits Syst Signal Process (2017) 36:1027–1051

=
N∑

i=1

Zi − 〈αD〉M
≡ X mod M (5)

where Zi = γi 〈Di 〉M . Thus, we have expressed Z ≡ X mod M as a sum of residues
Zi modulo M and a correction factor 〈αD〉M .

Note that γi = 〈D−1
i xi 〉mi can be found using a single RNS multiplication as

〈D−1
i 〉mi is just a pre-computed constant. For the same reason, only one RNS multi-

plication is needed for Zi = γi 〈Di 〉M as 〈〈Di 〉M 〉mi
can be pre-computed.

In addition, to avoid negative residues resulted in the RNS channels from the sub-
traction in (5), the −〈αD〉M can be replaced by +〈−αD〉M , which in the RNS is also
a set of N pre-computed residues 〈〈−αD〉M 〉mi

. This makes the last operation in (5)
a simple RNS addition and (5) becomes

Z =
N∑

i=1

γi 〈Di 〉M + 〈−αD〉M , (6)

A further expansion to an expression of vectors of the pre-computed residues will
make this equation clearer:

⎛

⎜
⎜
⎜
⎝

z1
z2
...

zN

⎞

⎟
⎟
⎟
⎠

=
N∑

i=1

〈D−1
i xi 〉mi

⎛

⎜
⎜
⎜
⎝

〈〈Di 〉M 〉m1〈〈Di 〉M 〉m2
...

〈〈Di 〉M 〉mN

⎞

⎟
⎟
⎟
⎠

+α

⎛

⎜
⎜
⎜
⎝

〈〈−D〉M 〉m1〈〈−D〉M 〉m2
...

〈〈−D〉M 〉mN

⎞

⎟
⎟
⎟
⎠

(7)

4.3 Approximation of α

Now α becomes the only value yet to be found. Here the method provided by Kawa-
mura [24] is improved by decomposing its approximations, and more accuracy is
achieved by permitting exact γi .

Dividing both sides of (4) by D yields

α + X

D
=

∑N
i=1 γi Di

D
=

N∑

i=1

γi

mi
. (8)

Since 0 ≤ X/D < 1, α ≤ ∑N
i=1

γi
mi

< α + 1 holds. Therefore,

Circuits Syst Signal Process (2017) 36:1027–1051 1033

α =
⌊

N∑

i=1

γi

mi

⌋

. (9)

In subsequent discussions, α̂ is used to approximate α. Firstly, an approximation of
α̂ = α or α − 1 will be given. Secondly, some extra work will exactly assure α̂ = α

under certain prerequisites.

4.3.1 Deduction of α̂ = α or α − 1

The first approximation is introduced here: a denominatormi in (9) is replaced by 2w,
where w is the RNS channel width and 2w−1 < mi ≤ 2w − 1. Then the estimate of
(9) becomes

α̂ =
⌊

N∑

i=1

γi

2w

⌋

. (10)

The error incurred by this denominator’s approximation is denoted as

εi = (2w − mi)

2w
.

Then,

2w = mi

1 − εi
.

According to the definition of RNS in Sect. 2, the RNS moduli are ordered such
that mi < m j for all i < j . Therefore, the largest error

ε = max(εi) = (2w − m1)

2w
.

The accuracy of α̂ can be investigated:

0 ≤ γi ≤ mi − 1

⇒ 0 ≤
N∑

i=1

γi

mi
< N . (11)

Therefore,

N∑

i=1

γi

2w
=

N∑

i=1

γi (1 − εi)

mi
(12)

=
N∑

i=1

γi

mi
− ε

N∑

i=1

γi

mi

⇒
N∑

i=1

γi

2w
>

N∑

i=1

γi

mi
− Nε. (13)

1034 Circuits Syst Signal Process (2017) 36:1027–1051

The last inequality holds due to Eq. (11). If 0 ≤ Nε ≤ 1, then
∑N

i=1
γi
mi

− Nε >
∑N

i=1
γi
mi

− 1. Thus,
∑N

i=1
γi
2w >

∑N
i=1

γi
mi

− 1. In addition, obviously
∑N

i=1
γi
2w <

∑N
i=1

γi
mi
. Therefore,

N∑

i=1

γi

mi
− 1 <

N∑

i=1

γi

2w
<

N∑

i=1

γi

mi
. (14)

Then,

α̂ =
⌊

N∑

i=1

γi

2w

⌋

=
⌊

N∑

i=1

γi

mi

⌋

= α,

or,

α̂ =
⌊

N∑

i=1

γi

mi

⌋

− 1 = α − 1.

when 0 ≤ Nε ≤ 1.
This raises the question: is it easy to satisfy the condition 0 ≤ Nε ≤ 1 in a RNS?

The answer is: the larger the dynamic range of the RNS, the easier. This is contrary
to most published techniques that are only applicable to RNS with a small dynamic
range [9,19,39,43].

Given 0 ≤ Nε ≤ 1 and ε = (2w−m1)
2w ,

N − 1

N
≤ m1

2w
≤ 1,

which means there must be at least N co-prime numbers existing within the interval
I = [N−1

N 2w, 2w] for the use of RNS moduli. Apart from this, it is also easy to satisfy
the harsher condition 0 ≤ Nε ≤ 1

2 . This requires

2N − 1

2N
≤ m1

2w
≤ 1,

which can be derived using the process above. Thus, the new interval for RNS moduli
is given by Eq. (15) and will be used for further developments in the next subsection.

I =
[
2N − 1

2N
2w, 2w

]

(15)

Table1 lists the maximum N against different w from 4 to 24 within the interval
I = [2N−1

2N 2w, 2w]. It is evident that the number of available channels N increases
dramatically along with the linear increase of the channel widthw. This is because the
span of interval I is 2w − N−1

N 2w = 2w

N . 2w increases much faster than N , which gives
a sharp increase of the span of I with more primes existing within it as the dynamic
range D of the RNS increases.

The actual problem now is α̂ could be α or α − 1. From Eq. (4), X̂ could be X or
X + D. Then two values of X mod M will result, and it is difficult to tell the correct
one. Thus, α̂ needs to be the exact α.

Circuits Syst Signal Process (2017) 36:1027–1051 1035

Table 1 Maximum possible N
against w in new RNS modular
multiplication

D represents the number of bits
for dynamic range

w (bits) Max. N D (bits) w (bits) Max. N D (bits)

4 2 8 5 3 15

6 3 18 7 5 35

8 6 48 9 9 81

10 12 120 11 17 187

12 21 252 13 29 377

14 40 560 15 49 735

16 69 1104 17 95 1615

18 128 2304 19 180 3420

4.3.2 Ensuring α̂ = α

To make sure α̂ =
⌊∑N

i=1
γi
2w

⌋
in (10) is equal to α instead of α − 1, a correction

factor � can be added to the floor function. Equation (10) becomes

α̂ =
⌊

N∑

i=1

γi

2w
+ �

⌋

. (16)

Substituting Eq. (8) in Eqs. (13) and (14) yields

α + X

D
− Nε <

N∑

i=1

γi

2w
< α + X

D
.

Adding � on both sides yields

α + X

D
− Nε + � <

N∑

i=1

γi

2w
+ � < α + X

D
+ �. (17)

If � ≥ Nε, then � − Nε ≥ 0 and α + X
D − Nε + � ≥ α. If 0 ≤ X < (1 − �)D,

then X
D + � < 1 and α + X

D + � < α + 1. Hence,

α <

N∑

i=1

γi

2w
+ � < α + 1. (18)

Therefore,

α̂ =
⌊

N∑

i=1

γi

2w
+ �

⌋

= α

holds. The two prerequisites obtained from the deduction above are

1036 Circuits Syst Signal Process (2017) 36:1027–1051

{
Nε ≤ � < 1

0 ≤ X < (1 − �)D.
(19)

It has already been shown in the previous section that the first condition Nε < � < 1
is easily satisfied as long as� is not too small. For example,� could be 1

2 . The second
one is not that feasible at first sight as it requires X be less than half the dynamic
range D in the case of � = 1

2 . However,
1
2D is just one bit shorter than D, which is

a number over two thousand bits. Therefore, this can be easily achieved by extending
D by several bits to cover the upper bound of X . This is deduced in the following
subsection. Hence, we have obtained an α̂ = α.

4.4 Bound Deduction

The RNS dynamic range to do a 256-bit multiplication should at least be 512 bits.
However, RNS algorithms always require some redundant RNS channels. This sub-
section is dedicated to confirming how many channels are actually needed for the new
RNS modular multiplication algorithm. Note that the result Z in Eq. (6)—the basis
of the RNS modular multiplication algorithm—may be greater than the modulus M
and would require subtraction of a multiple of M to be fully reduced. Instead, the
dynamic range D of the RNS can be made large enough that the results of modu-
lar multiplications can be used as operands for subsequent modular multiplications
without overflow.

Given that γi < mi < 2w, 〈Di 〉M < M and 〈αD〉M ≥ 0,

Z =
N∑

i=1

γi 〈Di 〉M − 〈αD〉M < N2wM. (20)

Thus, take operands A < N2wM and B < N2wM such that X = A×B < N 222wM2.
According to Eq. (19), we must ensure that X does not overflow (1 − �)D. If it is

assumed M can be represented in h channels so that M < 2wh , then

X < N 222wh+2w.

X < (1 − �)D is required for
D > 2wN−1,

which will be satisfied if

N 222wh+2w < (1 − �)2wN−1.

This is equivalent to

N > 2h + 2 + 1 + 2 log2
N

1−�

w
.

Circuits Syst Signal Process (2017) 36:1027–1051 1037

For example, for w ≥ 32, N < 128 and � = 1
2 , it will be sufficient to choose

N ≥ 2h+7. Note that this bound is conservative and fewer channels may be sufficient
for a particular RNS. This is because the bound of Z can be directly computed as

Z =
N∑

i=1

γi 〈Di 〉M − 〈αD〉M ≤
N∑

i=1

(mi − 1)〈Di 〉M

using the pre-computed RNS constants, mi and 〈Di 〉M , instead of worst case bounds
N and M as in (20).

4.5 The New RNS Modular Multiplication Algorithm

4.5.1 Another Approximation

The computation of α in Eq. (16) can be optimised by representing γ using its most
significant q bits, where q < w. Hence, the approximated γ can be written as

γ̂i = 2w−q
⌊ γi

2w−q

⌋
. (21)

The error incurred by this numerator’s approximation is denoted as

δi = γi − γ̂i

mi
.

Then
γ̂i = γi − δimi .

The largest possible error will be

δ = 2w−q − 1

m1
.

Note that this approximation, treated as a necessary part of the computation of α in
[24], is actually not imperative. It has been shown the algorithm works fine without
this approximation in previous discussions although it does simplify the computations
in hardware.

Replacing the γi in Eq. (16) by γ̂i yields

α̂ =
⌊

N∑

i=1

γ̂i

2w
+ �

⌋

. (22)

1038 Circuits Syst Signal Process (2017) 36:1027–1051

Then, Eq. (12) becomes

N∑

i=1

γ̂i

2w
=

N∑

i=1

(γi − δimi)(1 − εi)

mi

=
N∑

i=1

γi (1 − εi)

mi
−

N∑

i=1

(1 − εi)δi

≥ (1 − ε)

N∑

i=1

γi

mi
− Nδ

N∑

i=1

γ̂i

2w
>

N∑

i=1

γi

mi
− N (ε + δ). (23)

This is because

0 < 1 − εi = mi

2w
< 1

⇒ 0 <

N∑

i=1

(1 − εi) < N ,

Note that the only difference between Eqs. (13) and (23) is that the ε in the former
is replaced by the ε + δ in the latter. Following a similar development to Sect. 4.3,
Eq. (17) becomes

α + X

D
− N (ε + δ) + � <

N∑

i=1

γ̂i

2w
+ � < α + X

D
+ �. (24)

The two prerequisites in (19) are now

{
N (ε + δ) ≤ � < 1

0 ≤ X < (1 − �)D
(25)

This will again guarantee

α̂ =
⌊

N∑

i=1

γ̂i

2w
+ �

⌋

= α.

Substituting (21) in Eq. (22) yields

α̂ =
⌊

N∑

i=1

⌊ γi
2w−q

⌋

2q
+ �

⌋

. (26)

This is the final equation used in the new algorithm to estimate α.

Circuits Syst Signal Process (2017) 36:1027–1051 1039

4.5.2 RNS Modular Multiplication Algorithm and Design Example

The new sum of residues modular multiplication algorithm in RNS is shown in Algo-
rithm 2. It computes Z ≡ A × B mod M using Eq. (6). Note that from Eqs. (9) and
(11), α < N . Thus, 〈−αD〉M can be pre-computed in RNS for α = 0 . . . N − 1.

Algorithm 2 RNS modular multiplication algorithm
Require: M, N , w, �, q, {m1, . . . ,mN }
Require: (N2wM)2 < (1 − �)D, N (

(2w−m1)
2w + 2w−q−1

m1
) ≤ � < 1.

Require: pre-computed table 〈D−1
i 〉mi for i = 1, . . . , N

Require: pre-computed table

⎛

⎜
⎜
⎜
⎜
⎝

〈〈Di 〉M 〉m1〈〈Di 〉M 〉m2
.
.
.

〈〈Di 〉M 〉mN

⎞

⎟
⎟
⎟
⎟
⎠

for i = 1, . . . , N

Require: pre-computed table 〈〈−αD〉M 〉mi
for α = 1, . . . , N − 1 and i = 1, . . . , N − 1

Require: A < N2wM, B < N2wM
Ensure: Z ≡ A × B mod M
1: {x1, x2, . . . , xN } = {〈a1 × b1〉m1 , 〈a2 × b2〉m2 , . . . , 〈aN × bN 〉mN }
2: γi = 〈xi D−1

i 〉mi for i = 1, . . . , N

3: α =
⌊∑N

i=1

⌊
γi

2w−q

⌋
/2q + �

⌋

4: Yi = {〈γi × 〈Di 〉M 〉m1 , 〈γi × 〈Di 〉M 〉m2 , . . . , 〈γi × 〈Di 〉M 〉mN } for i = 1, . . . , N

5: Sumi = ∑N−1
j=0 Y j,i for i = 0, . . . , N − 1 � where Y j,i means i

th channel of Y j
6: Zi = 〈Sumi + 〈〈−αD〉M 〉i 〉mi for i = 0, . . . , N − 1

The flowchart of the proposed algorithm is shown in Fig. 1. The thick lines represent
RNSvalues,whereas thin lines are used to represent binary values of smallwordlength.

The proposed Algorithm2 can be further explained with the help of an example
with the following inputs and pre-computed values:

– moduli = [16183, 16187, . . . , 16383]
– M = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1 (NIST standard for Koblitz curve)
– N = 40, w = 14,� = 0.75, q = 8 (from Tables1 and 3)
– D−1

i = [1027, 13322, ..., 698]
– 〈Di 〉M = {[3064, 11630, . . . , 14819], [2396, 10967, . . . , 6494], . . . , [10399,
1229, . . . , 678]}

– Ai = [11169, 1811, . . . , 15]
– Bi = [6273, 5504, . . . , 9258]
The complete moduli set used in this example is given in Table4. The formulae for

D−1
i and 〈Di 〉M are given in Sect. 2. The steps below show the computation of the

operation (A × B mod M) where each step corresponds to the steps of Algorithm2.

1. xi = [〈11169 × 6273〉16183, 〈1811 × 5504〉16187, ..., 〈15 × 9258〉16383] =
[6930, 12739, ..., 7806]

2. γi = [〈6930 × 1027〉16183, 〈12739 × 13322〉16187, ..., 〈7806 × 698〉16383] =
[12773, 4450, ..., 9432]

3. α = � (199+69+91+...+147)
28

+ 0.75� = 25

1040 Circuits Syst Signal Process (2017) 36:1027–1051

Fig. 1 RNS modular multiplication flow chart

4. Yi = {[〈12773 × 3064〉16183, 〈12773 × 11630〉16187, ..., 〈12773 × 14819〉16383],
[〈4450 × 2396〉16183, 〈4450 × 10967〉16187, ..., 〈4450 × 6494〉16383], ...,
[〈9432 × 10399〉16183, 〈9432 × 1229〉16187, ..., 〈9432 × 678〉16383]}

Yi = {[5978, 1891, ..., 10288], [13786, 15532, ..., 15071], ..., [14388, 2036, ...,
5526]}

5. Sum = [〈5978+ 13786+ ...+ 14388〉, 〈1891+ 15532+ ...+ 2036〉, ...,
〈10288 + 15071 + ... + 5526〉] Sum = [446438, 403741, ..., 373271]

6. 〈−αD〉M = [13693, 3365, ..., 10031] Z = [〈446438 + 13693〉16183, 〈403741 +
3365〉16187, ..., 〈373271 + 10031〉16383] Z = [7007, 2431, ..., 6493]

The values of A, B and Z are given below in binary number system for better
understanding.

A = 1157920892373161954235709850086879078532699846656405640394575
84007913129639935

B = 7645500618709024670972844945214757001688688318560178355583814
3542334242947072

Z = 2619465219992467549585156705197008821815356492891034885507922
1468029357382718268039

Circuits Syst Signal Process (2017) 36:1027–1051 1041

Fig. 2 Highly parallel architecture of RNS MM

5 Implementation and Synthesis Results

This section describes the implementation and synthesis results of the 256-bit modular
multiplier (MM) in RNS using proposed algorithm.

5.1 Architecture of the RNS-Based MM

The architecture of the modular multiplier of Algorithm2 is shown in Fig. 2. The
pre-computed values required for the architecture are given in Table2.

In Fig. 2, all of the computations are done in short wordlength (at most w bits, the
RNS channel width) within the RNS. The architecture performs the following steps
(the step numbers follow those in Algorithm2).

1042 Circuits Syst Signal Process (2017) 36:1027–1051

Table 2 Pre-computed values for Algorithm1 and Algorithm2

i 0 1 … N-1

Ki K0 K1 … KN−1

〈D−1
i 〉mi 〈D−1

0 〉m0 〈D−1
0 〉m1 … 〈D−1

N−1〉mN−1

〈〈D0〉M 〉m0
〈〈D0〉M 〉m1

… 〈〈D0〉M 〉mN−1

〈〈D1〉M 〉m0
〈〈D1〉M 〉m1

… 〈〈D1〉M 〉mN−1〈〈Dj 〉M
〉
mi

. . . .

. . . .

. . . .
〈〈DN−1〉M

〉
m0

〈〈DN−1〉M
〉
m1

…
〈〈DN−1〉M

〉
mN−1

0 0 … 0

〈〈−D〉M 〉m0
〈〈−D〉M 〉m1

… 〈〈−D〉M 〉mN−1

〈〈−2D〉M 〉m0
〈〈−2D〉M 〉m1

… 〈〈−2D〉M 〉mN−1

〈〈−αD〉M 〉mi
. . . .

. . . .

. . . .

〈〈−(N − 1)D〉M 〉m0
〈〈−(N − 1)D〉M 〉m1

… 〈〈−(N − 1)D〉M 〉mN−1

– In Step 1, the product X = A × B is computed within the RNS. This RNS
multiplication involves three short wordlengthmultiplications and one subtraction.

– In Step 2, one RNS multiplication is performed to find the γ . This corresponds to
three multiplications followed by one subtraction in the architecture of Fig. 2.

– Steps 3 and 4 are performed in parallel. RNS multiplications are used to compute
the Yi s in Step 4, while the γi s are used to generate α in Step 3. Note that the
divisions in Step 3 are accomplished by simple right shifts.

– Step 5 and part of Step 6 are also performed simultaneously. The sum
∑

Yi is
computed in Step 5 using counter-basedWallace tree reduction, while 〈−αD〉M is
retrieved from memory in Step 6. It is to be noted that

∑
Yi are simple additions

without modulus operation; therefore, the channel width for Sum will be w+7
bits. This is not a problem because the result is still within the bounds for Barrett
algorithm and can be reduced in the next step.

– Finally in the other part of Step 6, Z is produced by adding 〈−αD〉M and the Sum.

Hence, this is a highly parallel structure with only 3 RNS multiplication, 1 Wallace
reduction tree and 2 RNS additions in the critical path. It is therefore realised that all
of the computations are done in the RNS channel width. In order to achieve a higher
speed, the counter-based Wallace tree [4] is used which has less delay as compared to
the conventional Wallace tree.

5.2 Design Specifications of 256-bit RNS MM

The architecture of Fig. 2 is used to implement a 256-bit modular multiplier in VHDL.
The 256-bit modular multiplier consists of 40 RNS channels where each channel is of

Circuits Syst Signal Process (2017) 36:1027–1051 1043

Table 3 Design parameters of 256-bit RNS MM

Channels Channel width Dynamic range q � Modulus M

40 15 560-bit 8 0.75 Koblitz curve

Table 4 RNS moduli set for w=14, N=40

16183 16187 16189 16193 16199 16217 16223 16229

16231 16241 16243 16249 16253 16259 16267 16271

16273 16277 16279 16301 16307 16309 16319 16321

16327 16333 16337 16339 16343 16349 16351 16361

16363 16367 16369 16373 16375 16379 16381 16383

15 bits. The size of each moduli is 14 bits, and one extra bit in channels is required
due to the approximation used in the Barrett algorithm as mentioned in Sect. 3. The
design parameters and the RNSmoduli set of the architecture are given in Tables3 and
4, respectively. The values of q and � are chosen according to the criteria discussed
in Sect. 4.

5.3 Complexity Comparison

The complexity of the proposed architecture can be analysed from Algorithm2 and
Fig. 2 as follows:

1. Step 1 of Algorithm2 performs one RNS multiplication. This is implemented by
N w-bit multipliers followed by Barrett reductions as shown in Fig. 2. One Barrett
reduction requires 2w-bitmultipliers and 1w-bit subtractor. Hence, Step 1 requires
3N w-bit multipliers and N w-bit subtractors.

2. Step 2 also performs one RNS multiplication; therefore, the complexity of this
step is same as Step 1.

3. Step 3 requires two division operationswhich can be easily implemented by simple
right shifts because the divisor is a power of 2. These shifted values are then added
together by using a Wallace tree reduction of N rows. The Wallace tree reduction
block is followed by an adder to add the last two rows. Hence, this step requires
N + 1 tree reduction block and one w-bit adder.

4. Step 4 performs N RNS multiplications in parallel. Each RNS multiplication
requires 3N w-bit multipliers and N w-bit subtractors. Hence, the overall com-
plexity of this step is 3N 2 w-bit multipliers and N 2 w-bit subtractors.

5. Step 5 performs addition on the output of Step 4, i.e. N RNS values. This is done
by adding channel 1 of Y0 to YN−1, channel 2 of Y0 to YN−1, and so on. Each
addition is performed by using a Wallace tree reduction of N rows followed by
one w-bit adder to add the last two rows. The complexity of this step is analysed
as N Wallace tree reductions and N w-bit adders.

1044 Circuits Syst Signal Process (2017) 36:1027–1051

Table 5 Complexity analysis of
the proposed architecture

a Critical path is given for
non-pipelined version

Block type No. of blocks Critical patha

w-bit Mult 3N2 + 8N 11

w-bit Add/Sub N2 + 5N + 1 6

Wallace tree (N rows) N + 1 1

6. Step 6 of Algorithm 2 performs one RNS addition. This is implemented by N
w-bit adders followed by Barrett reductions. Thus, this step requires 2N w-bit
multipliers, N w-bit adders and N w-bit subtractors.

Based on this analysis, the complexity of the proposed architecture is summarised
in Table5. Note that the adders and subtractors are assumed to be of equal complexity
for simplicity of analysis.

It can be seen fromTable5 that the critical path of the proposed architecture consists
of only eleven and sixw-bit multipliers and adders, respectively. It is important to note
that the numbers of multipliers and adders in the critical path are independent of the
number of channels. This property allows the scaling of the proposed architecture with
very little decrease in the speed.

In order to compare the proposed architecture with other RNS-based modular mul-
tipliers, we evaluated the complexity in terms of w-bit modular multiplications and
modular additions by following the approach given in [38]. The step-by-step analysis
of the complexity is described as follows:

– Steps 1, 2: N modular multiplications are performed in parallel in these steps.
Thus, a total of 2N modular multipliers are required. However, the critical path
consists of only two modular multiplications.

– Step 3: Step 3 is responsible to add N + 1 values using the Wallace tree reduction
where each value is q + 1 bits long. The q is usually a few bits less than w

as discussed in detail in Sect. 4.5. Since the process is very similar to that of a
multiplication (with the exception of partial products generation), therefore, for
simplicity, we evaluate the complexity of Wallace tree in terms of multiplier. It
is reasonable to say that a Wallace tree reduction of 9 (q+1 bits) columns and 41
N +1 rows has similar complexity as of two 15-bit (w bits) multipliers. Hence, the
complexity of Step 3 is estimated to be equivalent to a 2

3 modular multiplication.
– Step 4: in this step N 2 modular multiplications are performed in parallel which
means the delay of this step is same as the delay of one modular multiplier.

– Step 5: Step 5 is required to add N w-bit values using the Wallace tree reduction.
Based on the above explanation we can estimate the complexity of Wallace tree
reduction equivalent to three w-bit multipliers. Hence, the complexity of the Step
5 is estimated to be equivalent to one modular multiplication.

– Step 6: this step consists of one w × N × N ROM and N modular additions. One
modular addition is estimated to be equivalent to a 3

4 modular multiplication.

Table6 shows the comparison of the complexity of the proposed architecture with
existing state-of-the-art RNS-based modular multipliers.

Circuits Syst Signal Process (2017) 36:1027–1051 1045

Table 6 Number of w-bit
modular multiplications in the
considered RNS MM algorithms

a 512-bit design

Design Modular multiplications

[45] 2N2 + 5N

[18] (with [24])a 2N2 + 6N

[18] (with [5])a 2N2 + 5N

[38] 4N2 + 20N + 7

Proposed design N2 + 3N + 2

Table 7 RNS moduli set for w=17, N=62

130399 130409 130411 130423 130439 130447 130453 130457

130469 130477 130483 130489 130513 130517 130519 130523

130531 130547 130553 130561 130579 130589 130597 130607

130609 130619 130621 130631 130633 130639 130643 130649

130651 130657 130673 130681 130687 130693 130699 130717

130729 130733 130759 130763 130769 130771 130783 130787

130799 130807 130811 130813 130817 130829 130841 130843

130859 130861 130873 130901 130903 130909

It can be seen from Table6 that the proposed design requires about one-half and
one-third the number of modular multiplications for the designs of [45] and [38],
respectively.

The design in [18] implements a 512-bit modular multiplier; therefore, a detailed
analysis is required in order to perform a fair comparison. To do this, we need to
modify the proposed design such that it has the same dynamic range as of [18]. The
dynamic range of [18] is 1055-bit with N = 33 andw = 32. Putting this value of N in
Table6 gives us 2N 2 + 5N=2343 modular multiplications where each multiplication
is of 32-bit.

In order to perform a fair comparison the proposed design needs to be scaled such
that it has the same dynamic range as of [18]. This can be done by increasing the
channel width (w+1) and/or number of channels (N). We propose N=62 and w=17
which will increase the dynamic range to 1054-bit with very little effect on the delay
(note that the channel width w + 1 instead of w as explained in Section 3). The RNS
moduli for the scaled-up design are given in Table 7.

Thus, the proposed scaled-up design requires N 2 + 3N + 2=4032 modular mul-
tiplications where each multiplication is of w + 1 = 18 bits. For simplicity, we can
say that one 18-bit modular multiplier is equivalent to 18

32 = 0.56 32-bit modular
multiplier. Hence, the proposed design requires 4032 × 0.56 = 2258 32-bit modular
multiplications to compute one 512-bit modular multiplication. Based on this analysis,
the complexity of the proposed design is 3.6% lower as compared to the [18].

1046 Circuits Syst Signal Process (2017) 36:1027–1051

5.4 Synthesis Results

The VHDL codes are developed for both pipelined and non-pipelined versions of
the proposed 256-bit modular multiplier. The extensive simulations of the designs
are performed using ModelSim SE. The designs are synthesised in Xilinx ISE 14.4
for Virtex-6 XC6VLX75T-3-FF784 FPGA with an optimisation goal of ‘Speed’ and
optimisation effort of ‘Normal’. The designs are also synthesised in Synopsys Design
Compiler using 90-nm CMOS technology in order to do the comparison with the
recent ASIC architectures. The designs are compiled using SAED90nm_typ library
with typical process corner at a power supply of 1.2V and 25 ◦C temperature. The
compile effort of medium is used.

A large number of modular multipliers have been presented in the literature for
high-speed operation, but a straightforward comparison is not always possible due to
the difference in implementation technologies. The authors of [20] and [3] present
the results only for the elliptic curve point multiplication and do not provide any
results for the modular multiplication. Similarly, the work in [11] is focused on 128-
bit pairing accelerators inRNS and analyse different types of pairing architectures. The
unavailability of the modular multiplication results restricts these papers to join the
comparison analysis. Yao et al. [47] perform a detailed analysis of the RNS parameter
selection and its effects on themodularmultiplication. The author proved the advantage
of their proposed method by showing the clock cycles for one modular multiplication.
However, the paper lacks the actual results and implementation details. Similarly,
some recent modular multipliers [29,37,38,48] are designed for 1024-bit and cannot
be used for the comparison.

In order to analyse the benefits of the proposed modular multiplier, it is compared
with state-of-the-art modular multiplier implementations on ASIC and FPGA. Table8
compares the synthesis results of the proposed and reference modular multipliers. The
clock cycles represent the total cycles required to perform one modular multiplication,
whereas the cycle time represents the minimum time period of the clock. The results
in Table8 are divided in two sections for ASIC- and FPGA-based implementations.

The results in Table8 show that the proposed modular multiplier is faster than the
existing high-speed modular multipliers. Note that the average time for one modular
multiplication of the proposed architectures is same as their minimum cycle time.
This is because the proposed architectures require only one iteration to compute one
modular multiplication. The latency of the proposed pipelined architecture is 25.0×3
= 75ns and 14.2×3 = 42.6ns for ASIC and FPGA implementations, respectively, due
to additional cycles required to fill the pipeline registers. The latency of non-pipelined
architecture is same as its average time for one modular multiplication.

The comparison of the proposed architecture with other FPGA implementations
is straightforward because they are implemented on the same FPGA device. The
proposed MM outperforms the existing MM architecture implementations on FPGA
in terms of speed and clock cycles. The closest FPGA implementation of existing
MM is [2] which is 0.03 µs slower than the proposed architecture. The proposed
architecture is 37, 93 and 94% faster than [2,22] and [21], respectively.

The comparison results ofASIC implementations include twodesigns amongwhich
[18] is implemented on an advanced 45-nm CMOS technology library, whereas the

Circuits Syst Signal Process (2017) 36:1027–1051 1047

Table 8 Performance comparison of the 256-bit modular multipliers

Design Platform Cycle time (ns) Iterations Avg. time
(µs/MM)

Throughput
(Mbps)

Neto [33] 90-nm CMOS 20.0 43 0.850 301.2

Gandino [18]a 45-nm CMOS 1.12 80 0.090 2844.4

Proposedb 90-nm CMOS 25.0 1 0.025 10240.0

Proposedc 90-nm CMOS 72.7 1 0.073 3506.0

Javeed [22] Virtex 6 10.42 128 1.300 196.9

Javeed [22] Virtex 6 6.02 128 0.770 332.5

Javeed [21] Virtex 6 11.55 129 1.487 172.0

Javeed [21] Virtex 6 14.08 66 0.930 273.0

Alrimeih [2] Virtex 6 10.00 8 0.080 3200.0

Marzouqi [30] Virtex 5 6.24 213 1.330 192.5

Rahimzadeh [35] Virtex 5 2.37 128 0.303 844.9

Proposedb Virtex 6 14.20 1 0.014 18028.2

Proposedc Virtex 6 47.25 1 0.05 5120.0

a 512-bit design
b 2-stage pipelined design
c Non-pipelined design

design in [33] uses the same technology. The proposed architecture outperforms both
architectures in terms of throughput, clock cycles and average time for one modular
multiplication. The cycle time of [33] is smaller than the proposed design; however,
the proposed design can be modified to operate on much higher frequency by an
increase in the pipeline stages. The main advantage of the proposed architecture is its
less clock cycles which enables it to provide a higher throughput in spite of its slow
clock frequency.

The design in [18] performs 512-bit modular multiplication, and the proposed
design can be scaled up for 512-bit operation as explained in Sect. 5.3 which enables a
fair analysis of the delay.The increase in the delayof the scaleddesign canbe accurately
computed by considering the scaling on the critical path as given in Table5. It is evident
from Table5 that the number of channels has very little impact on the critical path
of the architecture which means that the delay for a larger modular multiplier will
approximately be same as of 256-bit modular multiplier. The impact of an increased
N and w on the critical path is explained as follows:

– w-bit multiplier: the critical path consists of eleven w-bit multipliers. The value
of w is increased from 15 to 18 in the scaled design which will result in a minor
increase in the delay due to the interconnection and a slightly larger final adder
in the multiplier. In order to have more precise results, we synthesised the 15-bit
and 18-bit multipliers separately using the same device and synthesis parameters
as for the original design.

– w-bit adder/subtractor: the critical path of the proposedmodularmultiplier consists
of 6 w-bit adders/subtractors. The effect of a larger w on this part of the critical

1048 Circuits Syst Signal Process (2017) 36:1027–1051

Table 9 Synthesis results for the critical path delay of the proposed architecture

Design (ns) Mult (ns) Add/Sub (ns) Tree reduction (ns) Total delay (ns)

256-bit 4.14 0.81 6.29 56.69

512-bit 4.83 0.91 9.50 68.09

path will be even less than the above-mentioned component. The delay increase
for this component is also analysed by the synthesis of 15-bit and 18-bit adders
separately.

– Tree reduction of N rows: the critical path consists of one tree reduction to add N
values of w bits. This component requires five reduction stages for N = 40 as well
as for N = 62; therefore, the only increase in the delay will be due to the more
interconnection wires.

Table9 shows the synthesised delay of the different components of the critical path
for the 256-bit and 512-bit versions of the proposed architecture. Equation (27) is used
to calculate the total delay.

DelayMM = 11 × Delaymult + 6 × Delayadd + Delaytree (27)

The total delay of the 256-bit architecture calculated in Table9 is slightly less than
the actual result given in Table8. The reason for this is the absence of interconnec-
tion delay which are not modelled in the calculated result; however, this can also
be estimated by calculating the percentage of the interconnection delay in the 256-
bit architecture and then adding same percentage in the calculated results of 512-bit
architecture. The synthesised delay of 256-bit architecture is 72.7ns which is 22%
more than the calculated delay of 56.69 ns. Based on this percentage the total delay
for 512-bit architecture is estimated to be 68.09+ (0.22× 68.09) = 83.07 ns. Hence,
we can claim that the proposed architecture is 12% faster than [18]. It is also be noted
that the design of [18] is implemented on a much advanced technology; therefore, our
design is expected to show significant increase in performance if implemented on the
same advanced technology of 45-nm CMOS. Furthermore, the use of pipeline stages
can greatly improve the throughput of the proposed architecture. The advantage of the
proposed architecture over [18] in terms of complexity is already proved in Sect. 5.3.

6 Conclusion and Future Work

A highly parallel and scalable architecture has been described to perform modular
multiplication in the RNS using sum of residues. The algorithm performs the modular
multiplication completely in the RNS channels without any need of conversion to the
positional number system.

A 256-bit modular multiplier is implemented in a 40-channel RNS where each
channel is of 15 bits. Pre-computed values are stored in the look-up tables to speed
up the operations. The pipelined and non-pipelined versions of the architecture are

Circuits Syst Signal Process (2017) 36:1027–1051 1049

implemented in VHDL and synthesised in Xilinx ISE for Virtex-6 FPGA as well as on
ASIC using 90-nmCMOS technology in Synopsys Design Compiler. The comparison
shows that the delay and complexity of the proposed modular multiplier are 12 and
3.6% lower, respectively, as compared to the state-of-the-art RNS modular multiplier.

As a future work, we plan to implement a 2048-bit modular multiplier based on
the proposed algorithm. The proposed 256-bit and 2048-bit modular multipliers can
be used to implement the RNS-based ECC and RSA cryptosystems, respectively.

References

1. O. Aichholzer, H. Hassler, A fast method for modulus reduction in residue number system. In: Pro-
ceedings Economical Parallel Processing, pp. 41–54. Vienna, Austria (1993)

2. H. Alrimeih, D. Rakhmatov, Pipelined modular multiplier supporting multiple standard prime fields.
In: Application-specific Systems, Architectures and Processors (ASAP), 2014 IEEE 25th International
Conference on, pp. 48–56 (2014). doi:10.1109/ASAP.2014.6868630

3. S. Antão, L. Sousa, A flexible architecture for modular arithmetic hardware accelerators based on RNS.
J. Signal Process. Syst. 76(3), 249–259 (2014). doi:10.1007/s11265-014-0879-y

4. S. Asif, Y. Kong, Design of an algorithmicWallace multiplier using high speed counters. In: Computer
Engineering Systems (ICCES), 2015 10th International Conference on, pp. 133–138 (2015). doi:10.
1109/ICCES.2015.7393033

5. J.C. Bajard, L.S. Didier, P. Kornerup, Modular multiplication and base extensions in residue number
systems. In: Proceedings 15th IEEE Symposium on Computer Arithmetic, vol. 2 pp. 59–65 (2001)

6. J.C., Bajard, L. Imbert, A full RNS implementation of RSA. IEEE Trans. Comput. 53(6), 769–774
(2004)

7. P. Barrett, Communications authentication and security using public key encryption—a design for
implementation. Master’s thesis, Oxford University (1984)

8. P.Barrett, Implementing theRivest, Shamir andAdlemanpublic-key encryption algorithmona standard
digital signal processor, Advances in Cryptology - Crypto 86, vol. 263, Lecture Notes in Computer
Science (Springer, Berlin/Heidelberg, 1987), pp. 311–323

9. F.Barsi,M.C.Pinotti, Fast base extension andprecise scaling inRNS for look-up table implementations.
IEEE Trans. Signal Process. 43(10), 2427–2430 (1995)

10. B. Cao, C.H. Chang, T. Srikanthan, A residue-to-binary converter for a new five-moduli set. IEEE
Trans. Circuits Syst. I Regul. Pap. 54(5), 1041–1049 (2007)

11. R.C.C. Cheung, S. Duquesne, J. Fan, N. Guillermin, I. Verbauwhede, G.X. Yao, FPGA implementation
of pairings using residue number system and lazy reduction, Proceedings of the 13th International
Conference on Cryptographic Hardware and Embedded Systems, CHES’11 (Springer-Verlag, Berlin,
Heidelberg, 2011), pp. 421–441

12. R. Crandall, C. Pomerance, Prime Numbers, A Computational Perspective (Springer, Berlin, 2001)
13. J.F. Dhem, Modified version of the Barrett modular multiplication algorithm. Tech. rep, UCL Crypto

Group, Louvain-la-Neuve (1994)
14. J.F. Dhem, Design of an efficient public-key cryptographic library for RISC based smart cards. Ph.D.

thesis, Université Catholique de Louvain (1998)
15. C. Doche, L. Imbert, Extended double-base number system with applications to elliptic curve cryp-

tography. In: Progress in Cryptology - INDOCRYPT 2006, vol. 4329. Springer (2006)
16. P.A. Findlay, B.A. Johnson, Modular exponentiation using recursive sums of residues, Advances in

Cryptology—Crypto 89, vol. 435, Lecture Notes in Computer Science. (Springer, Berlin/Heidelberg,
1990), pp. 371–386

17. W.L. Freking, K.K. Parhi, Modular multiplication in the residue number system with application to
massively-parallel public-key cryptography systems. In: Proc. 34th Asilomar Conference on Signals,
Systems and Computers, vol. 2, pp. 1339–1343 (2000)

18. F. Gandino, F. Lamberti, G. Paravati, J. Bajard, P. Montuschi, An algorithmic and architectural study
onMontgomery exponentiation in RNS. IEEE Trans. Comput. 61(8), 1071–1083 (2012). doi:10.1109/
TC.2012.84

http://dx.doi.org/10.1109/ASAP.2014.6868630
http://dx.doi.org/10.1007/s11265-014-0879-y
http://dx.doi.org/10.1109/ICCES.2015.7393033
http://dx.doi.org/10.1109/ICCES.2015.7393033
http://dx.doi.org/10.1109/TC.2012.84
http://dx.doi.org/10.1109/TC.2012.84

1050 Circuits Syst Signal Process (2017) 36:1027–1051

19. A. Garcia, A. Lloris, A look-up scheme for scaling in the RNS. IEEE Trans. Comput. 48(7), 748–751
(1999)

20. N. Guillermin, A high speed coprocessor for elliptic curve scalar multiplications over Fp , Proceedings
of the 12th International Conference on Cryptographic Hardware and Embedded Systems, CHES’10
(Springer-Verlag, Berlin, Heidelberg, 2010), pp. 48–64

21. K. Javeed, X. Wang, Radix-4 and radix-8 Booth encoded interleaved modular multipliers over general
Fp. In: Field Programmable Logic and Applications (FPL), 2014 24th International Conference on,
pp. 1–6 (2014). doi:10.1109/FPL.2014.6927452

22. Javeed, K.,Wang, X., Scott, M.: Serial and parallel interleaved modular multipliers on FPGA platform.
In: Field Programmable Logic and Applications (FPL), 2015 25th International Conference on, pp.
1–4 (2015). doi:10.1109/FPL.2015.7293986

23. G.A. Jullien, Residue number scaling and other operations using ROM arrays. IEEE Trans. Comput.
27(4), 325–336 (1978)

24. S. Kawamura, M. Koike, F. Sano, A. Shimbo, Cox-Rower architecture for fast parallel Montgomery
multiplication. In: Advances in Cryptology—Eurocrypt 2000, Lecture Notes in Computer Science,
vol. 1807, pp. 523–538. Springer (2000)

25. S.I. Kawamura, K. Hirano, A fast modular arithmetic algorithm using a residue table, Advances in
Cryptology - Eurocrypt 88, vol. 330, Lecture Notes in Computer Science. (Springer, Berlin/Heidelberg,
1988), pp. 245–250

26. N. Koblitz, A Course in Number Theory and Cryptography. Graduate Texts in Mathematics 114.
Springer-Verlag (1987)

27. Y. Kong, S. Asif, M. Khan, Modular multiplication using the core function in the residue number
system. Appl. Algebra Eng. Commun. Comput. 27(1), 1–16 (2016). doi:10.1007/s00200-015-0268-1

28. Y., Kong, B. Phillips, Residue number system scaling schemes. In: S.F. Al-Sarawi (ed.) Proc. SPIE,
Smart Structures, Devices, and Systems II, vol. 5649, pp. 525–536 (2005)

29. S.R.Kuang, J.P.Wang,K.C. Chang,H.W.Hsu, Energy-efficient high-throughputmontgomerymodular
multipliers for RSA cryptosystems. IEEE Trans. VLSI Syst. 21(11), 1999–2009 (2013). doi:10.1109/
TVLSI.2012.2227846

30. H. Marzouqi, M. Al-Qutayri, K. Salah, D. Schinianakis, T. Stouraitis, A high-speed FPGA implemen-
tation of an RSD-based ECC processor. IEEE Trans. VLSI Syst. 24(1), 151–164 (2016). doi:10.1109/
TVLSI.2015.2391274

31. P.L. Montgomery, Modular multiplication without trial division. Math. Comput. 44(170), 519–521
(1985)

32. R. Muralidharan, C.H. Chang, Radix-8 Booth encoded modulo 2n − 1 multipliers with adaptive delay
for high dynamic range residue number system. IEEETrans. Circuits Syst. I Regul. Pap. 58(5), 982–993
(2011)

33. J. Neto, A. Ferreira Tenca, W. Ruggiero, A parallel and uniform k -partition method for Montgomery
multiplication. IEEE Trans. Comput. 63(9), 2122–2133 (2014). doi:10.1109/TC.2013.89

34. K.C. Posch, R. Posch,Modulo reduction in residue number systems. IEEE Trans. Parallel Distrib. Syst.
6(5), 449–454 (1995)

35. L. Rahimzadeh, M. Eshghi, S. Timarchi, Radix-4 implementation of redundant interleaved modular
multiplication on FPGA. In: Electrical Engineering (ICEE), 2014 22nd Iranian Conference on, pp.
523–526 (2014). doi:10.1109/IranianCEE.2014.6999599

36. R.L. Rivest, A. Shamir, L.M. Adleman, A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM 21(2), 120–126 (1978)

37. D. Schinianakis, T. Stouraitis, Multifunction residue architectures for cryptography. IEEE Trans. Cir-
cuits Syst. I Regul. Pap. 61(4), 1156–1169 (2014). doi:10.1109/TCSI.2013.2283674

38. D.Schinianakis, T. Stouraitis,AnRNSBarrettmodularmultiplication architecture. In:Circuits andSys-
tems (ISCAS), 2014 IEEE International Symposium on, pp. 2229–2232 (2014). doi:10.1109/ISCAS.
2014.6865613

39. A. Shenoy, R. Kumaseran, A fast and accurate RNS scaling technique for high speed signal processing.
IEEE Trans. Acoust. Speech Signal Process. 37(6), 929–937 (1989)

40. A. Shenoy, R. Kumaseran, Fast base extension using a redundant modulus in RNS. IEEE Trans.
Comput. 38(2), 292–297 (1989)

41. M.A. Soderstrand, W. Jenkins, G. Jullien, Residue number system arithmetic: Modern applications.
Digital Signal Processing (1986)

http://dx.doi.org/10.1109/FPL.2014.6927452
http://dx.doi.org/10.1109/FPL.2015.7293986
http://dx.doi.org/10.1007/s00200-015-0268-1
http://dx.doi.org/10.1109/TVLSI.2012.2227846
http://dx.doi.org/10.1109/TVLSI.2012.2227846
http://dx.doi.org/10.1109/TVLSI.2015.2391274
http://dx.doi.org/10.1109/TVLSI.2015.2391274
http://dx.doi.org/10.1109/TC.2013.89
http://dx.doi.org/10.1109/IranianCEE.2014.6999599
http://dx.doi.org/10.1109/TCSI.2013.2283674
http://dx.doi.org/10.1109/ISCAS.2014.6865613
http://dx.doi.org/10.1109/ISCAS.2014.6865613

Circuits Syst Signal Process (2017) 36:1027–1051 1051

42. N.S. Szabo, R.H. Tanaka, Residue Arithmetic and its Applications to Computer Technology (McGraw
Hill, New York, 1967)

43. F.J. Taylor, C.H. Huang, An autoscale residue multiplier. IEEE Trans. Comput. 31(4), 321–325 (1982)
44. A. Tomlinson, Bit-serial modular multiplier. Electron. Lett. 25(24), 1664 (1989)
45. Y. Tong-jie, D. Zi-bin, Y. Xiao-Hui, Z. Qian-jin, An improved RNS Montgomery modular multiplier.

In: Computer Application and System Modeling (ICCASM), 2010 International Conference on, vol.
10, pp. V10 144–V10 147 (2010). doi:10.1109/ICCASM.2010.5622857

46. Z.D. Ulman, M. Czyzak, Highly parallel, fast scaling of numbers in nonredundant residue arithmetic.
IEEE Trans. Signal Process. 46, 487–496 (1998)

47. G. Yao, J. Fan, R. Cheung, I. Verbauwhede, Novel RNS parameter selection for fast modular multipli-
cation. IEEE Trans. Comput. 63(8), 2099–2105 (2014). doi:10.1109/TC.2013.92

48. G. Zervakis, N. Eftaxiopoulos, K. Tsoumanis, N. Axelos, K. Pekmestzi, A high radix Montgomery
multiplier with concurrent error detection. In: Design Test Symposium (IDT), 2014 9th International,
pp. 199–204 (2014). doi:10.1109/IDT.2014.7038613

http://dx.doi.org/10.1109/ICCASM.2010.5622857
http://dx.doi.org/10.1109/TC.2013.92
http://dx.doi.org/10.1109/IDT.2014.7038613

	Highly Parallel Modular Multiplier for Elliptic Curve Cryptography in Residue Number System
	Abstract
	1 Introduction
	1.1 Background
	1.2 Contribution

	2 The Residue Number System
	3 The Modular Reduction within RNS Channels
	4 Modular Multiplication in Residue Number System
	4.1 Moduli Selection
	4.2 Sum of Residues Reduction in the RNS
	4.3 Approximation of α
	4.3.1 Deduction of (hatalpha = alpha) or (alpha - 1)
	4.3.2 Ensuring (hatalpha = alpha)

	4.4 Bound Deduction
	4.5 The New RNS Modular Multiplication Algorithm
	4.5.1 Another Approximation
	4.5.2 RNS Modular Multiplication Algorithm and Design Example

	5 Implementation and Synthesis Results
	5.1 Architecture of the RNS-Based MM
	5.2 Design Specifications of 256-bit RNS MM
	5.3 Complexity Comparison
	5.4 Synthesis Results

	6 Conclusion and Future Work
	References

