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Abstract To enhance the efficiency of designing finite impulse response (FIR) filters
with a controllable cut-off frequency that possess excellent transfer characteristics,
this paper proposes a closed-form filter design based on transfer characteristic com-
pensation. First, a novel filter design based on a convolution window is presented, and
the relationship between the spectrum of this window and the filter performance is
elaborated. We then derive a three-stage filter design scheme that describes the design
of an irregular filter, design of a compensation filter and filter summation. This scheme
can be simplified into a closed-form design characterized by two analytic formulas by
merging the intermediate steps. The configuration of a vital Kaiser window parameter
is also derived. Numerical results show that the proposed closed-form design accu-
rately controls the cut-off frequencies and exhibits a transfer performance comparable
to the Remez design and the closed-form weighted least square (WLS) design. More-
over, our method is more efficiency than the closed-form WLS method for the design
of high-order FIR filters.

Keywords Cut-off frequency · Convolution window · Closed-form formulas · Kaiser
window parameter

1 Introduction

Currently, there is a widespread demand for configurable finite impulse response (FIR)
filters in areas such as software-defined radio [9,10] and multirate signal processing

This work was supported by the National Natural Science Foundation of China under Grant 61271069.

B Xiangdong Huang
xdhuang@tju.edu.cn

1 School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-016-0330-7&domain=pdf


722 Circuits Syst Signal Process (2017) 36:721–741

[19,22]. However, the rapid and accurate control of the cut-off frequency remains an
intractable problem in FIR filter design. It is known that classical filter designs such as
the window functionmethod and frequency samplingmethod [14,16] inevitably suffer
from smearing around the location of the cut-off frequency. As for modern optimum
filter designs (such as the Remez method [13,18], neural network algorithms [1,2],
immune algorithms [4,8], swarm algorithms [12,21], cat swarm optimization [5,20]
and genetic algorithms [11,17,25]), the imposition of constraints on some discrete
grid frequencies enables accurate control on these frequency grids (including the crit-
ical frequency points). However, these designs are inefficient, as global optimization
requires multiple parameter updates to attain convergence.

The efficiency of FIR filter design would undoubtedly be enhanced if we could
develop an analytic approach that involved no parameter update iterations and inwhich
all tap coefficients could be calculated in closed form. However, in general, a closed-
form design does not ensure excellent filter performance. For example, in the classical
frequency sampling method [16], although all the tap coefficients h(0) ∼ h(N − 1)
can be directly calculated by implementing inverse discrete Fourier transform (IDFT)
on a specified N -length frequency sampling vector H (i.e., IDFT plays the role of a
closed-form design), the transfer curve suffers from large ripples in both the pass-band
and the stop-band.

In recent years, variable digital filters, whose pass-band bandwidth and cut-off
frequency can be flexibly tuned, have received increasing attention in communica-
tions [19], control systems [3] and radar [15]. The main variable filter design is the
variable-bandwidth closed-form design proposed in [6], whose filter structure consists
of fixed FIR sub-filters and a tunable linear combination. By adjusting a parame-
ter φ, the pass-band bandwidth and cut-off frequency can be easily altered. Based
on this filter structure, a number of variant designs have been proposed, such as the
polynomial-based variable-bandwidthFIRfilter design [7,23].However, becausefixed
FIR sub-filters are acquired fromamatrix inversion, variable-bandwidth design is com-
putationally complex. Moreover, large errors due to numerical instability are likely to
occur when designing high-order FIR filters. Therefore, an accurate, high-efficiency
closed-form linear-phase FIR design method is urgently needed.

This paper proposes a novel filter design, in which the tap coefficients g(n) can
be easily acquired by implementing an analytic operation on the aforementioned
tap coefficients h(n) designed by the frequency sampling methods. In this design,
a (2N − 1)-length convolution window wc(n),−N + 1 ≤ n ≤ N − 1 plays an
important role in achieving high efficiency and excellent performance (e.g., small
ripples in the pass-band and large attenuation in the stop-band). In addition, we pro-
pose two symmetric frequency sampling modes and an adjustable cut-off-frequency
scheme named ‘amplitude–frequency characteristic compensation.’ By integrating
this adjustable scheme with the two frequency sampling modes and the convolution
window-based design, we derive a three-stage design scheme capable of precisely
controlling the 0-dB cut-off frequency. Furthermore, this three-stage scheme (which
includes the design of an irregular filter, design of a compensation filter and filter
summation) can be further simplified into a closed-form design characterized by two
analytic formulas. Compared with existing closed-form weighted least square design
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[24], the proposed method enables the computationally simple design of high-order
FIR filters.

2 Convolution Window-Based FIR Filter Design

In this section, we describe a convolution window-based filter design. This design
inherits the concept of transfer characteristic interpolation from the classical frequency
sampling method.

2.1 Derivation Process

For the frequency sampling method, given an N -length frequency sampling vector
H = [H(0), H(1), . . . , H(N − 1)] satisfying

H(k) = H(N − k), k = 1, . . . , N − 1, (1)

it is known that implementing IDFT on H yields the real-valued filter coefficient h(n)

as

h(n) = 1

N

N−1∑

k=0

H(k)e jnk2π/N , n = 0, . . . , N − 1. (2)

Note that, for the frequency vector H , if the direct current (DC) item H(0) is
excluded, then the remaining elements exhibit central symmetry (i.e., H(1) = H(N −
1), H(2) = H(N − 2), . . .). Hence, in this paper, the vector H is referred to a DC-
excluded symmetric frequency vector.

Our design attempts to integrate the merits of the traditional frequency sampling
method and the traditional windowing method. However, unlike windowing method,
our design does not directly employ the commonly used N -length window f (n) (such
as the Hanning window or the triangular window). Instead, f (n) is convolved with
the reversed version of an N -length rectangular window rN (n) to generate a novel
window wc(n), i.e.,

wc(n) = f (n) ∗ rN (−n), (3)

Since both f (n) and rN (n) have a finite length N , we have that

{
f (n), rN (n) �= 0, n ∈ [0, N − 1]

f (n) = rN (n) = 0, n ∈ [−∞,−1] ∪ [N ,+∞]. (4)

Hence, combining (3) with (4), we have

{
wc(n) �= 0, n ∈ [−N + 1, N − 1]
wc(n) = 0, n ∈ [−∞,−N ] ∪ [N ,+∞]. (5)

Thus, the nonzero elements of wc(n) fall in the range n ∈ [−N + 1, N − 1].
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Fig. 1 a Magnitude curve, b curve of magnitude in logarithm of the rectangular window (N = 8)

Accordingly, if we extend the definition domain of h(n) in (2) from n ∈ [0, N − 1]
to n ∈ [−N + 1, N − 1] and multiply this double-sided h(n) with the aforementioned
convolution window wc(n), we can derive the a novel (2N − 1)-length FIR filter g(n)

as
g(n) = wc(n)h(n), n ∈ [−N + 1, N − 1]. (6)

2.2 Properties of the Convolution Window

Applying Fourier transform to (3) yields

Wc( jω) = F( jω) · R∗
N ( jω). (7)

If f (n) is symmetric, i.e., f (n) = f (N − 1 − n), n = 0, . . . , N − 1, the conjugate
product operation in (7) gives a real-valued Wc( jω). As is known, the normalized
rectangular window’s Fourier spectrum RN ( jω) possesses the following sampling
property:

RN ( jk2π N ) =
{
1, k = 0

0, k = ±1,±2, · · · . (8)

If f (n) is normalized by its DC value C = �N−1
n=0 f (n) in advance, then it is easy to

prove that Wc( jω) also possesses the following sampling property:

Wc ( jk2π N ) =
{
1, k = 0

0, k = ±1,±2, · · · , (9)

Take N = 8 as an example and specify f (n) as the triangular window. The magnitude
curves and logarithmic magnitude curves of RN ( jω) and Wc( jω) are illustrated in
Figs. 1 and 2.

ComparingFig. 1with Fig. 2, one can see that the spectrumcharacteristic ofWc( jω)

is much better than that of RN ( jω). Specifically, compared with RN ( jω) in Fig. 1a,
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Fig. 2 a Magnitude curve, b curve of magnitude in logarithm of the (2N − 1)-length convolution window
(N = 8)

the sidelobe ripples of Wc( jω) in Fig. 2a are much smaller and their coverage is
much narrower. Moreover, the first and second sidelobe attenuation values shown in
Fig. 2b are −27.97 and −47.75dB, much lower than those of RN ( jω) (−13 and
−17dB, shown in Fig. 1b). In addition, both RN ( jω) and Wc( jω) are Dirac functions
at ωk = k2π/N , k = 0,±1,±2, . . ., shown by Figs. 1a and 2a (red solid points).

The above spectrum characteristics of Wc( jω) ensure that the proposed filter has
an excellent transfer characteristic, as demonstrated later.

2.3 Analysis of the Transfer Performance of the Proposed Filter

Applying Fourier transform to (6), we can obtain the proposed filters transfer function
G( jω) as

G( jω) =
N−1∑

n=−N+1

wc(n)h(n)e− jnω. (10)

Further, substituting the normalized wc(n) and h(n) in (2) into (10) and exchanging
the summation order of the variables n and k yields

G( jω) =
N−1∑

k=0

H(k)Wc[ j (ω − k2π/N )]. (11)

Equation (11) shows that G( jω) can be generated by implementing an interpolation
process on the specified frequency points H(k) with the Fourier spectrum Wc( jω).

As has been pointed out [16], the transfer characteristic H( jω) of h(n) can also be
generated by implementing an interpolation operation on H(k) as

H( jω) =
N−1∑

k=0

H(k)RN [ j (ω − k2π/N )]. (12)
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Fig. 3 Magnitude curves of |H( jω)| and |G( jω)| (N = 8, m = 2)

Comparing (11) with (12), one can find that the interpolation function of G( jω) is
Wc( jω) (the Fourier spectrum of the convolution window), whereas the interpolation
function of H( jω) is RN ( jω) (the Fourier spectrum of the rectangular window). Since
Wc( jω) has better spectrum characteristics than RN ( jω), we may assume that G( jω)

is superior to H( jω).
Furthermore, substituting ω = k′�ω,�ω = 2π/N and (9) into (11) yields

G
(

jk′2π/N
) = H(k′), k′ = 0, . . . , N − 1., i.e., G( jω) passes exactly through

the specified frequency points H(k). Without loss of generality, suppose that H pos-
sesses the following DC-excluded symmetric structure

H = [1 1, . . . , 1︸ ︷︷ ︸
m

0, . . . , 0︸ ︷︷ ︸
N−2m−1

1, . . . , 1︸ ︷︷ ︸
m

]. (13)

Then, substituting (13) into (11) yields

G( j2kπ/N ) =
{
1, k ∈ [0, m] ∪ [N − m, N − 1]
0, k ∈ [m + 1, N − m − 1] (14)

By combining (14) with the fact that Wc( jω) has large sidelobe attenuation, the pro-
posed filter design has the ability to accurately control the cut-off frequency (the 0-dB
cut-off frequency is exactly located at m�ω).

For example, consider N = 8, m = 2 (thus H = [1 1 1 0 0 0 1 1] ) and suppose
that f (n) is the triangular window. Substituting these parameters into (11), (12) yields
H( jω) and G( jω), as plotted in Fig. 3.

One can observe that, compared with |H( jω)|, the ripples in |G( jω)| are sig-
nificantly suppressed. Specifically, as the enlarged picture in Fig. 3 illustrates, the
conventional frequency sampling design has a maximum uprush near the 0-dB cut-off
frequency ωp (i.e., the Gibbs effect) of 14%, whereas the uprush of the Gibbs effect
in the proposed design is only about 4%. This is because the sidelobe attenuation of
the interpolation function Wc( jω) is much greater than that of RN ( jω), as shown by
Fig. 2.
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Moreover, similar to |H( jω)|, |G( jω)| passes through H = [1 1 1 0 0 0 1 1] at
ω = k2π/N , k = 0, . . . , N − 1. As a result, the 0-dB cut-off frequency is accurately
located at ω = m�ω = 2�ω and the transition band is almost clamped in the interval
[m�ω, (m + 1)�ω] = [2�ω, 3�ω].

However, limited by the resolution �ω = 2π/N , the number of candidate 0-dB
cut-off frequencies is finite. To accurately locate the 0-dB cut-off frequency ωp at an
arbitrary position, the next section describes an adjustable scheme named ‘amplitude–
frequency characteristic compensation.’

3 Design of Amplitude–Frequency Compensation Filter

This section mainly illustrates a three-stage filter design scheme based on amplitude–
frequency characteristic compensation, which involves a kind of direct symmetric
frequency sampling mode.

3.1 Direct Symmetric Frequency Sampling Mode

Different with the aforementionedDC-excluded symmetricmode in (13), the low-pass
filter (LPF) in direct symmetric mode requires that the N -length frequency vector H
is of the following structure

H = [1, · · · , 1︸ ︷︷ ︸
m

0, · · · , 0︸ ︷︷ ︸
N−2m

1, · · · , 1︸ ︷︷ ︸
m

]. (15)

In other words, H in (15) satisfies

H(k) = H(N − 1 − k), k = 0, 1, . . . , N − 1. (16)

Let N = 8, m = 2. In terms of (13) and (15), Fig. 4 illustrates the frequency points
of the DC-excluded symmetric case (sampled at ω = k�ω, k = 0, . . . , N − 1, as
shown by blue stars) and the direct symmetric case (sampled atω = (k +0.5)�ω, k =
0, . . . , N − 1, as shown by red circles).

Unlike with the DC-excluded symmetric frequency vector H in (13), the IDFT of
the direct symmetric vector H is complex-valued. To obtain real-valued coefficients,
it is necessary to define a (2N − 1)-length frequency-shift vector v = [v(−N +
1), . . . , v(0), . . . , v(N − 1)] as

v(n) = e j0.5�ωn = e jπn/N ,−N + 1 ≤ n ≤ N − 1. (17)

Then, multiplying the double-sided h(n), the normalized convolution window wc(n)

with v(n) yields an even-symmetric frequency sampling-based filter ge(n)

ge(n) = wc(n)h(n)v(n) = g(n)e j0.5�ωn, −N + 1 ≤ n ≤ N − 1 (18)

Figure 5 plots the transfer curve Ge( jω) of the filter ge(n) (N = 8, m = 2).
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Fig. 4 DC-excluded symmetric sampling mode and direct symmetry sampling mode (N = 8)
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Fig. 5 Transfer curve derived from direct symmetric sampling mode (N = 8, m = 2)

One can find that Ge( jω) passes exactly through H(k) sampled at ω = (k +
0.5)�ω, k = 0, . . . , N − 1. The reason is as follows. As mentioned previously,
because the transfer curve G( jω) of the filter g(n) passes through the frequency
points sampled at ω = k�ω, k = 0, . . . , N − 1, the frequency-shift property of
the Fourier transform means that the transfer curve Ge( jω) of the modulated fil-
ter ge(n) = g(n)e j0.5�ωn should pass through the frequency points sampled at
ω = (k + 0.5)�ω, k = 0, . . . , N − 1. In other words, Ge( jω) passes through the
direct symmetric frequency sampling points.

As Fig. 5 clearly illustrates, for the direct symmetric frequency sampling mode, the
0-dB cut-off frequency ωp is accurately located at ω = (m − 0.5)�ω. Moreover, the
6-dB cut-off frequencyω6dB (i.e., Ge(ω6dB) = 0.5) is accurately located atω = m�ω

(shown by the squares). Recall that for the DC-excluded symmetric frequency sam-
pling mode, ωp is accurately located at ω = m�ω, i.e., the even multiples of 0.5�ω.
Therefore, by deciding between the DC-excluded symmetric sampling mode and the
direct symmetric sampling mode, the 0-dB cut-off frequency ωp can be located at the
integer multiples of 0.5�ω. In other words, the introduction of the direct symmetric
sampling mode doubles the number of realizable ωp.

However, the number of candidate 0-dB cut-off frequencies is still finite. To locate
the 0-dB cut-off frequency ωp at an arbitrary position, we develop a design scheme
named ‘amplitude–frequency compensation.’
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3.2 Three Stages of Amplitude–Frequency Compensation

Our proposed amplitude–frequency compensation-based filter design scheme consists
of three stages: the design of an irregular filter, design of a compensation filter and
filter summation.

3.2.1 Design of an Irregular Filter

Designing an irregular filter involves locating the 0-dB cut-off frequencyωp at an arbi-
trary position. Nevertheless, irregular transfer characteristic in low-frequency regions
may also arise.

To derive the irregular filter, the direct symmetric frequency vector H is divided
into two sub-vectors H1, H2 as

H1 = [1, · · · , 1︸ ︷︷ ︸
m

0, · · · , 0︸ ︷︷ ︸
N−m

]

H2 = [0, · · · , 0︸ ︷︷ ︸
N−m

1, · · · , 1︸ ︷︷ ︸
m

] (19)

Implementing the definition-extended IDFT on H1, H2, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h1(n) = 1

N

m−1∑

k=0

e jk 2πn
N

h2(n) = 1

N

N−1∑

k=N−m

e jk 2πn
N

, −N + 1 ≤ n ≤ N − 1 (20)

Accordingly, ge(n) in (18) can also be split into two sub-filters g̃1(n), g̃2(n) as
{

g̃1(n) = wc(n)h1(n)e j0.5�ωn

g̃2(n) = wc(n)h2(n)e j0.5�ωn
, −N + 1 ≤ n ≤ N − 1 (21)

Noted that g̃1(n) and g̃2(n) are conjugate and thus their transfer responses G̃1( jω) and
G̃2( jω) are symmetric about ω = π . Their magnitude–frequency curves are shown
in Fig. 6a.

Figure 6a shows that, in the region near ω = 0, G̃1( jω) has a gap and G̃2( jω)

has a complementary uprush. The summation causes the transfer curve Ge( jω) =
G̃1( jω) + G̃2( jω) to have a flat shape near ω = 0, as illustrated in Fig. 6b.

To flexibly adjust the 0-dB cut-off frequency ωp, it is necessary to move G̃1( jω)

and G̃2( jω) in opposite directions. Therefore, g̃1(n) and g̃2(n) should be multiplied
by opposite frequency-shift terms v1(n), v2(n) as

{
v1(n) = e jλ�ωn

v2(n) = e− jλ�ωn
, −N + 1 ≤ n ≤ N − 1, (22)
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(a)

(b)
Fig. 6 Magnitude–frequency curves of two sub-filters (N = 16, m = 3)

where λ is the fractional frequency shift (−0.5 < λ ≤ 0.5). Accordingly, the two
shifted sub-filters g1(n) and g2(n) are

{
g1(n) = g̃1(n)v1(n)

g2(n) = g̃2(n)v2(n)
, −N + 1 ≤ n ≤ N − 1 (23)

Summing g1(n) and g2(n) yields

g0(n) = g1(n) + g2(n) (24)

Let N = 16,m = 3 and λ = 0.35. Figure 7a, b illustrates the magnitude–frequency
curves of the shifted transfer functions G1( jω), G2( jω) and their synthesized result
G0( jω) = G1( jω) + G2( jω), respectively.

As shown by Fig. 7b, after a further shift, the 0-dB cut-off frequency ωp falls
exactly at an expected position ω = (m − 0.5+ λ)�ω = 2.85�ω. This property can
be attributed to the direct symmetric sampling vector H , from which two symmetric
sub-vectors H1 and H2 can be derived using (19). Thus, two symmetric transfer func-
tions G1( jω), G2( jω) can be generated through opposite frequency-shift operations.
Clearly, the DC-excluded symmetric sampling mode does not possess this property.

It should also be noted that, in the region near ω = 0 in Fig. 7a, the gap of G1( jω)

and the uprush of G2( jω) are not complementary. Consequently, as Fig. 7b shows,
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Fig. 7 Magnitude–frequency curves of two shifted sub-filters (N = 16, m = 3, λ = 0.35)

the shape of |G1( jω) + G2( jω)| is no longer flat and a conspicuous gap appears in
the region ω ∈ [0,�ω]. As a result of this gap, the filter g0(n) does not possess the
expected low-pass characteristic, and its transfer curve also becomes irregular. Thus,
the filter g0(n) is named an ‘irregular filter.’

3.2.2 Design of a Compensation Filter

To regularize the filter g0(n), we must design a filter that compensates for the gap in
the low-frequency region ω ∈ [0,�ω]. Furthermore, from Fig. 4, it is apparent that
two frequency points (H( j0) = 1 and H( j�ω) = 1) of the DC-excluded symmetric
sampling mode fall in this region, whereas only one frequency point ( H( j0.5�ω) =
1) exists in the direct symmetric sampling mode. Hence, we adopt the DC-excluded
symmetric frequency sampling mode, in which the frequency vector Hc should satisfy

Hc(k) = Hc(N − k), k ∈ [1, N − 1] (25)

In the DC-excluded symmetric sampling mode, the transfer curve passes through
the specified samples of Hc. Thus, it is necessary to sample G0( jω) at ω = 0 and
ω = 2π/N to obtain two sampling values a, b as
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a = G0( j0) =
N−1∑

n=−N+1

g0(n)

b = G0( j2π/N ) = g0 + 2
N−1∑

n=1

g(n) cos(n2π/N ).

(26)

These two sampling points are shown in Fig. 7b. To realize the low-pass property
in the irregular region ω ∈ [0,�ω] of G0( jω), we expect that the sum of the transfer
characteristics of the irregular filter and the compensation filter will be equal to 1.
Hence, in combination with (25) and (26), Hc should be set as

Hc = [1 − a 1 − b 0, · · · , 0︸ ︷︷ ︸
N−3

1 − b]. (27)

Suppose a normalized convolution window wα(n) is employed to design the compen-
sation filter gc(n). Then, in terms of (2) and (6), we have that

gc(n) = wα(n)

N

N−1∑

k=0

Hc(k)e j 2πN nk, −N + 1 ≤ n ≤ N − 1 (28)

where wα(n) is generated by convolving a normalized N -length Kaiser window
ωK (n;α) with the N -length rectangular window rN (n), i.e.,

wα(n) = wK (n;α) ∗ rN (−n) (29)

Note that the compensation performance depends on the configuration of the Kaiser
parameter α, which will be elaborated later.

3.2.3 Filter Summation

In this stage, summing the irregular filter g0(n) and the compensation filter gc(n)

yields the final (2N − 2)-order filter g(n) as

g(n) = g0(n) + gc(n), −N + 1 ≤ n ≤ N − 1. (30)

4 Closed-Form Filter Design

This section describes how the three-stage filter design proposed in Sect. 3.2 can be
simplified into a closed-form design. In addition, the configuration of some relevant
parameters is also be addressed.
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4.1 Derivation of Closed-Form Formulas

Substituting (20) ∼ (23) into (24), one can derive the irregular filter g0(n) as

g0(n) = wc(n)

N
e j π

N n ·
(
e j 2πN λn ·

m−1∑

k=0

e j 2πN kn + e− j 2πN λn ·
N−1∑

k=N−m

e j 2πN kn

)
.

(31)
Define

ǧ(n) = e j 2πN λn ·
m−1∑

k=0

e j 2πN kn + e− j 2πN λn ·
N−1∑

k=N−m

e j 2πN kn (32)

On the basis of the geometric series summation and Euler equation, ǧ(n) can be further
written as

ǧ(n) = e− jπn/N 2 sin (πmn/N ) cos [π (m + 2λ) n/N ]

sin (πn/N )
. (33)

Combining (31)–(33), the irregular filter g0(n) can be analytically denoted as

g0(n) = 2wc(n) sin (πmn/N ) cos [π (m + 2λ) n/N ]

N sin (πn/N )
(34)

Note that (34) does not apply when n = 0, as the denominator becomes 0. In this case,
directly substituting n = 0 into (31) yields g0(0) = 2m/N . Therefore, the complete
formula for the irregular filter g0(n) is

g0(n) =
{

2ωc(n) sin(πmn/N ) cos[π(m+2λ)n/N ]
N sin(πn/N )

, n ∈ [−N + 1,−1] ∪ [1, N − 1]
2m/N , n = 0.

(35)
To simplify the compensation filter gc(n), we substitute Hc(k) in (27) into (28) to

obtain

gc(n) = wα(n) · [1− a + 2(1− b) cos(2πn/N )]/N , −N + 1 ≤ n ≤ N − 1. (36)

Finally, summing g0(n) and gc(n) generates the final (2N − 2)-order filter g(n).

4.2 Kaiser Parameter Configuration

The Kaiser parameter α is closely related to the final transfer characteristic. If α is
improperly configured, the gap in the irregular filter resulting from the shift parameter
λ would not be well compensated. Hence, a reasonable α function with respect to λ

should be developed.
Equations (7) and (11) imply that the Kaiser parameter α is closely tied to the

irregular filter’s convolution window wc(n). For convenience, wc(n) is given by the
convolution of a triangular window with a rectangular window. To investigate the
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Fig. 8 Convolution window spectrums of irregular filters

characteristics of this real-valued Wc( jω), the curves of Wc( jω) for N = 8, 16 and
20 are plotted in Fig. 8.

From Fig. 8, one can observe the common phenomenon that, for each value of N ,
ω = ±1.25�ω are located at inflection points. In other words, when |ω| > 1.25�ω,
the decay of the sidelobe of Wc( jω) accelerates acutely. Since the mainlobe covers
a width of �ω, it can be inferred that λ = ±0.25 are the inflection points of the
shift factor λ. Thus, to achieve a good amplitude–frequency compensation, we further
discuss how to configure the Kaiser parameter α for |λ| ≤ 0.25 and |λ| > 0.25.

For the case |λ| ≤ 0.25, the Kaiser parameter α should be extremely small. There
are two reasons. First, as Fig. 9 shows, the smaller the value of α, the narrower the
mainlobe of 20log10|WK (ω;α)| in the compensation filter’s Kaiser window
wK (n;α), which accords with the irregular filter’s narrow gap caused by the small
|λ|. Second, as Fig. 8 shows, Wc( jω) in the region �ω ≤ |ω| ≤ 1.25�ω is much
steeper than in the region |ω| > 1.25�ω, which means that the compensation transfer
curve should also be very steep and highly oscillatory. Based on these considerations,
α is set to zero when |λ| ≤ 0.25, since the Kaiser window with α = 0 is actually
the rectangular window, which has the highest oscillation among the commonly used
windows.

For the case |λ| > 0.25, i.e., the gap of the irregular filter is wider, the Kaiser
parameter α should be enlarged accordingly. This is in accordance with the tendency
shown in Fig. 9 (plotted by calling the MATLAB function ‘kaiser’): The mainlobe
width of 20log10|WK (ω;α)| increases with α. Hence, the widening gap resulting
from the increase in |λ| can be suitably filled.
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Fig. 9 The curves of magnitude in logarithm of Kaiser windows with different α values

To determine the relationship between the parameter α and the shift factor λ, we
tested various combined parameter pairs (α, λ) to identify good compensation (i.e.,
parameter values for which the gapwas filled smoothly). In these tests, different values
of N and m were also considered. The piecewise linear function

α =
{
0, |λ| ≤ 0.25

18|λ| − 4.5, 0.25 < |λ| ≤ 0.5,
(37)

proves to be an acceptable empirical configuration formula that meets the aforemen-
tioned expectations (i.e., α should be extremely small for |λ| ≤ 0.25 and become
larger as the distance from |λ| − 0.25 to an inflection point increases).

4.3 Parameter Settings and Filter Design Flow

Given the expected 0-dB cut-off frequencyωp and the number of frequency samples N
(�ω = 2π/N and the 6-dB cut-off frequencyω6dB=ωp+0.5�ω), the filter parameters
of m, λ should be specified as follows.

As mentioned above, for ωp = (m − 0.5+ λ)�ω and −0.5 < λ ≤ 0.5, the integer
m should be set as

m = ⌈
ωp/�ω

⌉
, (38)

where 
·� denotes rounding operation to the next higher integer. Accordingly, the
fractional number λ should be set as
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λ = ωp/�ω − m + 0.5. (39)

Equations (38) and (39) provide the initial values of m, λ for the filter design. We
can then summarize our simplified filter design flow as follows:

• step 1: Given the expected 0-dB cut-off frequency ωp and the parameter N , use
(38) and (39) to determine the integer parameter m and the fractional parameter λ.
Construct a normalized (2N−1)-lengthwindowwc(n)by convolving the N -length
triangular window and the N -length rectangular window. Substitute wc(n), N , m
and λ into (35) to design the irregular filter g0(n).

• step 2: Use (37) to configure the Kaiser parameter α and use (29) to construct the
Kaiser convolution window wα(n). Substitute a = |G0( j0)|, b = |G0( j2π/N )|,
N and wα(n) into (36) to design the compensation filter gc(n).

• step 3: Sum g0(n) and gc(n) to obtain the final filter g(n).

Clearly, the above three-step design is expressed in closed form, which greatly
simplifies the design scheme of the amplitude–frequency compensation addressed in
Sect. 3.2.

4.4 Computation Complexity of the Proposed Closed-Form Design

Since multiplication operations consume far more hardware resources than additions,
a quantitative analysis of the multiplication calculations performed by the proposed
closed-form design was conducted.

In Step 1, the calculation of the (2N − 1)-length window wc(n) requires a con-
volution operation between two N -length windows. It is known that time-domain
convolution corresponds to frequency-domain multiplication. Assuming that Ñ =
2
log2 N� (thus satisfies Ñ = N when n = log2 N ∈ Z+ ), we can use two 2Ñ -point fast
Fourier transforms (FFTs) and one 2Ñ -point inverse FFT to compute this time-domain
convolution. Thus, the calculation of this convolution window requires three 2Ñ -
point FFTs and one 2Ñ -point complex multiplication. Each 2Ñ -point FFT requires
2Ñ/2 log2(2Ñ ) complex multiplications, each of which can be decomposed into four
real-valued multiplications. Therefore, the number of real-valued multiplication oper-
ations required to calculatewc(n) is 3×4×2Ñ/2 log2(2Ñ )+4×2Ñ=12Ñ log2 Ñ +
20Ñ . Additionally, as shown by (35), calculating each entry of g0(n), n ∈ [1, N − 1]
consumes four multiplication operations. Since g0(n) = g0(−n), the (2N − 1) tap
coefficients of g0(n) require 1+2×4×(N −1) = 8N −7 ≈ 8N multiplications. Thus
the total number of multiplications involved in Step 1 is 12Ñ log2 Ñ + 20Ñ + 8N .

In Step 2, the complexity of calculating the Kaiser parameter α is almost negligible.
Similar to the calculation of wc(n) in Step 1, the calculation of wα(n) consumes
12Ñ log2 Ñ + 20Ñ multiplications. As shown by (28), the (2N − 1) tap coefficients
of gc(n) consume 1 + 2 × (N − 1) ≈ 2N multiplications. Thus the total number of
multiplications involved in Step 2 is 12Ñ log2 Ñ + 20Ñ + 2N .

In Step 3, there are no multiplication operations.
Overall, therefore, the total number of multiplications required to design a (2N − 2)-
order FIR filter is 12Ñ log2 Ñ + 20Ñ + 10N .
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(a)

(b)
Fig. 10 Amplitude–frequency curves and attenuation curves

Compared with the closed-form algorithm in [6,7], in which the design of a (2N −
2)-order FIR filter is derived from the inversion operation of an (L + 1)N × (L +
1)N , L ∈ Z+ matrix, the computational complexity of the proposed closed-form
design is greatly reduced.

5 Numerical Results

In this section, we verify the accuracy of the proposed filter design method in terms
of controlling the 0-dB cut-off frequency. Furthermore, the proposed filter design is
compared with the Remez design and the closed-form WLS design [24].

5.1 Comparison with the Remez Design

We consider an example in which N = 32, the expected 0-dB cut-off frequency
ωp = 4.75�ω = 0.2969π (m = 5, λ = 0.25), and the transition bandwidth 1�ω =
0.0625π . The proposed three-step closed-form procedure summarized in Sect. 4.3
and the Remez method were used to design two 62-order FIR filters with the above
performance indexes. In terms of (37), the parameter α was set to 0. Figure 10a, b
illustrates the magnitude–frequency curves and attenuation–frequency curves of these
two designs.
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From Fig. 10a, b, the following conclusions can be drawn:

1) The0-dBcut-off frequencyof the proposeddesign is located exactly at the expected
ωp = 4.75�ω, whereas the 0-dB cut-off frequency of the Remez design exhibits
a slight deviation from ωp. Nevertheless, it should be emphasized that the Remez
design is not intended to have a pass band edge that pass through the 0-dB point.
If linear programming were used to enforce such a condition, it would certainly
pass through the exact point.

2) In a narrow region near the transition band, the ripples of the Remez design (about
1.1%) are smaller than that of the proposed design (about 4.2%). This uprush
can be viewed as the Gibbs effect, an intrinsic drawback of the existing spectrum
interpolation-based designs (e.g., the conventional frequency sampling method
and the proposed design). Although the proposed design’s Gibbs effect is smaller
than that of the conventional frequency sampling method (as shown by Fig. 3),
it is inferior to that of the Remez design. The Gibbs effect may be alleviated
by modifying the transition points of the frequency vector H . Optimizing the
transition points remains an open problem.

3) The transition bands of both designs almost overlap, exactly covering the expected
width �ω.

In general, the transfer performance of the proposed design approximates that of
the Remez design. However, the computational complexity of the proposed design is
much lower than that of the Remez design, as the proposed method operates in closed
form. In contrast, to achieve an equiripple approximation, the Remez design must
execute a large number of iterations to update the alternation frequencies. Hence, the
high efficiency of the proposed method makes it suitable for the design of high-order
FIR filters.

5.2 Comparison with the Closed-Form WLS Design

The proposed designwas also comparedwith the closed-formWLS design [24]. Given
the filter length L (assumed to be odd), 0-dB pass-band cut-off frequency ωp, stop-
band cut-off frequency ωs and an error weighting factor α, a three-step closed-form
procedure for WLS filter design can be derived as follows.

• Step 1 Construct an N × N matrix P whose entries P(n, m), 0 ≤ n, m ≤ N − 1,
are calculated as (N = (L − 1)/2):

P(n, m) = (1 − α)

π

[
ωp − sinmωp

m
− sin nωp

n
+ sin(m + n)ωp

2(m + n)

+ sin(n − m)ωp

2(n − m)

]
− α

π

[ sin(n − m)ωs

2(n − m)
+ sin(n + m)ωs

2(n + m)

]
,

n �= m, m �= 0, n �= 0 (40a)

P(n, m) = −α

πm
sin(mωs), n = 0, m �= 0 (40b)

P(n, m) = −α

πn
sin(nωs), n �= 0, m = 0 (40c)
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P(n, m) = α

π
(π − ωs), n = 0, m = 0 (40d)

P(n, m) = 1 − α

π

[
3ωp

2
− 8 sin(nωp)− sin(2nωp)

4n

]

+ α

π

[
π − ωs

2
− sin(2nωs)

4n

]
, n = m, n �= 0 (40e)

• Step 2 Implement eigenvalue decomposition on P and determine the eigenvector
b = [b(0), b(1), . . . , b(N − 1)]T corresponding to the smallest eigenvalue.

• Step 3 Calculate the L filter coefficients h(−N + 1) ∼ h(N − 1) as

h(n) =
⎧
⎨

⎩

b(0), n = 0
b(n)/2, n = 1, . . . , N − 1
b(−n)/2, n = −N + 1, . . . ,−1

(41)

Consider the case of N = 32 (i.e., the filter length L = 2N − 1 = 63). We aim to
design two 62-order FIR filters with 0-dB cut-off frequencies of ωp1 = 4.1�ω (i.e.,
m = 5, λ = −0.4) and ωp2 = 4.6�ω (i.e., m = 5, λ = 0.1) and the stop-band
cut-off frequencies of ωs1 = 5.1�ω and ωs2 = 5.6�ω. The magnitude curves and
the logarithmic magnitude curves of the proposed design and the closed-form WLS
design (the error weighting factor α = 0.5 ) are presented in Fig. 11.

From Fig. 11, the following conclusions can be drawn:

1) For the closed-form WLS design, Fig. 11a, b, indicates that the 0-dB cut-
off frequencies deviate slightly from the expected points ωp1 = 4.1�ω and
ωp2 = 4.6�ω. In contrast, the proposed design can accurately locate these two
frequencies at their expected positions.

2) From the logarithmic magnitude curves illustrated in Fig. 11c, d, one can easily
observe that the transition bandwidths of the proposed design are narrower than
those of the WLS design.

3) As the enlarged pictures in Fig. 11a, b indicate, the pass-band ripples of the pro-
posed design and the closed-form WLS design exhibit no evident differences.

4) In the band-edge regions of both cases, the uprushes of the closed-form WLS
design (about 1.2%) are smaller than those of the proposed design (about 4.1%).

In addition, Table 1 lists the runtimes of these two closed-form filter designs for
different filter orders (equipped with Intel(R) Core(TM) i5-4300U CPU @ 1.9GHz
2.50GHz, 4GB RAM, in the software platform of MATLAB 2013).

From Table 1, as the filter order increases from 62 to 510, we can see that the run-
time of the closed-form WLS design increases from 0.091450 to 1.228074s, whereas
the runtime of the proposed closed-form design remains at 0.1 s. This is because, as
analyzed in Sect. 4.4, the major computation of the proposed design is the convolution
operation. This can be realized by FFTs, which greatly reduces the number multi-
plication operations. In contrast, as the filter order increases, the N × N matrix P
becomes larger, requiring more memory and thus entailing additional computational
complexity. Therefore, in the case of large filter orders, our method overwhelmingly
outperforms the closed-form WLS method in terms of the design efficiency.
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(a) (b)

(c) (d)
Fig. 11 Amplitude–frequency curves and attenuation curves of the proposed and closed-formWLS design
(N = 32)

Table 1 Execution time of the proposed design and the closed-form WLS design

Order 62 126 254 510

Proposed (t/s) 0.096720 0.104400 0.104520 0.116015

WLS (t/s) 0.091450 0.141518 0.460322 1.228074

6 Conclusions

This paper has presented a three-step closed-form FIR filter design that not only
accurately locates the 0-dB cut-off frequency at the expected position, but also pos-
sesses high efficiency and reliability. This enhanced performance makes the proposed
method, especially suitable for the design of high-order FIR filters. In recent years,
variable and tunable digital filters (which require the fast configuration of filter parame-
ters) have been widely applied in fields such as soft-defined radio, cognitive radio and
channel equalization in wireless communication systems. This tendency is expected
to make our proposed configurable closed-form FIR filter broadly applicable. Future
work will focus on applying our filter design in these fields.
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