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Abstract In this paper, the problem of the robust unknown input observer for a
class of linear multi-agent systems and its application to fault estimation are con-
sidered. First, an undirected graph is used to represent the communication topology
of a leader–follower linear multi-agent system. Then, using relative output estimation
errors among agents, an unknown input observer is proposed to achieve fault estima-
tion for the global augmented system in which the actuator or sensor fault vector is
taken as an auxiliary state vector. Amulti-constrained design algorithm based on linear
matrix inequality technique is also designed to obtain gain matrices of unknown input
observer. Simulation results show the effectiveness and advantages of the proposed
robust unknown input observer method for fault estimation of multi-agent systems.
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1 Introduction

Distributed networks of dynamic agents have gained increasing attention from
researchers, partly because of broad applications ofmulti-agent systems inmanyfields,
such as distributed sensor networks, automated highway systems, and unmanned aerial
vehicles. In the past several years, various scientific communities in control and sys-
tem fields have focused on a series of fundamental problems of multi-agent systems,
including consensus problems, swarm problems, cooperative control, and formation
control; these communities have achieved a considerable number of fruitful results,
which have been included in several excellent books [7,15], an excellent survey [13]
and references therein.

With the increasing scale and complexity of multi-agent systems, operating these
systems autonomously, safely, and reliably is becoming increasingly important and
urgent. Hence, the technology of fault diagnosis, including fault detection, fault iso-
lation, and fault estimation (FE), is considered as an attractive topic for multi-agent
systems and has elicited considerable attention. However, despite the abundant acad-
emic results on fault diagnosiswith respect to an individual systemhave been achieved,
the body of fault diagnosis research on multi-agent systems in terms of interaction
topology, communication capability, and structural heterogeneity of the agents is rel-
atively smaller because such research is more challenging [14,22].

In [10], an event-based fault detection filter of networked systems was proposed
such that the error between the residual and fault signals was made as small as pos-
sible. Sufficient conditions for the existence of the desired fault detection filter were
established in terms of linear matrix inequality. Based on a geometric fault detection
and isolation (FDI) approach, [12] proposed a local/decentralized detection filter for
spacecraft formation to detect faults by determining the required unobservable sub-
space of local systems. In [16], a new approach based on fractional subband Volterra
series and the fractional correlation to extract the fault features was presented to
diagnose incipient faults in nonlinear analog circuits. In [17,18], a dynamic neural
network-based FDI scheme was studied to perform the formation flying mission of
satellites.

In general, FDI is used to monitor the system and determine the location of the
occurred fault because the final objective of fault diagnosis is to obtain fault informa-
tion.Hu et al. [6] addressed the problemof FE for a class of Lipschitz nonlinear systems
by proposing a second-order sliding mode observer based on the super-twisting algo-
rithm to solve the chattering problem caused by the traditional sliding mode observer.
In [11], a robust FEmethod based on sliding mode observer was investigated for a col-
lection of agents that exchanged relative information over the communication network.
A robust unknown input observer (UIO) approach was proposed in [23] to address
fault diagnosis with respect to sampled-data control systems subject to the unknown
input. An augmented form of a class of Lipschitz nonlinear systems was constructed
by taking the sensor fault as an auxiliary state vector, and a robust UIO with H∞
performance criterion was developed to estimate states and faults simultaneously in
[21]. Similarly, a robust UIO-based FE scheme was designed and applied to a non-
linear multi-tank system in [19]. Particularly, a comparison of sliding mode observer
and UIO for fault reconstruction was considered and an underlying link between the
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two approaches was investigated in [2]. The minimum variance unbiased estimation
technique was used to address the problem of simultaneous input, and state estimation
in the presence or absence of direct feedthrough was proposed with exhaustive sta-
bility analysis in [3]. In addition, based on the adaptive observer method, a fast fault
estimator of linear multi-agent systems was designed in [9], which only considered a
class of constant actuator faults via the input channel and did not consider further the
unknown disturbance.

The model-based fault diagnosis is built upon the precise mathematical model,
whereas the presence of uncertainties and external disturbances is not avoidable in
practical systems [1,22]. Thus, to weaken or eliminate such unexpected effects of
uncertainties, themethod ofUIO is considered immediately because of its insensitivity
to the unknown input.

In this paper, motivated by the existing research situations, we concentrate on the
problem of robust UIO-based FE of a class of leader–follower linear continuous-
time multi-agent systems with an undirected topology. The main contributions of
this study lie in three aspects: (1) for a class of multi-agent systems, a structure of
augmented systems is derived by taking the actuator fault and sensor fault vector as an
auxiliary state vector; (2) using the information of relative output estimation errors,
an approach of robust UIO-based FE is proposed to utilize the topology feature for
multi-agent systems and eliminate external the unknown input; (3) based on linear
matrix inequality technique, a multi-constrained algorithm is designed to calculate
the UIO gain matrices.

The remainder of this paper is organized as follows. Preliminaries and problem
statement are presented in Sect. 2. In Sect. 3, based on graph theory, a unified global
augmented structure of multi-agent systems is developed and an FE approach is pro-
posed using relative output information. Simulation results of a linear multi-agent
system are shown in Sect. 4, followed by concluding remarks in Sect. 5.

2 Preliminaries and System Description

2.1 Graph Theory

An undirected graph G [20] is a pair (υ, ε) in which υ = (1, . . . , N ) is the set of nodes
and ε ⊆ υ ×υ is the set of unordered pairs of nodes, called edges. Two nodes, i, j , are
adjacent or neighboring if (i, j) is an edge of graph G. The edges in the form of (i, i)
are called loops. A graph with loops is called a multi-graph. Graphs without loops are
known as a simple graph. A path on G from node i1 to node iN is a sequence of ordered
edges of the form (ik, ik+1), k = 1, . . . , N − 1. An undirected graph is connected if
a path exists between every pair of distinct nodes; otherwise, it is disconnected.

The adjacency matrix A ∈ R
N×N of graph G is defined by αi i = 1, if node i has

a self loop but 0 otherwise, and αi j = α j i = 1 if the pair (i, j) ∈ ε but 0 otherwise,
which can represent whether information can flow from node i to node j or in reverse.
The Laplacian matrix L ∈ R

N×N can be defined as Li i = ∑N
j=1 αi j , Li j = −αi j ,

for i �= j . The adjacency matrixA and Laplacian matrix L are both symmetric for an
undirected graph.
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2.2 System Description

We consider a linear continuous-time multi-agent system with N nodes, distributed
on an undirected topology G. The dynamics of the i th agent with the unknown input
can be described by

{
ẋi (t) = Axi (t) + Bui (t) + Ddi (t) + E fai (t)

yi (t) = Cxi (t) + F fsi (t)
(1)

where xi (t) ∈ R
n is the state vector, ui (t) ∈ R

m is the input vector, yi (t) ∈ R
p is

the measured output vector, and di (t) ∈ R
q is the unknown input vector. fai (t) ∈ R

ra

and fsi (t) ∈ R
rs represent the actuator or sensor fault, respectively, with respect to

‖ ḟai (t)‖ ≤ f̃1 and ‖ ḟsi (t)‖ ≤ f̃2, where f̃1 and f̃2 are positive constant values. A, B,
C , D, E , and F are known constant real matrices of appropriate dimensions, whereas
matrices D, E , and F are full column rank. The pair (A,C) is observable. The number
of unknown inputs is not more than the number of the measured output, i.e., q ≤ p.

The system dynamics of the leader agent, labeled 0, is given by

ẋ0(t) = Ax0(t), y0(t) = Cx0(t) (2)

where x0(t) ∈ R
n is the state vector and y0(t) ∈ R

p is the output vector. The leader
agent can be observed from a small subset of agents in graph G. If the i th agent
can obtain information from the leader, an edge (υ0, υi ) is said to existence with the
weighting gain gi > 0 , and we refer to the i th agent with gi > 0 as a pinned or
controlled node. We denote the pinning matrix as G = diag{gi } ∈ R

N×N .

Assumption 1 In this note, the undirected graph contains a spanning tree, and the root
node (the i th agent) can observe information from the leader one, which is denoted as
gi > 0.

2.3 A Unified Global Augmented System

In this subsection, we provide an augmented structure by taking the actuator fault or
sensor fault vector as an auxiliary state vector. A unified global form is also derived.

Actuator Fault Augmented Model

By considering only actuator faults, i.e., F = 0, the actuator fault vector can be treated
as an auxiliary state vector; an augmented system with actuator faults is described by

{ ˙̄xai (t) = Āa x̄ai (t) + B̄aui (t) + D̄adi (t) + Īra ḟai (t)

yai (t) = C̄a x̄ai (t)
(3)
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where

x̄ai (t)=
[
xi (t)
fai (t)

]

, Āa =
[
A E
0 0

]

, B̄a =
[
B
0

]

, C̄a = [
C 0

]
, D̄a =

[
D
0

]

, Īra =
[
0
Ira

]

,

and x̄ai (t) ∈ R
n+ra is the augmented state vector and yai (t) ∈ R

p is the output vector.

Sensor Fault Augmented Model

When the system only includes sensor faults, i.e., E = 0, considering the sensor fault
vector as an auxiliary state vector, an augmented systemwith sensor faults is described
by { ˙̄xsi (t) = Ās x̄si (t) + B̄sui (t) + D̄sdi (t) + Īrs ḟsi (t)

ysi (t) = C̄s x̄si (t)
(4)

where

x̄si (t)=
[
xi (t)
fsi (t)

]

, Ās =
[
A 0
0 0

]

, B̄s =
[
B
0

]

, C̄s = [
C F

]
, D̄s =

[
D
0

]

, Īrs =
[
0
Irs

]

,

and x̄si (t) ∈ R
n+rs is the augmented state vector and ysi (t) ∈ R

p is the output vector.
The structures of (3) and (4) are similar; then,we can extend such augmented system

dynamics to a unified form, which can be described as

{ ˙̄xi (t) = Āx̄i (t) + B̄ui (t) + D̄di (t) + Īr ḟi (t)

yi (t) = C̄ x̄i (t)
(5)

where

Ā, B̄, C̄, D̄, Īr =
{
Āa, B̄a, C̄a, D̄a, Īra for the actuator fault

Ās, B̄s, C̄s, D̄s, Īrs for the sensor fault

x̄i (t), ḟi (t), yi (t) =
{
x̄ai (t) ∈ R

n+ra , ḟai (t) ∈ R
ra , yai (t) ∈ R

p for the actuator fault

x̄si (t) ∈ R
n+rs , ḟsi (t) ∈ R

rs , ysi (t) ∈ R
p for the sensor fault

Based on undirected graph theory, the unified global fault augmented multi-agent
system dynamics can be represented as follows

{ ˙̄x(t) = (IN ⊗ Ā)x̄(t) + (IN ⊗ B̄)u(t) + (IN ⊗ D̄)d(t) + (IN ⊗ Īr ) ḟ (t)

y(t) = (IN ⊗ C̄)x̄(t)
(6)

where ⊗ denotes Kronecker product; x̄(t) = [x̄ T1 , x̄ T2 , . . . , x̄ TN ]T ∈ R
(n+r)N

is the global state vector, u(t) = [uT1 , uT2 , . . . , uTN ]T ∈ R
mN is the global

input vector, y(t) = [yT1 , yT2 , . . . , yTN ]T ∈ R
pN is the global output vector,

d(t) = [dT1 , dT2 , . . . , dTN ]T ∈ R
qN is the global unknown input vector; ḟ (t) =

[ ḟ T1 (t), ḟ T2 (t), . . . , ḟ TN (t)]T ∈ R
r N represents the derivative of the actuator or sensor
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fault vector in a unified form; r denotes ra or rs in the case considering actuator or
sensor faults, respectively.

In this paper, we aim to design a global fault estimator for the system dynamics
(6) and eliminate the unknown input d(t). To achieve these targets, the following
procedures will be followed:

(1) To design a unified global augmented system (6), taking the actuator or sensor
fault vector as an auxiliary state vector, respectively;

(2) To construct a global UIO and fault estimator using relative output estimation
errors;

(3) To analyze the stability and robustness of the proposed FE algorithm.

3 Main Results

In this section, we design a global UIO to estimate actuator or sensor fault in a unified
form. The UIO-based FE design can also eliminate the unknown input d(t). Two
assumptions are needed for the design of this global UIO [23].

Assumption 2 (T̄ Ā, C̄) is observable, where T̄ will be illustrated in this section.

Assumption 3 rank [B D] = rank (B)+ rank (D), rank (C̄ D̄) = rank (D̄)

Remark 1 Assumption 2 ensures existence of the designed robust UIO for an individ-
ual system, and Assumption 3 represents that the unknown input and the fault can be
decoupled totally.

3.1 UIO Design

The neighborhood output estimation error [8] for the i th agent is considered, which
can be described as follows

ζi (t) =
∑

j∈Ni

ai j
[
(ŷi (t)−yi (t))−(ŷ j (t)−y j (t))

]
+gi

[
(ŷi (t)−yi (t))−(ŷ0(t)−y0(t))

]
,

(7)
where ŷ j (t) ∈ R

p is the estimate of the output vector y j (t) of the j th agent. Ni is the
total number of other agents, which communicate with the i th one. ai j represents the
connection weight between the i th and j th agents, choosing ai j = 1. gi denotes the
connection weight between the i th agent and the leader agent, choosing gi = 1.

The UIO is constructed for the i th agent as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̄zi (t) = T̄ Ā ˆ̄xi (t) + T̄ B̄ui (t) − K̄ ζi (t)
ˆ̄xi (t) = z̄i (t) + H̄ yi (t)

f̂i (t) = Ī Tr ˆ̄xi (t)
ŷi (t) = C̄ ˆ̄xi (t)

(8)

where z̄i (t) is the UIO state vector of the i th agent, ˆ̄xi (t) ∈ R
n+r is the estimate of the

state vector x̄i (t), f̂i (t) ∈ R
r is the estimate of the fault vector fi (t), and ŷi (t) ∈ R

p
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is the estimate of the output vector yi (t). T̄ ∈ R
(n+r)×(n+r), K̄ ∈ R

(n+r)×p, and
H̄ ∈ R

(n+r)×p are the UIO gain matrices to be designed.

Remark 2 We denote eyi (t) = ŷi (t) − yi (t) as the output estimation error of the
i th agent. The leader agent acts as a command generator, and the assumption that the
leader’s state is known is appropriate, i.e., x0(t) = x̂0(t). That is, ey0(t) = 0 is tenable,
which is an important feature of the considered leader–follower multi-agent systems.

The global neighborhood output estimation error for multi-agent systems is defined
based on graph theory as

ζ(t) = ((L + G) ⊗ Ip)ey(t) = ((L + G) ⊗ C̄)( ˆ̄x(t) − x̄(t)) (9)

where ζ(t) = [ζ T
1 (t), ζ T

2 (t), . . . , ζ T
N (t)]T ∈ R

pN refers to the global neighborhood
output estimation error and ey(t) = [eTy1, eTy2, . . . , eTyN ]T ∈ R

pN refers to the global
output estimation error. Matrix (L +G) is symmetric because the undirected graph is
considered.

A global UIO for the unified global augmented multi-agent system dynamics (6)
can then be constructed further as follows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̄z(t) = (IN ⊗ T̄ Ā) ˆ̄x(t) + (IN ⊗ T̄ B̄)u(t) − (IN ⊗ K̄ )ζ(t)
ˆ̄x(t) = z̄(t) + (IN ⊗ H̄)y(t)

f̂ (t) = (IN ⊗ Ī Tr ) ˆ̄x(t)
ŷ(t) = (IN ⊗ C̄) ˆ̄x(t)

(10)

where z̄(t) = [z̄T1 (t), z̄T2 (t), . . . , z̄TN (t)]T ∈ R
(n+r)N , ˆ̄x(t) = [ ˆ̄xT1 (t), ˆ̄xT2 (t), . . . ,

ˆ̄xTN (t)]T ∈ R
(n+r)N , f̂ (t) = [ f̂ T1 (t), f̂ T2 (t), . . . , f̂ TN (t)]T ∈ R

r N , and ŷ(t) =
[ŷT1 (t), ŷT2 (t), . . . , ŷTN (t)]T ∈ R

pN .

Remark 3 The design of this global UIO (10), which uses the neighborhood output
estimation errors among agents, utilizes extensively the topology feature of a class
of multi-agent systems with a undirected communication graph to design cooperative
fault estimators. This approach is one of our innovations in this paper.

We construct transformations for (6) and (10), and then define the designedmatrices
T̄ and H̄ , which are chosen to satisfy

T̄ = I − H̄ C̄ .

Given that ẏ(t) = (IN ⊗ C̄) ˙̄x(t), (6) indicates that
˙̄x(t) = (IN ⊗ Ā)x̄(t) + (IN ⊗ B̄)u(t) + (IN ⊗ D̄)d(t) + (IN ⊗ Īr ) ḟ (t) + (IN ⊗ H̄)ẏ(t)

− (IN ⊗ HC̄) ˙̄x(t)
= (IN ⊗ Ā)x̄(t) + (IN ⊗ B̄)u(t) + (IN ⊗ D̄)d(t) + (IN ⊗ Īr ) ḟ (t) + (IN ⊗ H̄)ẏ(t)

− (IN ⊗ H̄ C̄)
[
(IN ⊗ Ā)x̄(t) + (IN ⊗ B̄)u(t) + (IN ⊗ D̄)d(t) + (IN ⊗ Īr ) ḟ (t)

]
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= (IN ⊗ T̄ Ā)x̄(t) + (IN ⊗ T̄ B̄)u(t) + (IN ⊗ T̄ D̄)d(t) + (IN ⊗ T̄ Īr ) ḟ (t)

+ (IN ⊗ H̄)ẏ(t) (11)

Define the global augmented state estimation error to be

ēx (t) = ˆ̄x(t) − x̄(t). (12)

We then obtain the global error dynamics:

˙̄ex (t) = ˙̄̂x(t) − ˙̄x(t)
= ˙̄z(t) + (IN ⊗ H̄)ẏ(t) − ˙̄x(t)
= (IN ⊗ T̄ Ā − (L + G) ⊗ K̄ C̄)ēx (t) − (IN ⊗ T̄ D̄)d(t) − (IN ⊗ T̄ Īr ) ḟ (t)

(13)

Under T̄ D̄ = 0, the unknown input d(t) is eliminated and we derive the global
error dynamics

{ ˙̄ex (t) = (IN ⊗ T̄ Ā − (L + G) ⊗ K̄ C̄)ēx (t) − (IN ⊗ T̄ Īr ) ḟ (t)

e f (t) = (IN ⊗ Ī Tr )ēx (t)
(14)

3.2 Calculation of UIO Gain Matrices

In this subsection, we present a multi-constrained design to calculate the UIO gain
matrices. Before main results are presented, a lemma is first given.

Lemma 1 [5] The eigenvalues of a given matrix A ∈ R
n×n belong to the circular

region D(α, τ ) with the center α + j0 and the radius τ if and only if there exists a
symmetric positive definite matrix P ∈ R

n×n such that the following condition holds

[−P P(A − αIn)
∗ −τ 2P

]

< 0 (15)

Theorem 1 Let a circular region D(α, τ ) and a prescribed H∞ performance level
γ > 0 be given. If there exist a symmetric positive definite matrix P̄ ∈ R

(n+r)×(n+r)

and matrices Ȳ ∈ R
(n+r)×p, W̄ ∈ R

(n+r)×p satisfying the following linear matrix
inequalities

⎡

⎣
ϕ IN ⊗ (P̄ Īr − P̄Ū C̄ Īr − W̄ V̄ C̄ Īr ) IN ⊗ Īr
∗ −γ I 0
∗ ∗ −γ I

⎤

⎦ < 0 (16)

[−IN ⊗ P̄ IN ⊗ (P̄ Ā − PŪC̄ Ā − W̄ V̄ C̄ Ā) + (L + G) ⊗ Ȳ C̄ − α(IN ⊗ P̄)

∗ −τ 2(IN ⊗ P̄)

]

< 0

(17)
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where ϕ = IN ⊗ (P̄ Ā− P̄Ū C̄ Ā− W̄ V̄ C̄ Ā+ ĀT P̄ − (Ū C̄ Ā)T P̄ − (V̄ C̄ Ā)T W̄ T ) −
(L + G) ⊗ (Ȳ C̄ + C̄T Ȳ T ), Ū = D̄(C̄ D̄)+ and V̄ = I − C̄ D̄(C̄ D̄)+; then, the
eigenvalues of (IN ⊗ T̄ Ā + (L + G) ⊗ C̄) belong to D(α, τ ) and the global error
dynamics (14) satisfies the H∞ performance ‖e f (t)‖2 < γ ‖ ḟ (t)‖2. The UIO gain
matrices are given by K̄ = P̄−1Ȳ , H̄ = Ū + P̄−1W̄ V̄ and T̄ = I − H̄ C̄.

Proof Condition (16): Since matrix P̄ is symmetric positive definite, we choose Lya-
punov matrix (IN ⊗ P̄) for the proof of condition (16). Based on bounded real lemma
of continuous-time systems [4], it follows from the global error dynamics (14) that

⎡

⎣
IN ⊗ (P̄ T̄ Ā−(L+G) ⊗ P̄ K̄ C̄)+(IN ⊗ (P̄ T̄ Ā−(L+G) ⊗ P̄ K̄ C̄)T −IN ⊗ P̄ T̄ Īr IN ⊗ Īr

∗ −γ I 0
∗ ∗ −γ I

⎤

⎦<0

(18)

where matrix (L + G) is symmetric because of the undirected graph considered in
this paper.

According to equalities T̄ = I − H̄ C̄ and T̄ D̄ = 0, one gets

(I − H̄ C̄)D̄ = 0 (19)

Since (C̄ D̄) is of full column rank, the solutions of D̄ = H̄ C̄ D̄ have the following
form

H̄ = D̄(C̄ D̄)+ + H0(I − C̄ D̄(C̄ D̄)+) (20)

where (C̄ D̄)+ = (
(C̄ D̄)T (C̄ D̄)

)−1
(C̄ D̄)T and H0 is an arbitrary matrix with appro-

priate dimension.
Let

Ū = D̄(C̄ D̄)+, V̄ = I − C̄ D̄(C̄ D̄)+

then we have
H̄ = Ū + H0V̄ , T̄ = I − Ū C̄ − H0V̄ C̄ (21)

By substituting matrix T̄ into (18) and making P̄ K̄ = Ȳ , P̄ H0 = W̄ , condition
(16) is derived.

Condition (17): Given Lyapunov matrix (IN ⊗ P̄) and a circular regionD(α, τ ), it
follows from the global error dynamics (14) that

[−IN ⊗ P̄ IN ⊗ (P̄ T̄ Ā) − (L + G) ⊗ (P̄ K̄ C̄) − α(IN ⊗ P̄)

∗ −τ 2(IN ⊗ P̄)

]

< 0 (22)

using Lemma 1. We obtain condition (17) directly based on definitions of matrices T̄ ,
Ȳ and W̄ . 
�
Remark 4 Based on Theorem 1, we can determine that the proposed FE design with
H∞ performance can restrain the effects of the term ḟ (t) on the FE error e f (t) and
improve the estimation performance of time-varying faults, which is not considered
effectively in [9]. H∞ performance can also ensure system stability [4]. Considering
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H∞ performance can guarantee stability and robustness of the error dynamics. The
regional pole constraint (17) is introduced to improve FE transient performance [5].
The unified form of actuator and sensor fault estimators makes the presented approach
more comprehensive and convincing.

After that, we can rewrite the FE algorithm as follows

f̂ (t) =
(
IN ⊗ Ī Tr

) ˆ̄x(t) =
(
IN ⊗ Ī Tr

)(
z̄(t) + (IN ⊗ H̄ y(t)

)
(23)

so we can obtain the FE with improved transient performance.

3.3 Existence of Global UIO Design

The global error dynamics (14) indicates that the existence condition of the proposed
UIO is that (IN ⊗ T̄ Ā, (L+G)⊗ C̄) is observable. That is, following modern control
theory, the condition that (IN ⊗ T̄ Ā, (L + G) ⊗ C̄) is observable means

rank

([
s I(n+r)N − IN ⊗ T̄ Ā

(L + G) ⊗ C̄

])

= (n + r)N , ∀s ∈ C (24)

Matrix (L+G) is a symmetric positive definite, and hence, we can obtain (L+G) =
Γ T
Γ , where the orthogonal matrix Γ ∈ R

N×N constitutes the eigenvectors of
(L + G) and Γ TΓ = I , 
 = diag{λ1, λ2, . . . , λN } ∈ R

N×N and λi (i = 1, ..., N )

are eigenvalues of (L + G).

Matrix

[
s I(n+r)N − IN ⊗ T̄ Ā

(L + G) ⊗ C̄

]

can be rewritten as

[
IN ⊗ (s In+r − T̄ Ā)

(L + G) ⊗ C̄

]

, the

pre-multiplying full-rank matrix

[
(Γ T ⊗ In+r ) 0

0 (Γ T ⊗ Ip)

]

and post-multiplying

full-rank matrix
[
Γ ⊗ In+r

]
, we can obtain

rank

([
IN ⊗ (s In+r − T̄ Ā)

(L + G) ⊗ C̄

])

= rank

([
(Γ T ⊗ In+r ) 0

0 (Γ T ⊗ Ip)

] [
IN ⊗ (s In+r − T̄ Ā)

(L + G) ⊗ C̄

]
[
Γ ⊗ In+r

]
)

= rank

([
IN ⊗ (s In+r − T̄ Ā)


 ⊗ C̄

])

=
N∑

i=1

rank

([
s In+r − T̄ Ā

λi C̄

])

(25)

Given that all the eigenvalues of (L + G) are positive, the existence condition of
the proposed UIO design is that the pair (T̄ Ā, C̄) is observable.
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Fig. 1 Communication
topology

4 Simulation Results and Analysis

In this section, an example is given to illustrate the validity of our theoretical results
for a linear multi-agent system. A network of five aircrafts is presented and model
parameters of each aircraft system are given as follows:

A =

⎡

⎢
⎢
⎣

−9.9477 −0.7476 0.2632 5.0337
52.1659 2.7452 5.5532 −24.4221
26.0922 2.6361 −4.1975 −19.2774

0 0 1 0

⎤

⎥
⎥
⎦ ,

B =

⎡

⎢
⎢
⎣

0.4422 0.1761
3.5446 −7.5922

−5.5200 4.4900
0 0

⎤

⎥
⎥
⎦

C =
⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦ ,

D = 0.01
[
1 1 1 1

]T

where state vector xi (t) = [Vh, Vv, q, θ ]T includes horizontal velocity Vh , vertical
velocity Vv , pith rate q, and pitch angle θ . The input vector ui (t) = [δc, δl ]T is
collective pith control δc and longitudinal cyclic pitch control δl .

The communication topology is shown in Fig. 1. The figure shows that the graph
is an undirect graph, and hence, we can conclude that the Laplacian matrix L and
pinning matrix G are

L =

⎡

⎢
⎢
⎢
⎢
⎣

2 −1 0 0 −1
−1 3 −1 −1 0
0 −1 2 −1 0
0 −1 −1 3 −1

−1 0 0 −1 2

⎤

⎥
⎥
⎥
⎥
⎦

, G =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.
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Fig. 2 Simulation results of constant actuator faults
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Fig. 3 FE of fa11(t) and fa31(t) (dotted real faults, solid fault estimates)
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Fig. 4 Simulation results of time-varying actuator faults

Matrix (L + G) can be verified to be nonsingular and its eigenvalues are positive,
i.e., 0.1414, 1.5713, 2.7995, 3.6728, and 4.8150. We take sampling time T = 0.01s,
reference input ui (t) = [0.5, 0.5]T , and unknown input d(t) = 0.1 sin(t). The initial
values of multi-agent systems are set to be nonzero for the all simulations.

4.1 Actuator FE Results

We first consider an actuator fault occurring in the input channel, where the actuator
fault distributionmatrix is E = B. By solving conditions (16) and (17)with the circular
region D(−8, 8), we can obtain the minimum H∞ performance index γ = 0.0626
and the designed matrices K̄ , H̄ , and T̄ as follows
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Fig. 5 FE of fa11(t) and fa21(t) (dotted real faults, solid fault estimates)

K̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.8723 −0.0556 0.4161
−0.0677 2.8116 0.0317
−0.3372 −0.1001 −1.6004
0.4633 0.0271 2.7207
19.3810 1.6622 −10.5803
16.9576 1.0541 −8.5820

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, H̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0011 −0.0000 −0.0011
0.0001 1.0000 −0.0001

−6.5283 −0.7428 8.2712
−0.0006 0.0000 1.0006
30.5269 0.7066 −31.2335
14.2667 −1.7766 −12.4901

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

T̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0011 0.0000 0 0.0011 0 0
−0.0001 0.0000 0 0.0001 0 0
6.5283 0.7428 1.0000 −8.2712 0 0
0.0006 −0.0000 0 −0.0006 0 0

−30.5269 −0.7066 0 31.2335 1.0000 0
−14.2667 1.7766 0 12.4901 0 1.0000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The pair (T̄ Ā, C̄) is verified to be observable, andAssumptions 2 and 3 are satisfied.
We denote the actuator fault vector of the i th aircraft as fai (t) = [ fai1, fai2]T .

First, we assume that constant actuator faults occur in the first and third agents,
which are described as follows:

fa11(t) =
{

0 0s ≤ t ≤ 1s

0.5 1s < t ≤ 10s
, fa12(t) = 0

fa31(t) =
{

0 0s ≤ t ≤ 3s

0.7 3s < t ≤ 10s
, fa32(t) = 0

The others are fault-free, i.e., fa2 = fa4 = fa5 = 0. The simulation results of the
robust UIO-based method are shown in Fig. 2. FE results of fa11(t) and fa31(t) are
zoomed in and illustrated in Fig. 3.
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Fig. 6 Simulation results of time-varying sensor faults

Second, we assume that time-varying actuator faults occur in the first and second
agents to be as follows:

fa11(t) =
{
0 0s ≤ t ≤ 1s

0.5 sin(2.5t − 2.5) 1s < t ≤ 10s
, fa12(t) = 0

fa21(t) =
{
0 0s ≤ t ≤ 2s

0.6 sin(1.5t − 3.0) 2s < t ≤ 10s
, fa22(t) = 0

The others are fault-free, i.e., fa3 = fa4 = fa5 = 0. The simulation results of the
robust UIO-based method are shown in Fig. 4, while the FE results of fa11(t) and
fa21(t) are zoomed in and illustrated in Fig. 5.
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4.2 Sensor FE Results

We consider the case of sensor FE. The sensor fault distribution matrix is assumed to
be F = [1, 0; 0, 1; 0, 0]. By solving conditions (16) and (17) with the circular region
D(−8, 8), we can obtain the minimum H∞ performance index γ = 2.2656 × 10−5

and designed matrices K̄ , H̄ , T̄ as follows

K̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.3575 −0.1722 2.0609
4.4586 2.2003 −5.4479
1.3710 0.5848 −4.1441

−0.0637 −0.0136 2.9200
3.3093 0.1659 −2.1860

−4.4619 0.6316 5.4181

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, H̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0000 0.0000 1.0000
0.0000 −0.0000 1.0000

−0.0000 0.0000 1.0000
−0.0000 0.0000 1.0000
1.0000 −0.0000 −1.0000

−0.0000 1.0000 −1.0000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000 −0.0000 0 −1.0000 0.0000 −0.0000
−0.0000 1.0000 0 −1.0000 −0.0000 0.0000
0.0000 −0.0000 1.0000 −1.0000 0.0000 −0.0000
0.0000 −0.0000 0 0.0000 0.0000 −0.0000

−1.0000 0.0000 0 1.0000 −0.0000 0.0000
0.0000 −1.0000 0 1.0000 0.0000 −0.0000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The pair (T̄ Ā, C̄) is verified to be observable, and Assumptions 2 and 3 are also
satisfied. We denote the i th sensor fault vector as fsi (t) = [ fsi1, fsi2]T and time-
varying sensor faults are assumed as follows:

fs11(t) =

⎧
⎪⎨

⎪⎩

0 0s ≤ t ≤ 3s

0.25 3s < t ≤ 5s

0.5 sin(2t − 30 + �
6 ) 5s < t ≤ 10s

, fs12(t) = 0

fs21(t) =

⎧
⎪⎨

⎪⎩

0 0s ≤ t ≤ 2s

0.3 2s < t ≤ 4s

0.6 sin(2t − 30 + �
6 ) 4s < t ≤ 10s

, fs22(t) = 0

The others are fault-free, i.e., fs3 = fs4 = fs5 = 0. The simulation results of the
robust UIO-based method are shown in Fig. 6. FE results of fs11(t) and fs21(t) are
zoomed in and illustrated in Fig. 7.

Simulation results of both actuator and sensor faults show that as expected, the
proposed robust UIO-based FE approach can obtain high rapidity and accuracy;
this approach can also eliminate effects of unknown inputs. The simulation shows
that the condition of nonzero initial values does not affect the FE of multi-agent
systems.
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Fig. 7 FE of fs11(t) and fs21(t) (dotted real faults, solid fault estimates)

5 Conclusions

In this paper, a robust UIO-based FE that uses the relative output information has been
proposed to utilize the communication topology for multi-agent systems with undi-
rected graphs. A global augmented system is first derived by taking the actuator fault
and sensor fault vector as an auxiliary state vector. Then the cooperative fault estima-
tors are designed. Next, a multi-constrained design based on linear matrix inequality
technique is provided to calculate the UIO gain matrices. Finally, simulation results
show the effectiveness and advantages of the designed robust UIO-based FE approach.
In our future works, FE methods of heterogeneous multi-agent systems and nonlinear
multi-agent systems will be studied.

References

1. J. Chen, R.J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems (Kluwer Academic
Publishers, Boston, 1999)

2. C. Edwards, C.P. Tan, A comparison of sliding mode and unknown input observers for fault recon-
struction. Eur. J. Control 12(3), 245–260 (2006)

3. H. Fang,Y. Shi, J. Yi,On stable simultaneous input and state estimation for discrete-time linear systems.
Int. J. Adapt. Control Signal Process. 25(8), 671–686 (2011)

4. P. Gahinet, P. Apkarian, A linear matrix inequality approach to H∞ control. Int. J. Robust Nonlinear
Control 4(4), 421–448 (1994)

5. G. Garcia, J. Bernussou, Pole assignment for uncertain systems in a specified disk by state feedback.
IEEE Trans. Autom. Control 40(1), 184–190 (1995)

6. Z. Hu, G. Zhao, L. Zhang, D. Zhou, Fault estimation for nonlinear dynamic system based on the
second-order sliding mode observer. Circuits Syst. Signal Process. 35(1), 101–115 (2016)

7. F.L. Lewis, H. Zhang, K.Hengster-Movric, A. Das, Cooperative control ofmulti-agent systems optimal
and adaptive design approaches, inCommunications andControl EngineeringCISNN, ed. byA. Isidori,
J.H. van Schuppen, E.D. Sontag, M. Krstic (Springer, London, 2014)

8. Z. Li, Z. Duan, G.R. Chen, On H∞ and H2 performance regions of multi-agent systems. Automatica
47(4), 797–803 (2011)



542 Circuits Syst Signal Process (2017) 36:525–542

9. G. Liu, K. Zhang, B. Jiang, Adaptive observer-based fast fault estimation of a leader–follower linear
multi-agent systemwith actuator faults, inProceedings of the 34th Chinese Control Conference (2015),
pp. 6340–6344

10. J. Liu, D. Yue, Event-based fault detection for networked systems with communication delay and
nonlinear perturbation. J. Frankl. Inst. 350(9), 2791–2807 (2013)

11. P.P. Menon, C. Edwards, Robust fault estimation using relative information in linear multi-agent net-
works. IEEE Trans. Autom. Control 59(2), 477–482 (2014)

12. N. Meskin, K. Khorasani. Fault detection and isolation of actuator faults in spacecraft formation flight,
in Proceedings of the IEEE Conference on Decision and Control (2006), pp. 1159–1164

13. K.K. Oh, M.C. Park, H.S. Ahn, A survey of multi-agent formation control. Automatica 53, 424–440
(2015)

14. L. Qin, X. He, D.H. Zhou, A survey of fault diagnosis for swarm systems. Syst. Sci. Control Eng. 2(1),
13–23 (2014)

15. W. Ren, R.W. Beard, Distributed consensus in multi-vehicle cooperative control theory and applica-
tions, in Communications and Control Engineering CISNN, ed. by A. Isidori, J.H. van Schuppen, E.D.
Sontag, M. Krstic (Springer, London, 2008)

16. Y. Shi, Y. Deng, W. Zhang, Diagnosis of incipient faults in weak nonlinear analog circuits. Circuits
Syst. Signal Process. 32(5), 2151–2170 (2013)

17. A. Valdes, K. Khorasani, L. Ma, Dymnamic neural network-based fault detection and isolation for
thrusters in formation flying of satellites, in Advances in Neural Networks CISNN, ed. by W. Yu,
H. He, N. Zhang (Springer, Berlin, 2009)

18. A. Valdes, K. Khorasani, A pulsed plasma thruster fault detection and isolation strategy for formation
flying of satellites. Appl. Soft Comput. 10(3), 746–758 (2010)

19. M.Witczak, J. Korbicz,M. Luzar, ALMI-based strategy for H∞ fault estimation of non-linear systems:
application to the multi-tank system, in European Control Conference (2014), pp. 270–275

20. H. Zhang, F.L. Lewis, A. Das, Optimal design for synchronization of cooperative systems: state feed-
back, observer and output feedback. IEEE Trans. Autom. Control 56(8), 1948–1952 (2011)

21. J. Zhang, A.K. Swain, S.K. Nguang, Robust sensor fault estimation and fault-tolerant control for
uncertain Lipschitz nonlinear systems, in American Control Conference (2014), pp. 5515–5520

22. K. Zhang, B. Jiang, P. Shi,Observer-Based Fault Estimation and Accommodation for Dynamic Systems
(Springer, Berlin, 2013)

23. M. Zhou, Y. Shen, Q. Wang, Robust UIO-based fault estimation for sampled-data systems: an LMI
approach, inProceedings of the IEEE International Conference on Information andAutomation (2013),
pp. 1308–1313


	Robust Unknown Input Observer-Based Fault Estimation of Leader--Follower Linear Multi-agent Systems
	Abstract
	1 Introduction
	2 Preliminaries and System Description
	2.1 Graph Theory
	2.2 System Description
	2.3 A Unified Global Augmented System

	3 Main Results
	3.1 UIO Design
	3.2 Calculation of UIO Gain Matrices
	3.3 Existence of Global UIO Design

	4 Simulation Results and Analysis
	4.1 Actuator FE Results
	4.2 Sensor FE Results

	5 Conclusions
	References




