
Circuits Syst Signal Process (2017) 36:219–246
DOI 10.1007/s00034-016-0301-z

Sparsity-Based Direct Data Domain Space-Time
Adaptive Processing with Intrinsic Clutter Motion

Zhaocheng Yang1 · Yuliang Qin2 ·
Rodrigo C. de Lamare3 · Hongqiang Wang2 ·
Xiang Li2

Received: 2 July 2014 / Revised: 11 March 2016 / Accepted: 12 March 2016 /
Published online: 25 March 2016
© Springer Science+Business Media New York 2016

Abstract In this paper, we propose a sparsity-based direct data domain space-time
adaptive processing (D3-STAP) algorithm for airborne radar that considers the intrinsic
clutter motion (ICM). The proposed D3-STAP scheme models the received returns in
the presence of ICM as a sparse measurement model. Then, we derive the principle
of the sparsity-based D3-STAP that uses the focal underdetermined system solution
(FOCUSS)method. The proposedD3-STAPalgorithmestimates the clutter covariance
matrix by a Hadamard product of the covariance matrix taper (CMT) and the clutter
covariance matrix estimate with the FOCUSS technique. In addition, we develop a
CMTadaptation approach for the proposedD3-STAPalgorithm to automatically select
the best CMT. Simulation results show that the proposed algorithm outperforms the
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existing D3-STAP using the least-squares technique and the sparsity-based D3-STAP
algorithm without CMT.

Keywords Space-time adaptive processing · Covariance matrix taper · Intrinsic
clutter motion · Spatio-temporal sparsity · Direct data domain

1 Introduction

Space-time adaptive processing (STAP) techniques usually employ the training data
to design the filters, which requires that the statistics of the training data are the
same as those of the test signal, such as reduced-rank and reduced-dimension meth-
ods (see [7,11,14,26] and the references therein), the parametric adaptive matched
filter (PAMF) approach [20] and sparse beamformers [35,36]. However, in most real
scenarios, the statistics of the training data are different from those of the test signal,
resulting in significant performance degradation of conventional STAP algorithms. On
the other hand, an alternative strategy that uses the received data in the cell under test
(CUT) and requires no training data is developed to avoid estimation distortion caused
by different statistics of the training data. Two types of approaches based on this idea
were proposed: the direct data domain least-squares (D3-LS) STAP approach [24] and
themaximum likelihood estimation detector (MLED) approach [1,4,5], where the first
one was a deterministic approach and the latter one was a statistical processor. Unfor-
tunately, the benefits of these approaches come at the cost of reduced system degrees
of freedom (DOFs) leading to decreased performance. Hybrid detection approaches
combining the STAP algorithms using the training data and those solely using the data
in the CUT were subsequently put forward with improved robustness to nonhomoge-
neous environments [2,30]. Knowledge-aided (KA) STAP methods were developed
to enhance the detection performance, especially in nonhomogeneous environments
(see, e.g., [9,27] and the references therein). Specifically, the authors in [17] intro-
duced a KA parametric covariance estimation (KAPE) scheme by blending both prior
knowledge and data observations within a parameterized model to capture instanta-
neous characteristics of the CUT. But the performance of the KAPE approach relies
on the accuracy of prior knowledge.

Recently, sparsity-based STAP techniques have been considered for applications
in moving target indication (MTI) [15,16,18,21–23,25,31–34]. In [18,23], they sup-
posed that the moving targets in the spatio-temporal plane were sparse and excluded
the clutter ridge with a mask or eliminated the clutter components with conventional
STAPalgorithmsbefore applying a sparse regularization (SR) to theSTAPfilter design.
However, the performance of these methods relies on the accurate prior knowledge
of the clutter ridge or the quantities of the elimination of the clutter components. The
approaches in [15,16] assumed that the entire scene with the target and clutter was
sparse in the spatio-temporal plane and tried to reconstruct both the clutter and the
target. Then, direct target detection was followed by using the reconstructed clutter
and target image. Similar to the above idea, [22,25,32,34] also first reconstructed the
scene with the clutter and the target, or only the clutter, but designed the STAP filter
to suppress the clutter before target detection. Considering the interference with both
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jammers and clutter, the approach in [21] sequentially estimated the jammer, clutter
and target from measurements on passive radar operation, measurements adjacent to
the CUT and measurements in the CUT, respectively. The work in [33] performed a
theoretical analysis on clutter sparsity for a side-looking uniform linear array (ULA)
with constant pulse repetition frequency (PRF), constant velocity and no crab. In [31],
performance analysis and parameters setting of sparsity-based STAP algorithms based
onfive representative fast SR techniqueswere conducted.Comparedwith conventional
STAP algorithms, the above sparsity-based STAP algorithms provide high resolution
of the scene and exhibit significantly better performance in a very small number of
snapshots [21,25,31,32,34] or even a single snapshot in theCUT[15,16,18,22,23,33].

In this work, we develop a sparsity-based D3-STAP algorithm by formulating a
more realistic sparse measurement model for airborne radar that considers the intrin-
sic clutter motion (ICM), whereas none of the above-mentioned sparsity-based STAP
articles addresses the ICM problem. By exploiting the fact that the ICM can be mod-
eled as a Hadamard product of a unitary modulo ”tapering” by the response of clutter
patches associated without the ICM [10] and the properties of the Hadamard prod-
uct, the proposed algorithm can be divided into four steps. First, it applies the focal
underdetermined system solution (FOCUSS) method [12] as a sparse recovery tech-
nique to obtain the target plus clutter estimate. The primary clutter covariance matrix
is sequentially calculated by excluding the target signal using a prior knowledge of
the assumed target spatio-temporal frequencies in the spatio-temporal domain. Then,
it combines the estimated clutter covariance matrix and the received data to adap-
tively estimate the ”covariance matrix taper” (CMT). Third, it obtains the final clutter
covariance matrix estimate by a Hadamard product of the CMT and the previously
estimated clutter covariance matrix. Finally, it designs the STAP filter weights using
the estimated clutter covariance matrix and suppresses the clutter, followed by the
target detection. We consider a different clutter matrix modeling to that of [7,10,17].
Unlike [7,10,17] which employ a conventional STAP with CMT, we employ the SR
framework to model the intrinsic sparsity of the target plus clutter spectrum and to
derive the proposed sparsity-based D3-STAP algorithm. The numerical results show
that the proposed algorithm provides a considerable signal-to-interference-plus-noise
ratio (SINR) improvement compared with the existing D3-STAP algorithms, namely
the D3-LS STAP algorithm and the conventional sparsity-based D3-STAP algorithm.

The main contributions of our paper are listed as follows:

– By introducing a sparse measurement model considering the ICM, a novel sparsity-
based D3-STAP algorithm is proposed. Additionally, related parameter settings are
analyzed.

– In the proposed algorithm, a CMT framework is introduced to overcome the ICM
problem. An efficient adaptive approach is developed to select the best CMT. Fur-
thermore, fast implementations of the proposed algorithm are developed.

– A study and comparative analysis of the proposed algorithm with other existing
STAP algorithms for radar systems is carried out.

The remainder of the paper is organized as follows. In Sect. 2, we first develop
a sparse measurement model considering ICM for airborne radar systems. Then, in
Sect. 3, we derive the proposed sparsity-based D3-STAP algorithm and also discuss
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the performance metrics for the proposed algorithm. Simulated airborne radar data
are used to evaluate the performance of the proposed algorithm in Sect. 4. Section 5
provides the summary and conclusions.

Notation: Scalar quantities are denoted with italic typeface. Lowercase boldface
quantities denote vectors and uppercase boldface quantities denotematrices. The oper-
ations of transposition, complex conjugation, and conjugate transposition are denoted
by superscripts T, ∗, and H , respectively. The symbols ⊗,�, tr represent the Kro-
necker product, Hadamard product and trace operation, respectively. The symbol E [·]
denotes the expected value of a random quantity, ‖x‖p denotes the l p-norm operation
of x , and | · | denotes the absolute operation. 1N and 1N×N represent the N × 1 vector
with N unity-elements and the N × N matrix with all unity-elements, respectively.
Toeplitz(·) denotes the Toeplitz matrix.

2 Sparse Measurement Model

Considering a pulsedDoppler side-looking airborne radarmovingwith constant veloc-
ity vp, we assume that the radar antenna is a ULA which consists of M elements with
inner spacing da . The radar transmits N coherent burst of pulses at a constant PRF fr ,
and the transmitter carrier frequency is fc = c/λc, where c is the propagation velocity
and λc is the wavelength.

In airborne radar, if we discretize thewhole spatio-temporal plane into NsNd (NsNd

� NM) grid points, where Ns and Nd are the number of grid points along the spatial
and temporal/Doppler frequency axes, respectively, a nonzero element from any such
grid point would suggest the presence of a scatterer at that particular spatial and
Doppler frequencies [21]. Thus, the target return can be represented by

xt = �γ t , (1)

where γ t = [γt;1,1, γt;1,2, . . . , γt;Nd ,Ns ]T denotes the NdNs×1 target spatio-temporal
profile with nonzero elements representing the target scatterers. The matrix � is the
NM × NdNs over-completed space-time steering dictionary, as given by

� = [v( fd,1, fs,1), . . . , v( fd,1, fs,Ns ), . . . , v( fd,Nd , fs,Ns )], (2)

where

v( fd,i , fs,k) = vt ( fd,i ) ⊗ vs( fs,k),

i = 1, . . . , Nd , k = 1, . . . , Ns . (3)

is an NM × 1 ideal space-time steering vector with

vt ( fd,i ) = [1, . . . , exp( j2π(N − 1) fd,i )]T , (4)

vs( fs,k) = [1, . . . , exp( j2π(M − 1) fs,k)]T , (5)

indicating the ideal temporal/Doppler and spatial steering vectors, respectively.
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As an approximation to a continuous field of clutter, the clutter return from iso-range
of interest can be modeled as the superposition of a large number Nc of independent
clutter patches that are evenly distributed in angle of arrival (AOA) about the radar
[26]. Then, ignoring the impact of range ambiguities, the clutter component xc can be
represented as

xc = �γ c, (6)

where γ c denotes the NdNs ×1 clutter spatio-temporal profile with nonzero elements
representing clutter patches.

In real applications, in the presence of the ICM, the clutter return can be manifested
as a random modulation of the form [10]

xct = xc � t = (�γ c) � t, (7)

where t = td ⊗ 1M and td , called the temporal decorrelation term, is an N × 1 vector
random process which is uncorrelated with xc. Then, the received signal, composed
of the moving target, the clutter and the receiver thermal noise, can be represented by

x = xt + xct + n, (8)

where the NM × 1 thermal noise vector n is usually assumed to be both spatially and
temporally uncorrelated. On the one hand, because the clutter responses occupy only
a diagonal ridge on the spatio-temporal plane (for the side-looking ULA or a set of
concentric ellipses (for the nonside-looking case) [22], and the number of targets is
limited, the number of nonzero elements in the spatio-temporal profile is much smaller
than the dimension NdNs of that. On the other hand, it is proved that for the case of
side-looking radar with a ULA, constant PRF, constant platform velocity and no crab
angle, there is a groupof space-time steering vectors (whose number is equivalent to the
clutter rank) that can approximately represent the clutter subspace [33].1 Therefore,
there is a high degree of sparsity in the spatio-temporal profile, thereby calling the
model in (8) as the sparse measurement model.

We assume the responses of the clutter are zero-mean, complex Gaussian random
numbers; then, the clutter covariance matrix is given by

Rct = E[xctxHct ] = E[((�γ c) � t
)(

(�γ c) � t
)H ]

= (��c�
H ) � T, (9)

where �c = E[γ cγ
H
c ] = diag(P) is a diagonal matrix, P = E[γ c � γ ∗

c ] denotes the
powers of γ c and

T = E[ttH ] = E
[
(td ⊗ 1M )(td ⊗ 1M )H

]
(10)

1 The clutter rank can be estimated by counting the number of resolution grids that are occupied by the
significant clutter spectrum components [28], which shows a prove for the conclusion in [33].
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is a CMT.2

3 Proposed Sparsity-Based D3-STAP Algorithm

In this section, we detail the principles of the proposed sparsity-based D3-STAP algo-
rithm and the related issues about parameter settings. Then, it is presented an automatic
approach to adjust the CMT of the proposed algorithm. Finally, the performance met-
rics are discussed and introduced for the proposed algorithm.

3.1 Spatio-Temporal Spectrum Estimation

As the conventional sparsity-based D3-STAP algorithm, we first estimate the spatio-
temporal profile γ c. Because NdNs � NM , the space-time steering dictionary � is
ill-conditioned, which results in the solution γ c of x being an underdetermined inverse
problem. In this case, the LS solution usually has a large norm and a poor performance.
From the above section, we note that there is a high degree of sparsity in the target and
clutter spatio-temporal profiles. Motivated by the recent developing SR techniques,
we can obtain the estimates of spatio-temporal profiles by solving the minimization
of the following objective function:

(γ t , γ c) = arg min
γ t ,γ c

L(γ t , γ c)

= arg min
γ t ,γ c

‖x − xt − xct‖22 + κ
∥
∥γ t + γ c

∥
∥
p , (11)

where 0 ≤ p ≤ 1, and κ represents the regularization parameters that provide a
trade-off between the approximation error and the sparsity.

Substituting (7) into (11), we have

L(γ t , γ c) = ∥
∥x − �γ t − (�γ c) � (td ⊗ 1M )

∥
∥2
2

+ κ
∥∥γ t + γ c

∥∥
p . (12)

To solve (12) more effectively, we assume the target is also affected by the temporal
decorrelation td . Then, (12) becomes

L′(γ t , γ c) = ∥∥x − �
(
γ t + γ c

) � (td ⊗ 1M )
∥∥2
2

+ κ
∥∥γ t + γ c

∥∥
p . (13)

The above approximation assumption is justified as follows: (1) the target power is
usually much lower than the clutter power, resulting in the recovery the clutter being
easier than the target, which means that the target may be not recovered when in small

2 Note that the above equation makes use of the fact that (A � B) (C � D)H =
(
ACH

)
�

(
BDH

)
,where

A,B are g × h and C,D are e × h matrices [7].
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target case and the above approximation effects can be ignored. (2) If the target power
is high or comparable to the clutter power, this approximation assumption will lead to
the target energy spreading to the adjacent spatio-temporal grids. But the effects of this
can be mitigated by the developed approach that will be discussed when estimating
the clutter covariance in the parts below.

Conventionally, the amplitudes of the elements in the temporal decorrelation vector
td caused by the ICM are assumed unities,3 such as the commonly used Billingsley
model [7] and the Gaussian model [26]. Define the matrix Q as

Q = diag(td ⊗ 1M ). (14)

Then, Q is an NM × NM diagonal matrix and also orthonormal matrix. Thus, (13)
can be rewritten with the form of (15),

L′(γ t , γ c) =
∥
∥∥Q

[
Q−1x − Q−1�

(
γ t + γ c

) � (td ⊗ 1M )
]∥∥∥

2

2
+ κ

∥∥γ t + γ c

∥∥
p

=
∥∥∥Q

[
Q−1x − �

(
γ t + γ c

) � (Q−1(td ⊗ 1M )
)]∥∥∥

2

2
+ κ

∥∥γ t + γ c

∥∥
p

=
∥∥∥Q

[
Q−1x − �

(
γ t + γ c

)]∥∥∥
2

2
+ κ

∥∥γ t + γ c

∥∥
p . (15)

By exploiting the unitary invariance property of the l2-norm,4 we can discard the
multiplication by Q in the l2-norm term in (15) and obtain [6]

min
γ t ,γ c

L′(γ t , γ c) = min
γ t ,γ c

∥∥
∥Q−1x − �

(
γ t + γ c

)∥∥
∥
2

2
+ κ

∥
∥γ t + γ c

∥
∥
p

= min
γ̃

‖x̃ − �γ̃ ‖22 + κ ‖γ̃ ‖p . (16)

Here, γ̃ = γ t + γ c and x̃ = Q−1x. It is found that the the minimization of the
objective function L′(γ t , γ c) has a similar formulation as that presented by articles
[15,16,18,21–23,25,32–34] when there is no subspace leakage. However, since there
are unknown parameters td in x̃, the above problem cannot be directly solved by the
SR techniques.

Next, we will show how to use the FOCUSS algorithm to estimate γ̃ with the
unknown temporal decorrelation term td . The principle of the FOCUSS algorithm
is to use the weighted l2-norm minimization to operate recursive adjustments to the
weighting matrix until most elements of the solution are close to zero [12]. The basic
form of the FOCUSS algorithm for problem (16) is composed of the following two
steps:

3 This assumption is also seen in CMT methods developed by Guerci in [8].
4 This is where we exploit both the orthogonality of Q and the white Gaussianity of the thermal noise.
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Step1 : Wq = diag(
∣∣γ̃ q−1

∣∣1−p/2
), 0 ≤ p ≤ 1 (17)

Step2 : γ̃ q = Wq(�Wq)
†x̃, (18)

where (A)† = AH
(
AAH

)−1
denotes the pseudo-inverse operation of matrixA. Since

there is an unknown parameter Q in x̃, it can not directly use the above iterations to
estimate γ̃ . We rewrite |γ̃ q | as (19),

∣∣γ̃ q

∣∣ =
∣∣
∣Wq(�Wq)

†x̃
∣∣
∣

=
{(

Wq(�Wq)
†x̃

)
�

(
Wq(�Wq)

†x̃
)∗}1/2

=
{[(

Wq(�Wq)
†
)

�
(
Wq(�Wq)

†
)∗] (

x̃ � x̃∗)}1/2

=
{[(

Wq(�Wq)
†
)

�
(
Wq(�Wq)

†
)∗] (

x � x∗)}1/2

=
{(

Wq(�Wq)
†x

)
�

(
Wq(�Wq)

†x
)∗}1/2

=
∣∣∣Wq(�Wq)

†x
∣∣∣ . (19)

From (19), we observe that Wq is independent of the temporal decorrelation term td
and can be uniquely determined by the received snapshot x and �. In other words, the
presented FOCUSS algorithm, termed as CMT-FOCUSS algorithm, can be operated
in an iterative way with the following two main steps:

Step1 : Wq = diag(
∣
∣γ q−1

∣
∣1−p/2

), 0 ≤ p ≤ 1 (20)

Step2 : γ q = Wq(�Wq)
†x, (21)

The final solution γ̃ q is updated by

γ̃ q = Wq(�Wq)
†x̃

= (Wq(�Wq)
†x) � (td ⊗ 1M ) = γ q � (td ⊗ 1M ). (22)

The iterative process terminates when certain criteria are satisfied, e.g., when the
iteration number achieves a preset limit qmax, or when the relative change in γ between
consecutive iterations being sufficiently small:

∣
∣(γ q − γ q−1)/γ q

∣
∣ ≤ ε (where ε is a

small positive number). Here, we keep the representation of γ̃ q including the unknown
term td . In the following, wewill show that it can estimate the clutter covariancematrix
by estimating the CMT instead of td .

Similar as the derivation of the above proposed CMT-FOCUSS algorithm, other
versions of the FOCUSS algorithms, such as regularized FOCUSS [3,19] and adaptive
regularized FOCUSS [29], can also be applied to solve for problem (16). For space
limitation, further details about parameters setting and implementation issues of the
FOCUSS algorithm are referred to see [3,12,19,29].
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3.2 Target Detection

After obtaining the spatio-temporal spectrum in the CUT with high accuracy, it is
possible tomake a direct amplitude detection in the spatio-temporal domain. However,
this relies onmany conditions, such as a high target’s signal-to-noise ratio (SNR), very
small off-grid errors and sufficient noncoherence of the overcomplete dictionary. In
fact, the columns in the overcomplete dictionary are highly correlated because of
NsNd � NM . Off-grid errors always exist for target and clutter estimation. It is also
hard to make sure there is a high target’s SNR. Therefore, we cannot guarantee a high-
accuracy target estimation from a surrounding strong clutter using SR. But we can
expect to recover significant clutter components, resulting in a good estimation of the
clutter subspace. This is because the clutter to noise is always high and we care much
more about the recovery of the whole clutter subspace than the exact positions of the
clutter components. We can only extract the clutter components to form the adaptive
filter to suppress the clutter and then detect the target. This extraction requires the
prior knowledge of the assumed target spatio-temporal frequencies, which is available
and is also used in the STAP algorithms employing the generalized sidelobe canceler
(GSC-STAP) [11,35], the D3-LS STAP [24] and the MLED [1,4,5]. However, the
differences among them lie that: In GSC-STAP, it uses this prior knowledge to form
the signal blocking matrix; in D3-LS STAP, it uses this prior knowledge to eliminate
the influence of the target signal in the direct data domain; in MLED, it uses this
prior knowledge to form the estimated covariance matrix. Unlike all the algorithms
mentioned above, we use this prior knowledge to exclude the target signal in the
recovered spatio-temporal domain, as also done in [22].

We first determine the signal of interest area ΩSOI in the spatio-temporal plane
using prior knowledge of the target signal as

ΩSOI =
{
(in1, kn1), (in2 , kn2), . . . , (inNSOI , knNSOI)

}
, (23)

where (inm , knm ), 1 ≤ m ≤ NSOI denote the possible indexes of the target signal
in the discretized spatio-temporal plane. The size of NSOI reflects the uncertainty or
the energy spread along the spatial and temporal frequency axes. Then, the estimated
clutter spatio-temporal profile γ̃ c is given by

γ̃c;i,k =
{

γ̃i,k for (i, k) /∈ ΩSOI
0 for (i, k) ∈ ΩSOI

, (24)

where γ̃c;i,k and γ̃i,k are the (i, k)th elements in γ̃ c and γ̃ , respectively. Through this
operation, the effects caused by the assumption of the target signal in (13) can be
mitigated in a sense. Then, the parameter �c in the clutter covariance matrix Rct can
be estimated by

�̂c = diag(P̂) = diag
(
γ̃ c � γ̃ ∗

c

) = diag
(
γ c � γ ∗

c

)
(25)

where it uses the fact that the amplitudes of the elements in td are assumed unities and
γ c represents the clutter spatio-temporal profile directly computed by x, given by



228 Circuits Syst Signal Process (2017) 36:219–246

γc;i,k =
{

γi,k for (i, k) /∈ ΩSOI
0 for (i, k) ∈ ΩSOI

. (26)

Thus, the clutter covariance matrix estimate can be calculated as

R̂ct = (��̂c�
H ) � T̂, (27)

where T̂ denotes the CMT estimate caused by the temporal decorrelation. From (27),
we find that the CMT only operates on the clutter components not on the target. That is
to say the approximation assumption in (13) is reasonable, and target energy spreading
effects are mitigated by excluding the target signal in ΩSOI.

Note that in R̂ct , it requires an estimate of T̂, which have been addressed in a
variety of articles, such as [7,8,10,17,37]. For a land scenario, we can select the
Billingsley model [7] to describe the temporal decorrelation. The only parameters
required to specify the clutter Doppler power spectrum are essentially the operating
wavelength and wind speed. The operating wavelength is usually known, while the
wind speed should be estimated. For a water scenario, we prefer to select the Gaussian
model presented by J. Ward in [26] to estimate T̂. The temporal autocorrelation of the
fluctuations for this model is Gaussian in shape with the form:

ζ(m) = exp

{
−8π2σ 2

v T
2
r

λ2c
m2

}
, (28)

where σ 2
v is the variance of the clutter spectral spread in m2/s2. The CMT T(σv) is

formulated as the form of

T(σv) = Toeplitz (ζ(0), ζ(1) . . . , ζ(N − 1)) ⊗ 1M×M . (29)

In the following simulations, we consider the CMT model of the latter one. It should
be noted that the proposed algorithm firstly estimates the clutter covariance matrix in
exactly the same manner as the existing sparsity-based D3-STAP without CMT, e.g.,
themethod in [22] and then obtains the final clutter statistics by aHadamard product of
the CMT and the previously estimated clutter covariance matrix. Therefore, compared
with the existing sparsity-based D3-STAPwithout CMT, the additional computational
complexity of the proposed algorithm is due to the Hadamard product and the CMT
estimation, i.e., on the order of O((NM)2), resulting in a modest complexity increase.
However, the values of the estimated CMTwill affect the performance of the proposed
algorithm. If there is no prior knowledge of the clutter, an automatically method must
be developed, which will be discussed in the following Sect. 3.4.

Finally,we design the STAPfilter based on a linearly constrainedminimumvariance
(LCMV) approach, which is to minimize the clutter plus noise output power while
constraining the gain in the direction of the desired target signal. The optimal LCMV
STAP filter weight vector is given by
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ŵ =
(
R̂ct + βLI

)−1
s

sH
(
R̂ct + βLI

)−1
s
. (30)

where s is the NM×1 space-time steering vector in the target direction and βL denotes
the diagonal loading factor related to the noise level σ 2

n (which can be estimated by
the receiver when the radar transmitter operates in passive mode [14]. Thus, the STAP
filter output is computed by

y = ŵHx. (31)

3.3 Parameter Settings

There are four important parameters, namely the size of the dictionary NsNd , the
target of interest area ΩSOI, the diagonal loading term βL and the CMT, that must
be estimated or set somehow in the proposed algorithm. Regarding the CMT, it will
develop an adaptive approach to reduce the estimating difficulty in the next subsection.
Regarding the diagonal loading termβL , simulation results will show that the proposed
algorithm is robust to a range of values of βL . In the following, we focus on the
discussions about the settings of NsNd and ΩSOI.

The issue of the the size of the dictionary is also called the grid sampling issue,
which is critical important to the performance of the sparsity-based STAP algorithms.
All the sparsity-based STAP algorithms should be careful to set that. Intuitively, the
denser the gird sampling of the spatio-temporal plane, the better approximation the
described sparsemodel but the higher the computational complexity required by sparse
recovery. Thus, it is a trade-off to choose a suitable gird sampling. We will conduct
discussions from two aspects.

(1) From a point view of correlation:
For a point with temporal frequency fd and spatial frequency fs , the space-time

steering vector is
v( fd , fs) = vt ( fd) ⊗ vs( fs). (32)

The correlation absolute value between v( fd , fs) and v( fd,i , fs,k) in the space-time
steering dictionary is

ρ =
∣∣vH ( fd,i , fs,k)v( fd , fs)

∣∣

NM

=
∣∣∣
∣
sin πM( fs − fs,k)

M sin π( fs − fs,k)
· sin πN ( fd − fd,i )

N sin π( fd − fd,i )

∣∣∣
∣ . (33)

Without loss of generality, Fig. 1a plots the correlation absolute bias value with fd = 0
and fs = 0. It is shown that the correlation absolute value keeps high when con-
straining in a diffraction-limited resolution cell and decays quickly elsewhere. In
other words, for a component with fd and fs , its power mostly lies in the corre-
sponding diffraction-limited resolution cell. The smaller the bias between the true
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spatio-temporal frequencies and the sampling spatio-temporal frequencies, the better
the approximation using the sampling spatio-temporal frequencies. To have a fur-
ther intuitive understanding, Fig. 1b plots the maximal correlation absolute bias value
caused by different grid sampling rates, which is shown that the correlation absolute
bias value is very small when Ns ≥ 4M and Nd ≥ 4N . From this point of view, we
can expect to recover the clutter or target signal approximately when Ns ≥ 4M and
Nd ≥ 4N .

(2) From a point view of the proposed strategy:
For the clutter, we care much more about the recovery of the whole clutter subspace

than the exact positions of the clutter components. In another word, if one of the clutter
components does not exactly lie on the grid, its main power will spread into the most
nearest grids centered at its own spatio-temporal frequency. After the sparse recovery
of the clutter, we do not know the exactly clutter spatio-temporal frequencies but
still can have a good estimation of the clutter subspace. From this point of view, the
influence of the gird-off issue of the proposed algorithm is much less important than
that in the field of direction-of-arrival estimation. Regarding how to sample the grid
points, Melvin and Showman pointed out that it was important to oversample relative
to the diffraction-limited case [17]. Moreover, they provided a good rule of thumb
based on numerical simulations that it is to set the spacing of the steering vectors to
about twenty to thirty percent of the diffraction-limited resolution. That is to say we
should sample the grids with Ns about 4–5 times of M and Nd about 4–5 times of N .
Additionally, the influence of the grid sampling to the performance of the sparsity-
based STAP algorithms has been conducted in the papers, namely [34] and [31]. It was
also shown that the performance improvement was very little based on the simulations
when Ns ≥ 4M and Nd ≥ 4N . The reason for that is: when NsNd is not large enough,
there are serious mismatches between the sampling space-time steering vectors and
those of the true clutter; when NsNd is sufficiently large, the accuracy of the sparse
recovery solution is hardly to improve because of the existence of the noise and high
correlations among the sampling space-time steering vectors. Therefore, it is empirical
to set Ns about 4–5 times of M and Nd about 4–5 times of N .

For the target, if the target does not lie in the grid, the power of the target spreads
to the nearest spatio-temporal frequencies. In the proposed algorithm, we have con-
sidered about this situation and estimate the clutter covariance matrix by excluding
spatio-temporal frequencies in the region ΩSOI. From the discussions about Fig. 1a,
b, we can set the size of the region ΩSOI is about a diffraction-limited resolution cell.
Furthermore, because the off-grid issue is an important one to the target recovery per-
formance, especially in a strong clutter environment,we choose an alternative approach
to detect the target. We consider that the recovering of the target component is not an
easy task and the direct estimation of the target from the surrounding strong clutter
may be unreliable [22]. Therefore, we only extract the significant clutter components
and exclude the unstable target components with the prior knowledge of the assumed
target spatio-temporal frequencies to form the adaptive filter. The above reasons result
that the proposed algorithm is relatively robust to the off-grid issue in the target
recovery.
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3.4 CMT Adaptation

The performance of the proposed approach to estimate the clutter covariance matrix
described in the previous subsections depends on the CMT T. For the Gaussian
model, from (29), the CMT T is related to the clutter spectral spread variance σ 2

v .
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Here, we present an adaptation method for automatically selecting the parameter σv

of the proposed approach. Specifically, we first constrain the parameter σv within a
range of appropriate values (the candidates space of the parameter σv is presented by
Ωσv = {

σv;k |k = 1, 2, . . . , K
}
). In fact, for a typical environment, the typical region

of the clutter spread deviation can be roughly estimated by the knowledge of the gen-
eral clutter type and wind state (for the Gaussian CMT model, the spectral standard
deviation is 2σv/λcHz) [26]. This task is far easier than directly estimate the value
of the clutter spread deviation. Furthermore, even in the case without any knowledge
about the environments, we can set a roughly large value of the region of the clutter
spread deviation. But this may lead to the increase of the number of candidates in the
region of the clutter spread deviation.

In order to select σv in a more appropriate way, we operate this procedure over
a localized region by L adjacent range snapshots in the CUT. Let {xl}Ll=1 denote the
adjacent range snapshots. Then, the best selection of σv relies onminimizing the STAP
filter output with the cost function C(Ωσv ):

σv;opt = argmin
σv

C(Ωσv )

= argmin
σv

1

L

L∑

l=1

∣∣∣ŵH (σv;k)xl
∣∣∣
2

= argmin
σv

1

L

L∑

l=1

∣
∣∣∣∣∣∣

sH
(
R̂′
ct � T(σv;k) + σ̂ 2

n I
)−1

xl

sH
(
R̂′
ct � T(σv;k) + σ̂ 2

n I
)−1

s

∣
∣∣∣∣∣∣

2

, (34)

where
R̂′
ct = ��̂c�

H . (35)

The above criterion is used because the STAP filters satisfy ŵH (σv;k)s = 1 (where
1 ≤ k ≤ K ) and minimizing the STAP filter output |ŵH (σv;k)xl |2 is equivalent to
minimizing the clutter components in the final output. Then the final clutter covariance
matrix estimate can be calculated by

R̂ct = R̂′
ct � T(σv;opt) = (��̂c�

H ) � T(σv;opt). (36)

Since the computational complexity of the proposed CMT adaptation approach
depends on the number of candidates in Ωσv , the larger K , the higher computational
complexity. Thus,we expect to use only a few candidates to achieve good performance.
In the simulations, it will demonstrate that the resulting SINR is relatively invariant
to errors in the estimate of the CMT T and a few candidates will be enough to obtain
an acceptable SINR.

In addition, it should be noted that for each σv;k ∈ Ωσv , a matrix inversion operation
is required in (34). Below, we will develop a fast approach to compute (34), which
can be divided into two steps: the first is to compute the eigenvectors and eigenvalues
of R̂′

ct and the second is to compute the matrix inversion of R̂′
ct � T(σv;k) + σ̂ 2

n I.
Step 1: Compute the eigenvectors and eigenvalues of R̂′

ct .
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Because

R̂′
ct = ��̂c�

H

=
Nd ,Ns∑

(i,k)=(1,1)

P̂i,kv( fd,i , fs,k)vH ( fd,i , fs,k). (37)

Since there is a high degree of sparsity in P̂i,k (in other words, there will be only a
small number of significant elements in P̂i,k5), we can approximate R̂′

ct by

R̂′
ct ≈ R̂′′

ct =
∑

(i,k)=ΩP

P̂i,kv( fd,i , fs,k)vH ( fd,i , fs,k), (38)

where ΩP denotes the index set of significant elements in P̂i,k . From (38), we
note that the eigenvector subspace (denoted as U) of R̂′′

ct is decided by vectors
v( fd,i , fs,k), (i, k) = ΩP . For further reducing complexity, we can take the Gram–
Schmidt orthogonalization procedure on these vectors to compute the eigenvector
subspace instead of singular value decomposition (SVD), where the implementation
steps of the Gram–Schmidt orthogonalization are omitted here, and interested readers
are referred to [13] for further details. Then, the corresponding eigenvalues are also
can be easily calculated by λq = uH

q R̂′′
ctuq , 1 ≤ q ≤ NΩP .

Step 2: Compute the matrix inversion of R̂′
ct � T(σv;k) + σ̂ 2

n I.
For each σv;k ∈ Ωσv , we first compute and prestore the eigenvalues (denotes as

λT(σv;k );q ) and eigenvectors (denotes as uT(σv;k );q ) of T(σv;k), where 1 ≤ q ≤ NM .
Note that T(σv;k) has a block Toeplitz structure, which can be exploited to reduce the
complexity of eigenvalue decomposition [13]. Substituting the computed eigenvalues
and eigenvectors of R̂′′

ct and T(σv;k), we have (39),

R̂′
ct � T(σv;k) ≈ R̂′′

ct � T(σv;k)

=
⎛

⎝
NΩP∑

i=1

λiuiuH
i

⎞

⎠ �
⎛

⎝
NNM∑

j=1

λT(σv;k ); juT(σv;k ); ju
H
T(σv;k ); j

⎞

⎠

=
NΩP∑

i=1

NNM∑

j=1

λiλT(σv;k ); j
(
uiuH

i

)
�

(
uT(σv;k ); ju

H
T(σv;k ); j

)

=
NΩP∑

i=1

NNM∑

j=1

λiλT(σv;k ); j
(
ui � uT(σv;k ); j

) (
ui � uT(σv;k ); j

)H
. (39)

Let ũi, j = ui � uT(σv;k ); j , and we note that vectors ũi, j retain the orthonormality
property (orthogonal and unit norm), proved as follows:

5 Significant elements are defined by those whose powers are higher than the thermal noise level.
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ũH
i, j ũ

′
i , j

′ = (
ui � uT(σv;k ); j

)H (
ui ′ � uT(σv;k ); j ′

)

=
(
uH
i u′

i

)
�

(
uH
T(σv;k ); juT(σv;k ); j ′

)

= δ′
i iδ

′
j j (40)

where δi i ′ and δ j j ′ denote theKronecker delta function. Therefore, thematrix inversion
of R̂′

ct � T(σv;k) can be calculated as

(
R̂′
ct � T(σv;k) + σ̂ 2

n I
)−1

≈
(
R̂′′
ct � T(σv;k) + σ̂ 2

n I
)−1

=
⎛

⎝
NΩP∑

i=1

NNM∑

j=1

λiλT(σv;k ); j ũi, j ũ
H
i, j + σ̂ 2

n I

⎞

⎠

−1

= 1

σ̂ 2
n

⎛

⎝I −
NΩP∑

i=1

NNM∑

j=1

λiλT(σv;k ); j
λiλT(σv;k ); j + σ̂ 2

n
ũi, j ũ

H
i, j

⎞

⎠ . (41)

Substituting (41) into (34), we obtain

C(Ωσv ) = 1

L

L∑

l=1
∣∣
∣∣∣∣∣
∣

sHxl − ∑NΩP
i=1

∑NNM
j=1

λiλT(σv;k ); j
λiλT(σv;k ); j+σ̂ 2

n

(
ũH
i, j s

) (
ũH
i, jxl

)

1 − ∑NΩP
i=1

∑NNM
j=1

λiλT(σv;k ); j
λiλT(σv;k ); j+σ̂ 2

n

∣
∣∣ũH

i, j s
∣
∣∣
2

∣∣
∣∣∣∣∣
∣

2

. (42)

From the above equation,we observe that (34) requires to compute thematrix inversion
for each σv;k ∈ Ωσv , while (42) only needs to calculate simple multiplications using
the eigenvalues and eigenvectors of the matrix R̂′

ct and the prestored eigenvalues and
eigenvectors of T(σv;k). At last, the final STAP filter weight vector ŵ in (30) can be
rewritten as

ŵ =
s − ∑NΩP

i=1

∑NNM
j=1

λiλT(σv;opt ); j
λiλT(σv;opt ); j+σ̂ 2

n

(
ũH
i, j s

)
ũi, j

1 − ∑NΩP
i=1

∑NNM
j=1

λiλT(σv;opt ); j
λiλT(σv;opt ); j+σ̂ 2

n

∣
∣∣ũH

i, j s
∣
∣∣
2 . (43)

3.5 Performance Metrics

Here,wedetail two traditional performancemetrics, i.e., SINR loss andSINR improve-
ment factor, for analyzing the performance of the proposed sparsity-based STAP
algorithm. The output SINR loss is defined as the output SINR performance rel-
ative to the matched filter SNRopt in an interference-free environment (where the
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SNRopt is equivalent to the number of systemDOFs NM multiplying the target power
σ 2
t = E[|αt |2], i.e., NMσ 2

t ) [26], given as

SINRloss = SINR

SNRopt
=

∣∣ŵH s
∣∣2

NM
∣∣ŵHRŵ

∣∣ , (44)

where R is the true clutter plus noise covariance matrix. As pointed in [21], there is
no closed-form statistical characterizations for the estimated clutter covariance matrix
when using the sparsity-based STAP algorithms. Therefore, we use a Monte Carlo
technique to generate the SINR loss performance.

The SINR improvement factor, IF, is as a gain in SINR relative to the input SINR
SINRin on a single channel and a single pulse and defined as

IF = SINR

SINRin
= (1 + CNR)

∣
∣ŵH s

∣
∣2

∣∣ŵHRŵ
∣∣ , (45)

where CNR is defined by

CNR = tr (Rct )

σ 2
n NM

. (46)

Additionally, we define the target’s SNR as [26]

SNR = E[xHt xt ]
σ 2
n NM

, (47)

which is the ratio of the input target power to the input noise. The SINR improvement
factor provides not only the amount of clutter rejection but also the coherent gain on
target due to spatial and temporal beamforming [26].

In addition, to study the effect of various parameters on the SINR, we employ
the average value of the SINR loss or SINR improvement factor over all Doppler
frequencies as composite performance metrics given by

SINRloss =
∫ 0.5

−0.5
SINRloss( f )d f. (48)

IF =
∫ 0.5

−0.5
IF( f )d f. (49)

Similar to the SINR loss, we use a Monte Carlo technique to generate IF,SINRloss
and IF.



236 Circuits Syst Signal Process (2017) 36:219–246

Table 1 Radar system
parameters

Parameter Value

Antenna array Side-looking ULA

Antenna array spacing λc/2

Number of elements in ULA 12

Number of coherent pulses 12

Carrier wavelength λc = 0.3m

Instantaneous bandwidth 5MHz

Transmit taper Uniform

Pulse repetition frequency (PRF) 4000Hz

Platform velocity 300 m/s

Platform height 3000 m

CNR 50dB

The target AOA 0◦
The target signal-to-noise ratio (SNR) 0dB

4 Numerical Results

In this section, we assess the output SINR and Pd performance of the proposed algo-
rithm (shortened as CMT-FOCUSS-D3-STAP algorithm6) using simulated data and
compare it with the conventional sample matrix inversion algorithm (SMI), the D3-LS
STAPmethod in [24], the FOCUSS-D3-STAP algorithm in [22] and the sparsity-aware
beamformer in [35]. Throughout the simulations, unless otherwise stated, the parame-
ters of the simulated scenarios are given in Table 1. The thermal noise is modeled as a
Gaussian white noise with unity power. The clutter and target powers are referred to
the thermal noise power. In the simulations, for the sparsity-based STAP algorithms,
we set Nd = 4N and Ns = 4M for the discretized spatio-temporal plane and set the
diagonal loading factor βL to the noise level in the STAP filter design. We set the
l p-norm to p = 1, the maximum iteration number is 500, and the stopping criterion
is decided by the preset limit relative change of the solution between two adjacent
iterations 10−4. For the D3-LS STAP algorithm, the numbers of temporal and spatial
DOFs used to design the filter weights are N ′ = 7 and M ′ = 7, respectively. For
the SMI algorithm, the number of snapshots without target is 2NM = 288. For the
sparsity-aware beamformer algorithm, the number of snapshots without a target is 100
and the regularization parameter value is set to 0.3. All presented results are averaged
over 300 independent Monte Carlo runs.

6 Regarding the FOCUSS algorithm, theMATLAB code can be downloaded at http://dsp.ucsd.edu/~zhilin/
MFCOUSS.m.

http://dsp.ucsd.edu/~zhilin/MFCOUSS.m
http://dsp.ucsd.edu/~zhilin/MFCOUSS.m


Circuits Syst Signal Process (2017) 36:219–246 237

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Normalized Doppler frequency

S
IN

R
(d

B
)

FOCUSS−D3−STAP

Estimated σ
v
=0.25

Estimated σ
v
=0.5

Estimated σ
v
=1

Estimated σ
v
=2.5

Estimated σ
v
=5

Optimum
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estimated CMT

4.1 Effects of Parameter Settings on Performance

In this subsection, we focus on the effects of parameter settings on the performance
of the proposed algorithm, such as the estimated CMT, the diagonal loading term βL

and the target region ΩSOI.
In the first example, we evaluate the effect of the estimated CMT on the SINR

performance for the proposed algorithm. We consider the ICM with σv = 1 and
assume the estimated CMT with six different values, i.e., σ̂v = 0, 0.25, 0.5, 1, 2.5, 5,
where σ̂v = 0 corresponds to the FOCUSS-D3-STAP algorithm. Figure 2 depicts
the SINR loss against normalized target Doppler frequency. The curves suggest
that the proposed CMT-FOCUSS-D3-STAP algorithm outperforms the conventional
FOCUSS-D3-STAP algorithm, and the resulting SINR is relatively invariant to errors
in the estimate of the CMT, e.g., the proposed algorithms with σ̂v = 1, 2.5, 5 provide
close performance.

In the second example, we access the effect of the assumed target region ΩSOI on
the performance of the proposed algorithm. We consider the ICM with σv = 1 and
assume the estimated CMTof the proposed algorithmwith σ̂v = 2. As shown in Fig. 3,
we see that it provides the best performance when the assumed target region ΩSOI is
a diffraction-limited resolution cell, which validates the analysis in Sect. 3.3.

In the third example, we consider the sensitiveness of the diagonal loading term
βL in the filter (30) to the performance of the proposed algorithm. The assumed
target region ΩSOI is set to be a diffraction-limited resolution cell, and other simu-
lation parameters are the same as those in the second example, except for βL . The
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results are plotted in Fig. 4. The curves show that the proposed algorithm exhibits
robust performance for a range of values of the diagonal loading term βL , i.e.,
βL = −20,−15,−10,−5, 0dB to the true noise level.

4.2 Comparisons with Existing Algorithms

In this subsection, we focus on the performance comparisons between the the proposed
algorithm and other existing algorithms.
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To have a comparable convergence performance with the existing STAP perfor-
mance using training data, we illustrate the SINR loss against the number of snapshots
in Fig. 5. In this example, we consider the ICMwith σv = 1 and assume the estimated
CMT of the proposed algorithm with σ̂v = 2. In addition, we keep the target nor-
malized Doppler frequency of 0.3 for all algorithms. Because the D3-type STAP
algorithms, i.e., the D3-LS STAP algorithm, the FOCUSS-D3-STAP algorithm and
the proposed CMT-FOCUSS-D3-STAP algorithm, only use the snapshot in the CUT,
the SINR performance keeps invariant with the increase of snapshots. While the SINR
performance of the conventional SMI algorithm and the sparsity-aware beamformer
algorithm increases as the number of snapshots increases. Thus, the D3-type STAP
algorithms exhibit a significant performance improvement over the standard SMI algo-
rithm and the sparsity-aware beamformer algorithmwhen the number of IID snapshots
is very low, e.g., in seriously nonhomogeneous environments.

In the second example, we compare the performance of the proposed CMT-
FOCUSS-D3-STAP algorithm using CMT adaptation with other existing STAP algo-
rithms in four different ICM cases, namely σv = 0.25, 0.5, 1, 5. In the simulation, we
set the candidates space of the parameter σv as Ωσv = {σv;k = 0.1, 0.3, 0.9, 1.5, 2.5,
5, 6}. The clutter eigenspectrum for different levels of ICM is illustrated in Fig. 6. As
the velocity standard deviation σv increases, the tails of the eigenspectrum become
larger as the clutter rank increases. Figure 7a–d plots the SINR loss against target
Doppler frequency of different STAP algorithms with the above-mentioned levels
of ICM. From the figures, we observe that: (i) the proposed CMT-FOCUSS-D3-
STAP algorithm outperforms the FOCUSS-D3-STAP algorithm and the D3-LS STAP
algorithm in almost all Doppler bins; (ii) as σv increases, the performance of the
FOCUSS-D3-STAP algorithm and the D3-LS STAP algorithm degrades significantly
while the proposed CMT-FOCUSS-D3-STAP algorithm provides relative robustness
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to the ICM. This is because the proposed algorithm employs a CMT to overcome
the effects of the ICM. Furthermore, compared with the results of the proposed algo-
rithm in Figs. 2 and 7c, it implies that the proposed CMT adaptation approach can
efficiently select the best CMT to suppress the clutter. In addition, we also observe
that the proposed algorithm performs worse than the SMI algorithm and the sparsity-
aware beamformer algorithm in the normalized Doppler range of −0.2 to 0.2. That is
because: on the one hand, some clutter components may also be excluded by using the
target region ΩSOI when the target is close to the clutter ridge. On the other hand, it
should be noted that the numbers of snapshots used in the SMI and the sparsity-aware
beamformer algorithmare 288 and 100 respectively,while the proposed algorithmonly
uses the snapshot in the CUT. When in seriously nonhomogeneous environments, the
performance of the SMI algorithm and the sparsity-aware beamformer algorithm will
be seriously affected because of the snapshot deficiency.

Because the target component will be included in the recovered spatio-temporal
profile, in this example, we evaluate the effect of SNR on the Pd performance of the
proposed algorithm with adaptive CMT approach, as shown in Fig. 8. In the simula-
tions, we keep the ICM with σv = 1 and the CNR 50dB. The false alarm rate (Pf a)

is set to 10−3, and for simulation purposes the threshold and probability of detection
estimates are based on 1000 samples. Furthermore, we consider a scenariowith a target
not close to the clutter ridge (normalized Doppler frequency 0.3) and another scenario
with a target close to the clutter ridge (the normalized Doppler frequency 0.1). The
other parameters are the same as those in the previous examples. From the figures,
it is found that although the performance of the proposed algorithm degrades when
the target is close to the clutter ridge, it always provides higher detection performance
than the conventional FOCUSS-D3-STAP algorithm.
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Fig. 7 Comparison of SINR
loss against target Doppler
frequency of different STAP
algorithms with different levels
of ICM. a σv = 0.25; b
σv = 0.5; c σv = 1; and d
σv = 5
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Fig. 8 Pd performance versus target’s SNR

To have a further comprehensive analysis of the effect of SNR on the proposed
algorithm, average SINR loss performance versus different levels of SNR for different
STAP algorithms are plotted in Fig. 9. Here, we consider five different cases of SNR,
i.e., SNR = −10, 0, 10, 20, 30dB. The results show that when the SNR is slightly
higher than the noise power but far lower than the clutter power, i.e., SNR = 10dB, the
SINR improvements of the proposed algorithm and the FOCUSS-D3-STAP algorithm
slightly degrade. This is due to the fact that, in this situation, it is hard to accurately
recover the target components resulting in some target energy spreading to other
elements of the spatio-temporal profile. It is interesting that the smaller the target
energy, the smaller effect the target signal to the estimated clutter covariance matrix.
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Fig. 9 Average SINR loss performance versus different levels of SNR
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In other words, the proposed algorithm can obtain a larger SINR improvement in weak
target detection.

In the final example, we assess the effect of CNR on SINR performance for the
proposed algorithm. In the simulations, we keep the ICM with σv = 1 and the SNR
0dB, but vary the CNR, i.e., CNR = 30, 40, 50, 60dB. The other parameters are the
same as previous examples. Figure 10 depicts the clutter eigenspectrum for different
levels of CNR. Seen from the figure, it is noted that as CNR increases, the clutter
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Fig. 11 Comparison of average SINR loss and average IF against different levels of CNR. aAverage SINR
loss. b Average IF

rank increases and the tails of the eigenspectrum become larger. Figure 11a, b plots
the average SINR loss and average IF performance versus different levels of CNR for
different STAP algorithms. The curves show that the proposed CMT-FOCUSS-D3-
STAP algorithm exhibits relative more robustness to the CNR than the FOCUSS-D3-
STAP algorithm and the D3-LS STAP algorithm. It also should be noted that the SMI
algorithm and the sparsity-aware beamformer algorithm provide the best robustness
performance against different levels of CNR. This is because the SMI algorithm and
the sparsity-aware beamformer algorithm use many snapshots to estimate the clutter
covariance matrix. However, the D3-type STAP algorithms only use the snapshot in
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the CUT, resulting in some deficiency of the estimated clutter power. Through the
CMT, the proposed CMT-FOCUSS-D3-STAP algorithm can mitigate the deficiency
of the estimated clutter power in a sense.

5 Conclusions

In this paper, we have proposed a sparsity-based D3-STAP algorithm by formulat-
ing a more realistic sparse measurement model for airborne radar that considers the
ICM. It first derived the principle of the sparsity-based D3-STAP algorithm based
on the FOCUSS technique, which illustrated that the proposed algorithm estimates
the clutter covariance matrix by a Hadamard product of the CMT and the clutter
covariance matrix estimates with the SR technique. Furthermore, a CMT adaptation
approach for the proposed algorithm was developed to automatically select the best
CMT. The results with different scenarios in an airborne radar system have showed that
the proposed algorithm outperforms the D3-LS STAP algorithm and the conventional
sparsity-based D3-STAP algorithm and is expect to obtain much better performance
than the SMI algorithm and the sparsity-aware beamformer algorithm in heteroge-
neous environments. In future, we will extend our model to incorporate more realistic
physical effects, such as channel mismatch, antenna array misalignment and range
walk.
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