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Abstract In this paper, we design three-band time–frequency-localized orthogonal
wavelet filter banks having single vanishing moment. We propose new expressions to
compute mean and variances in time and frequency from the samples of the Fourier
transform of the asymmetric band-pass compactly supported wavelet functions. We
determine discrete-time filter of length eight that generates the time–frequency optimal
time-limited scaling and wavelet functions using cascade algorithm. Time–frequency
product (TFP) of a function is defined as the product of its time variance and fre-
quency variance. The TFP of the designed functions is close to 0.25 with unit Sobolev
regularity. Three-band filter banks are designed by minimizing a weighted combina-
tion of TFPs of wavelets and scaling functions. Interestingly, empirical results show
that time–frequency optimal, filter banks of length nine, designed with the proposed
methodology, have unit Sobolev regularity, which is maximum achievable with single
vanishing moment. Design examples for length six and length nine filter banks are
given to demonstrate the effectiveness of the proposed design methodology.

B Dinesh Bhati
bhatidinesh@gmail.com

Manish Sharma
manishsharma@ee.iitb.ac.in

Ram Bilas Pachori
pachori@iiti.ac.in

Sujath S. Nair
nairsujath@gmail.com

Vikram M. Gadre
vmgadre@ee.iitb.ac.in

1 Department of Electrical Engineering, Indian Institute of Technology Bombay, Bombay, India

2 Discipline of Electrical Engineering, Indian Institute of Technology Indore, Indore, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-016-0286-7&domain=pdf


4502 Circuits Syst Signal Process (2016) 35:4501–4531

Keywords Dyadic factorization · Sobolev regularity · Time–frequency localization ·
Vanishing moment · Cascade algorithm · Frequency domain sampling

1 Introduction

In the last two decades, the wavelet filter banks have gained a lot of interest to generate
wavelet series expansions for finite energy functions. Time–frequency-localized and
smoothwavelet basis functionswith compact support are important in applications like
signal analysis [10] and image coding [26,39] . Cascade algorithm is used to generate
time-limited scaling and wavelet functions from filters of the wavelet filter bank. In
cascade algorithm,wefirst generate the iterated sequence by convolving the upsampled
filters [51]. The iterated sequence is interpolated and depending on the convolution
sequence of upsampled filters scaling or wavelet function is generated. Under certain
conditions, cascade iterations of low-pass filter converge to a unique smooth function
f (t) ∈ L2(�) [51]. In all practical applications, finite number of cascade iterations are
sufficient to generate wavelet expansion of signal under consideration [5]. For time–
frequency analysis of functions f (t) ∈ L2(�), the scaling and wavelet functions
must be regular [27] as well as localized simultaneously in time and frequency. Since
these functions are generated from cascade iterations of low-pass filter, the low-pass
filter can be optimized for time–frequency localization. However, time–frequency-
localized low-pass filter do not ensure that scaling function generated at the finite
cascade iteration is optimally localized in both time and frequency. In other approach,
the scaling function at any i th cascade iteration may be optimized for time–frequency
localization with respect to the coefficients of the scaling filter. In cascade algorithm,
the iterated sequence is interpolated by normalized and scaled piece-wise constant
box function [51]. The frequency variance of the piece-wise constant box function
is infinite, and it cannot be used to design time–frequency-localized wavelet basis
functions. In this paper, we propose to interpolate the normalized iterated sequence by
a smooth-edged normalized box functionwith finite frequency variance.We determine
the Fourier transform of the interpolated function and compute its samples such that
sample spacing satisfies the dual of the Nyquist criterion. According to the duality of
the Nyquist criterion and spectral sampling theorem [23], under certain conditions, a
time-limited function is uniquely determined by the samples of its Fourier transform.
We further derive the expressions formean and variances in time and frequency domain
from the samples of the Fourier transform. The developed expressions for variances
are subsequently used to minimize variances of scaling or the wavelet function to
design time–frequency optimal wavelet filter banks. In the literature, computation of
variances in time and frequency from the samples of the band-limited zero-phase
function is discussed by Venkatesh et al. [50]. The limitations of variance expressions
proposed by them are as follows:

1. These expressions are not applicable to time-limited functions.
2. These expressions are not applicable to asymmetric functions.
3. These expressions are not applicable to band-pass functions.

In this paper, we generalize the expressions proposed by them to arbitrarymean in time
and frequency domain. We have used duality and the samples of Fourier transform to
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extend the expressions of variances proposed by them for band-limited functions to
time-limited functions.

Time–frequency localization of a function is often measured by the product of its
time variance and frequency variance which is generally called time–frequency prod-
uct (TFP). Gabor’s uncertainty principle states that functions cannot be well localized
in time and frequency simultaneously and that the TFP is bounded below by 0.25 [10].
Chui et al. [6] modified the definition of frequency variance and showed that the same
lower bound for the TFP holds even for band-pass functions. Venkatesh et al. [50]
studied the limitations of the discrete-time uncertainty principle proposed by Ishii and
Furukawa [16] and proposed new expressions for variances from the samples of zero-
phase low-pass band-limited functions. In this work, we propose new expressions for
mean in time domain and mean in frequency domain from the samples of the Fourier
transform of the function and extend the definitions proposed by Venkatesh et al. [50]
to asymmetric low-pass and band-pass functions. We design TFP optimal compactly
supported scaling and wavelet functions. We further extend the design of TFP optimal
functions from orthogonal three-band perfect reconstruction filter bank (PRFB).

Often, wavelets are constructed from two-band wavelet filter banks. However,
wavelets constructed from M-band filter banks exhibit interesting features such
as more flexible time–frequency tiling and excellent analysis of narrowband high-
frequency signals [11,40]. M-band filter banks provide orthogonality and linear phase
simultaneously, which is not possible in the case of two-band filter banks [7]. M-band
orthogonal wavelets can be generated from the regularM-band paraunitary filter banks
[40]. Several criteria such as perfect reconstruction (PR), frequency selectivity, coding
gain, regularity and time–frequency localization are used for designing filter banks.
Various designmethods and filter bank structures have been proposed to design regular
M-band PRFB [5,7,11]. It has been shown by the authors, Shen and Shen [39], Monro
and Sherlock [26] and Tay et al. [46] that time–frequency-localized wavelets improve
the performance in applications such as image compression and signal analysis. To
obtain time–frequency optimal wavelet bases, either the filters of a regular PRFB can
be optimized for time–frequency localization [26,37,38,44,45,47] or wavelet func-
tions generated by a finite number of cascade iterations of filters can be optimized
[21,36,54]. Time–frequency optimal M-band filter banks are designed by Tay et al.
[48]. In this study, filters are optimized for their time–frequency localization. However,
authors have designed only filter banks with an even number of subbands. Haddad et
al. [12] evaluate discrete-time and continuous-time uncertainty for some well-known
M-band filter banks. To the best of our knowledge, no literature is available on the
design of time–frequency optimal M-band wavelet bases with M > 2, where M is
odd. In this paper, we present the design of three-band time–frequency-optimized
orthogonal filter banks.

Recently, there have been a lot of research in the area of three-band PRFBs. Three-
band filter banks have shown improved performance in digital watermarking [3,19]
and image denoising [55]. A hybrid of two- and three-band filter banks has shown
excellent performance in image coding [34]. Many authors have proposed various
design methodologies for the design of three-band filter banks. Tilo S. [43], Howlett
and Nguyen [15] and Jayawardena [17] proposed three-band biorthogonal wavelet fil-
ter banks. Chui and Lian [7], Zhao and Zhao [55], Lizhong and Wang [25] and Lin et
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al. [24] designed orthogonal wavelet filter banks. However, time–frequency localiza-
tion is not used as the optimality criterion. The three-band time–frequency-localized
orthogonal wavelet filter bank of length six is designed by Bhati et al. [2]. In this
study, authors minimized TFP of wavelet and scaling functions employing Gabor’s
uncertainty principle [10] for continuous-time function in L2(�). Gaussian functions
are optimal functions which achieve the lower bound. However, Gaussian functions
are not compactly supported in time domain [10]. Venkatesh et al. [50] computed the
samples of time–frequency product optimal function which is compactly supported
in frequency domain. In this paper, our goal is to design three-band time–frequency
optimal orthogonal wavelets with compact support in time domain. We formulate
four new expressions that compute the time mean, frequency mean, time variance
and frequency variance of compactly supported functions from the samples of the
Fourier transform of the function. We design three-band orthogonal time–frequency
optimal wavelet filter banks of lengths six and nine. Unlike the methodology in [2],
the developed expressions for TFP for time-limited function have been used for design
of time–frequency optimal wavelet filter banks. On the other hand, the variance defi-
nitions used by Bhati et al. [2] and Xie and Morris [54] involve numerical integration
in order to compute variance from the samples of the function. In addition to this, the
regularity of filter bank is necessary if we design time–frequency-localized filter bank
with the TFP expression used in [2]. In this paper, we have shown that the proposed
expression for the TFP eliminates this limitation and even non-regular filter banks
can be optimized for time–frequency localization. As an example, we design TFP
optimal low-pass scaling function from the scaling filter without zeros on the aliasing
frequencies. This scaling function cannot be designed using the TFP expression used
in [2].

In this paper, we use dyadic factorization of polyphase matrix proposed by
Vaidyanathan [49] for the implementation of orthogonal M-band filter bank. Thus,
filter bank regularity and orthogonality, or equivalently, vanishing moments (VMs)
are imposed structurally [5]. A parametrization-based technique [54] is used to min-
imize a weighted summation of TFPs with respect to free parameters to obtain a
time–frequency-localized filter bank. We compare length six and length nine filter
banks with respect to time–frequency optimality. The proposed design methodology
has following features:

1. Time–frequency localization measures for time-limited functions are formulated
and employed in the design methodology to generate time–frequency optimal
wavelet bases with compact support.

2. We can design TFP optimal time-limited scaling and wavelet functions using
the proposed methodology. These functions can be generated from finite length
discrete-time sequences using cascade algorithm.

3. We can control the time–frequency products of wavelets by choosing different
weights.

4. We use dyadic factorization of polyphase matrix proposed by Vaidyanathan [49]
for the implementation of orthogonal three-band filter bankwhich ensures a search
over the complete class of finite impulse response (FIR) filter bank for the given
length.
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5. Single VM and orthogonality constraints are imposed structurally [5], and there-
fore, the filter bank design problem becomes an unconstrained optimization
problem.

6. It is well known that the maximum Sobolev regularity that can be achieved with
single VM is one [13]. We found that all filter banks of length nine with single
VM designed in this paper have Sobolev regularity of one. Thus, the proposed
methodology designs maximal Sobolev regularity filter banks with single VM
provided sufficient number of degrees of freedom are available.

7. Unlike Daubechies [8] and Strang [41] conditions of regularity, the proposed
design methodology provides direct and arbitrary fine control on the frequency
variance of the scaling function.

8. M-band, time–frequency optimal, wavelet filter banks can be designed with the
proposed methodology with M odd or even.

The rest of the paper is organized as follows. In Sect. 2, we derive the expressions for
mean and variances for asymmetric band-pass time-limited functions from the samples
of the Fourier transform of the function. Section 3 illustrates a method to compute
the Fourier transform of the scaling and wavelet function at the i th cascade iteration.
Samples of the Fourier transform are then used to obtain the TFP of scaling andwavelet
functions. In Sect. 4, we use the proposed measure for TFP and the cascade algorithm
to design TFP optimal scaling and wavelet functions. Three-band time–frequency
optimal, orthogonal, single VM, length six and length nine filter banks are designed
in Sect. 5. Finally, results and conclusions are given in Sects. 6 and 7, respectively.

2 Computation of Time and Frequency Variances from Samples of
Fourier Transform

According to the dual of the Nyquist criterion, under certain conditions, a time-limited
function is uniquely determined by the samples of its Fourier transform [23]. In this
section, our goal is to develop time and frequency variance expressions for time-limited
functions using samples of the Fourier transform of the function. We briefly present
the methodology proposed by Venkatesh et al. [50], to compute the variances from
the samples of the zero-phase low-pass band-limited function. We show that duality
can be used to extend the expressions proposed by them for band-limited functions to
time-limited functions. In this section, we formulate four expressions that compute the
time mean, frequency mean, time variance and frequency variance from the samples
of the Fourier transform of a time-limited function.

Let f (t) ∈ L2(�) be a real function and F(Ω) is its Fourier transform. Let E =
|| f (t)||22 is the energy of the function. The time variance �̂2

t and frequency variance
�̂2

Ω of f (t), centered in time and frequency at μt and μΩ , respectively, are defined
as [31,53],

μt ( f (t)) = 1

E

∫ ∞

t=−∞
t | f (t)|2dt (1)

�̂2
t ( f (t)) = 1

E

∫ ∞

t=−∞
|(t − μt ) f (t)|2dt (2)
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�2
t ( f (t)) = 1

E

∫ ∞

t=−∞
|t f (t)|2dt (3)

μΩ( f (t)) = 1

πE

∫ ∞

Ω=0
Ω|F(Ω)|2dΩ (4)

�̂2
Ω( f (t)) = 1

πE

∫ ∞

Ω=0
|(Ω − μΩ)F(Ω)|2dΩ (5)

�2
Ω( f (t)) = 1

2πE

∫ ∞

Ω=−∞
|ΩF(Ω)|2dΩ (6)

It should be noted that,

�̂2
t ( f (t)) = �2

t ( f (t)) − (μt ( f (t)))
2 (7)

�̂2
Ω( f (t)) = �2

Ω( f (t)) − (μΩ( f (t)))2 (8)

2.1 Computation of Time and Frequency Variances of Zero-Phase Low-Pass
Band-Limited Functions from Samples

Venkatesh et al. [50] attempted to interpolate the samples of band-limited function,
using an interpolation scheme and then measured its continuous-time time variance
and frequency variance. The proposed expressions are consistent with traditional
continuous-time definitions of variances; however, the expressions developed are
applicable only to zero-phase, low-pass, band-limited functions. If the time center
μt of the low-pass function is not zero, i.e., if the function is not symmetric then pro-
posedmeasures require amodificationwhich is suggested in this section. Similarly, the
measure proposed by them cannot be used for computing variances of band-pass func-
tions. In this section, we have proposed a measure to compute variances of band-pass
functions.

2.1.1 Brief of Venkatesh et al. Work [50]

Real-world signals such as speech and image have a spectrum which is negligibly
small beyond a certain frequency. Such signals can be modeled as band-limited func-
tions. The Shannon–Whittaker theorem [28] facilitates the processing of band-limited
continuous-time signals on a computer, taking its discrete-time samples. It states that
under certain conditions, the band-limited signal can be uniquely represented by its
discrete samples. Intuitively, continuous-time and discrete-time variances for band-
limited functions must be the same [50]. Let,

D2
n =

∞∑
n=−∞

n2| f [n]|2



Circuits Syst Signal Process (2016) 35:4501–4531 4507

and

D2
ω = 1

2π

∫ π

−π

ω2|F(e jω)|2dω

represent the time variance and frequency variance of the normalized sequence f [n],
respectively, where f (nTs) are samples of zero-phase low-pass band-limited func-
tion f (t) [16]. Then, it is observed that D2

n �= �2
t ( f (t)) and D2

ω �= �2
Ω( f (t))

even for band-limited functions. Venkatesh et al. [50] proposed new definitions for
discrete-time variances that remove this inconsistency between the existing discrete-
time definitions

(
D2
nandD

2
ω

)
and continuous-time definitions. Results have been

demonstrated for standard test functions like band-limited triangular and half-cosine
functions. Further, they computed the samples of TFP optimal zero-phase low-pass
band-limited functions.

They interpolate the samples f (kTs), k ∈ Z of the band-limited function f (t) ∈
L2(�), that satisfies the following condition,

F(Ω) = 0, ∀ |Ω| ≥ σ

assuming sampling interval Ts < π/σ . Standard sinc interpolation cannot be used as
the time variance of the sinc function is infinite. They refine the spectrum of the sinc
function by modifying discontinuous edges to smooth edges as shown in Fig. 1 and
propose G(Ω),

G(Ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ts
2

[
cos

(
π(Ω+σ)

ε

)
+ 1

]
: −σ − ε ≤ Ω < −σ

Ts : −σ ≤ Ω ≤ σ

Ts
2

[
cos

(
π(Ω−σ)

ε

)
+ 1

]
: σ < Ω ≤ σ + ε

0 : elsewhere

(9)

as the Fourier transform of the interpolating function. In (9), the parameter ε controls
the transition band of G(Ω). The interpolated function f (t) is then substituted in (3),
and it is shown that �2

t ( f (kTs)) in terms of the samples is given by,

�2
t ( f (kTs)) = 1

2πE

∑
n∈Z

∑
m∈Z

f (nTs) f (mTs)

(
m2 + n2

2
T 2
s A(m, n) + B(m, n)

)

(10)
where

A(m, n) = 2σT 2
s δmn

+ T 2
s (−1)(m−n)

2

[
ε
sin((m − n)Tsε)

(m − n)Tsε
+ sin((m − n)Tsε)

2

2(m − n)Ts

(π
ε
)2 − (m − n)2T 2

s

]

+ T 2
s (−1)(m−n)

2

⎡
⎣ε

sin((m − n)Tsε)

(m − n)Tsε

⎛
⎝1 −

1
2[

1 − (
(m−n)Tsε

2π )
2]
⎞
⎠
⎤
⎦
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Fig. 1 Fourier transform G(Ω) of band-limited interpolating function [50]

and,

B(m, n) = 1

4ε

sin((m − n)Tsε)

(m − n)Tsε

T 2
s π2(−1)m−n[

1 −
(

(m−n)Tsε
2π

)2]

σ = π

Ts
− ε.

Let F(e jω) represent the discrete-time fourier transform (DTFT) of samples f (kTs)
given in [28],

F(e jω) =
∞∑

k=−∞
f (kTs)e

− jωk

The Fourier transform F(Ω) of band-limited function f (t) and DTFT F(e jω) are
related by [28],

F(Ω) =
{
Ts F(e jΩTs ) : ∀|Ω| ≤ π

Ts
0 : elsewhere

(11)

They substitute F(Ω) from (11) in (6) and show that �2
Ω( f (kTs)) is given by,

�2
Ω( f (kTs)) = 1

2πTs E

[
2π3

3

∑
n∈Z

f 2(nTs)

+
∑
n∈Z

∑
m∈Zm �=n

4π(−1)(m−n)

(m − n)2
f (mTs) f (nTs)

]
(12)
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Let f be the column vector of samples f (kTs). Then, �2
t ( f (kTs)) and �2

Ω( f (kTs))
can be represented as,

�2
t (f) = 1

2πE
(fHSvf) (13)

�2
Ω(f) = 1

2πTs E
(fHBvf) (14)

where

Sv(m, n) = m2 + n2

2
T 2
s A(m, n) + B(m, n)

and,

Bv(m, n) =

⎧⎪⎨
⎪⎩

2π3

3 : m = n

4π(−1)m−n

(m−n)2
: m �= n

(15)

Here, H represents theHermitian transpose. In the next section,weworkwith functions
which are not necessarily centered in time domain and frequency domain both. We
derive the expressions for μt (f), μΩ(f), �̂2

t (f) and �̂2
Ω(f) in terms of samples f of

the band-limited function.

2.2 Expressions for Mean and Variance in Time and Frequency for
Band-Limited Functions From Samples

2.2.1 Time Center

Time center or mean in time μt of a function f (t) ∈ L2(�) is defined in (1). We first
interpolate the samples f (nTs), n ∈ Z, sampled at Ts < π

σ
, using an interpolation

scheme proposed by Venkatesh et al. [50] and obtain the continuous-time function.
The interpolation scheme is given by,

f (t) =
∞∑

n=−∞
f (nTs)g(t − nTs) (16)

where the Fourier transform G(Ω) of the band-limited function g(t) is given by (9).
Then, as shown in ‘Appendix’ section Mean in Time From Samples of Band-limited
Function, μt (f) is given by,

μt (f) = 1

2πE
(fHSμf) (17)

where

Sμ = C1 + C2 + nTsA
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[m, n]th element of matrices are given as follows.

C1(m, n) = j

4

π2T 2
s e

j (−π+Tsε)(m−n)(3π2e− jTs (m−n)ε + K1(m, n))

K2(m, n)

C2(m, n) = − j

4

π2T 2
s e

− j (−π+Tsε)(m−n)(3π2e jTs (m−n)ε + K1(m, n))

K2(m, n)

K1(m, n) = 5π2 − 2T 2
s (m − n)2ε2

K2(m, n) = T 4
s (m − n)4ε4 − 5π2T 2

s (m − n)2ε2 + 4π4

2.2.2 Time Variance

Venkatesh et al. [50] strictly assumeda real-valued functionwith zeromean in time, and
their definition can be used to compute the time variance of time-centered, symmetric,
low-pass functions. For functions, which are not time-centered, time variance �̂2

t (f)
is defined in (7), where �2

t (f) and μt (f) are given by (13) and (17), respectively.

Frequency Center

Frequency center or mean frequency of real-valued low-pass functions is zero. The
mean frequency, μΩ , of a band-pass function can be obtained from its positive fre-
quency spectrum. Themean frequency is defined in (4). As shown in ‘Appendix’Mean
in Frequency From Samples of Band-limited Function, μΩ(f) is given by,

μΩ(f) = 1

πE

(
fHBμf

)
(18)

where

Bμ(m, n) = −[(−1)(m−n)(−1 + π j (m − n)) + 1]
(m − n)2

For m = n

Bμ(m, n) = π2/2

2.2.3 Frequency Variance

Frequency variance �̂2
Ω(f) of a band-pass function is given by (8), where �2

Ω(f) and
μΩ(f) are given by (14) and (18), respectively.

2.3 Expressions for Mean and Variance of Compactly Supported Functions in
Time and Frequency from Samples of Fourier Transform

Let f̂ be a column vector and represent the samples F(kΩs) of the Fourier transform
F(Ω), where Ωs denotes the sample spacing in frequency domain. Then, energy

E = Ωs
2π f̂

H f̂ . Let μ
′
t (f̂), μ

′
Ω(f̂), �2

′
t (f̂), �2

′
Ω(f̂) denote the time-limited equivalent of
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measures μt (f) μΩ(f), �2
t (f), �2

Ω(f) for band-limited functions, respectively. Note
that we can obtain frequency variance (6) from the expression for time variance (3)
by the substitution f (t) = F(t)/

√
2π . Here, F(Ω) represents the Fourier transform

of f (t). In terms of the samples, the substitution is represented by f = f̂/
√
2π and

Ts = Ωs . The substitution is used in the expression for �2
t (f) to compute �2

′
Ω(f̂) for

time-limited functions. Similarly, the expression for the measure �2
Ω(f) is used to

compute �2
′

t (f̂) for time-limited functions. Let S
′
μ, S

′
v and B

′
v represent the matrices

in (13), (14) and (17) with sampling time Ts substituted by Ωs . Then,

�2
′

t (f̂) = 1

4π2Ωs E
(f̂HB

′
v f̂) (19)

�2
′

Ω(f̂) = 1

4π2E

(
f̂HS

′
v f̂
)

(20)

μ
′
Ω(f̂) = 1

4π2E ′
(
f̂HS

′
μ f̂
)

(21)

μ
′
t (f̂) = Ω2

s

4π2E

(
f̂HRf̂

)
(22)

The scaling and wavelet functions are low-pass and band-pass functions, respec-
tively. Mean frequency of band-pass functions is given by (21), where f̂ represents the
samples of spectrum for positive frequencies and the normalization using E

′ = E/2
and the computation of the matrix S

′
μ must be done accordingly. Mean in time μ

′
t (f̂)

of the asymmetric function is given by (22). The expression for the matrixR in (22) is
derived in ‘Appendix’ Mean of Time-limited Functions From the Samples of Fourier
transform. Since the mean frequency of the real-valued low-pass scaling function is

zero, the frequency variance of the scaling function is given by�2
′

Ω(f̂). However, mean

in time of scaling and wavelet functions may be nonzero and the time variance �̂2
′

t (f̂)
for both the functions is given by,

�̂2
′

t (f̂) = �2
′

t (f̂) −
(
μ

′
t (f̂)

)2
(23)

Similarly, the frequency variance �̂2
′

Ω(f̂) of the band-pass wavelet function is given
by,

�̂2
′

Ω(f̂) = �2
′

Ω(f̂) −
(
μ

′
Ω(f̂)

)2
(24)

Note that, f̂ in (24) represents the samples of spectrum for positive frequencies.
In the next section, we calculate the Fourier transform of wavelet and scaling func-

tions at the i th cascade iteration and compute the samples of the Fourier transform
with sample spacing Ωs that satisfies the dual of the Nyquist criterion. According to
the dual of the Nyquist criterion, the Fourier transform of time-limited functions with
support s, i.e.,

f (t) = 0 : ∀ |t | > s
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can be reconstructed from the samples of the Fourier transform if the sample spacing
Ωs < π/s [23].

3 Time–Frequency Product of Functions Generated by the Cascade
Algorithm

The scaling function φ(t) and wavelet functions ψk(t) for M-band wavelet filter bank
are given by [52],

φ(t) = √
M
∑
n

g0[n]φ(Mt − n)

ψk(t) = √
M
∑
n

gk[n]φ(Mt − n)

where k = 1, 2, . . . , M − 1. g0[n] and gk[n] represent low-pass and high-pass filters,
respectively. The cascade algorithm is used to generate scaling and wavelet functions
from the iterations of discrete-time filters of the PRFB [52]. Let gi0[n], represents the
normalized iterated sequence. Then,

gi0[n] = g0[n] ∗ g0[n/M] ∗ g0[n/M2] ∗ · · · ∗ g0[n/Mi−1] (25)

where g0[n/N ] represents the up-sampled sequence obtained by inserting (N − 1)
zeros between each of the samples of g0[n] and ∗ represents the convolution operation.
Let L be the length of the scaling filter g0[n]. Then, length L(i) of the iterated sequence
gi0[n] for two-band filter banks is given by Vetterli [52]. For M-band filter banks L(i)

can be given by,

L(i) =
[
Mi − 1

M − 1
(L − 1) + 1

]
.

Let B( jΩ) represents the Fourier transform of the normalized interpolating smooth
Box function b(t) shown in Fig. 2. It is normalized in energy by substituting A =
1/

√
τ . A Box function with discontinuous edges cannot be used for interpolation as

its frequency variance is infinite. Interpolating the iterated sequence gi0[nτ ] with the
interpolating function b(t − τ

2 ), with ε → 0 and τ = 1
Mi , we get the scaling function

φi (t) given by,

φi (t) =
L(i)−1∑
n=0

gi0(nτ)b
(
t − τ

2
− nτ

)
(26)

Using the convolution property of the Fourier transform, the Fourier transform of the
scaling function, Φ(i)(Ω), at the i th iteration, is given by,

Φ(i)(Ω) = G(i)
0 (e jΩτ )B( jΩ)e

− jΩτ
2 (27)
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Fig. 2 Interpolating function b(t): Samples generated by cascade iterations are interpolated using the
time-limited function b(t)

where

G(i)
0 (e jω) = G0(e

jω)G0(e
jMω) . . .G0(e

jMi−1ω)

and,

B( jΩ) = A1 + B1

Ω(π2 − ε2Ω2)
+ Aτ sin(Ωτ/2)

(Ωτ/2)

where

A1 = π2A[sin(Ωε + Ωτ/2) − sin(Ωτ/2)]
B1 = 2Aε2Ω2 sin(Ωτ/2)

Note that if G0(e j0) = √
3, then Φ(i)(0) = 1. Similarly, Ψk

(i)(Ω) is given by,

Ψk
(i)(Ω) = G(i)

k (e jΩτ )B( jΩ)e
− jΩτ

2 (28)

where

G(i)
k (e jω) = G0(e

jω)G0(e
jMω) . . .G0

(
e jM

i−2ω
)
Gk

(
e jM

i−1ω
)

Since the support of scaling and wavelet functions at the i th iteration is [0, s], where
s = L(i)τ , we sample Φ0

(i)(Ω),Ψ1
(i)(Ω) and Ψ2

(i)(Ω) at the sample spacing Ωs that
satisfies,

Ωs <
π

s
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Fig. 3 Samples of fourier transform of db3 scaling function
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Fig. 4 Samples of fourier transform of db3 wavelet function

and compute time and frequency variances from the samples using the measures (23)
and (24), respectively. It should be noted that we are interpolating normalized iter-
ated sequence in (25) with normalized smooth-edge box function b(t) and therefore
Φ(i)(Ω) ∈ L2(�) and Ψk

(i)(Ω) ∈ L2(�) [18]. To obtain the TFP, we multiply the
time variance and the frequency variance of the function. Figures 3 and 4 show the
samples of Fourier transforms of the scaling and wavelet functions, respectively, for
length six Daubechies (db) orthonormal maximally flat filter.
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Table 1 Normalized filter
coefficients that generate
time–frequency optimal
time-limited scaling and wavelet
function

g0[n] g1[n]
0.039268898437357 0.070351170323707

0.167573868872558 0.285700511160221

0.386651637012215 0.552938518693105

0.566460498784874 0.328153800409847

0.566460475218481 −0.328153761824287

0.386651600481165 −0.552938556514470

0.167573837677387 −0.285700512433813

0.039268890809948 −0.070351169814311

For the rest of the paper, we assume M = 3 and i = 4 unless otherwise stated. We
introduce short notations for the TFP of the scaling and wavelet function computed
from the proposed method. The scaling function φi (t) is generated using the filter

g0[n]. Therefore, its TFP is denoted by �̂2
′

t �̂2
′

Ω(g0[n]). The wavelet function ψ i
k(t) is

generated using filters g0[n] and gk[n]. Therefore, the TFP of the wavelet function is

denoted by �̂2
′

t �̂2
′

Ω(g0[n], gk[n]).

4 Design of Time–Frequency Product Optimal Time-Limited Scaling
and Wavelet Functions from Discrete-Time Sequences

Venkatesh et al. [50] computed the samples of TFP optimal band-limited function. In
this section, we design the TFP optimal time-limited scaling and wavelet function. For
the given scaling filter g0[n], we first compute the samples of the Fourier transform of
the scaling function using (27). The samples of the Fourier transform are the used to
determine time variance and frequency variance using (23) and (24), respectively. To

compute the TFP �̂2
′

t �̂2
′

Ω(g0[n]), we multiply time variance and frequency variance.
To design TFP optimal time-limited scaling function, we minimize the objective func-

tion �̂2
′

t �̂2
′

Ω(g0[n]) with respect to g0[n]. The unconstrained optimization problem is
given by,

minimize
g0[n] �̂2

′
t �̂2

′
Ω(g0[n]) (29)

It is found that, starting from g0[n] = [1 1 1 1 1 1 1 1] or any other random initial point
for g0[n], the optimization problem (29) generates the unique TFP optimal length eight
normalized scaling filter given in the first column of Table 1 and scaling function is
shown in Fig. 5. For two-band filter banks, Rioul [35] has shown that continuity of
scaling function implies zeros on aliasing frequencies of scaling filter. Pole-zero map
of optimized scaling filter g0[n] confirms that there are zeros at aliasing frequencies
ω = ± 2π

3 .
Let p0[n] represents the filter coefficients in Table 1. We design the TFP optimal

time-limited wavelet function by minimizing the objective function �̂2
′

t �̂2
′

Ω(p0[n],
g1[n]). The expression (28) is used to compute the samples of the Fourier transform
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Fig. 5 TFP optimal time-limited scaling filter is computed by solving the unconstrained optimization
problem in (29). Figure shows the corresponding scaling function. TFP of the function is 0.25154005.
Scaling filter coefficients are given in first column of Table 1

Fig. 6 TFP optimal time-limited wavelet function is designed by solving the constrained optimization
problem in (30). Figure shows the TFP optimal wavelet function. TFP of the function is 0.338491717.
Corresponding high-pass filter coefficients g1[n] are given in second column of Table 1

of wavelet function. The samples of the Fourier transform are then used to determine
timevariance and frequencyvariance using (23) and (24), respectively. The constrained
optimization problem is given by,

minimize
g1[n] �̂2

′
t �̂2

′
Ω(p0[n], g1[n])

subject to G1(e
j0) = 0

(30)

Second column of Table 1 gives the optimized filter coefficients for g1[n] for the
optimization problem in (30). Figure 6 shows the corresponding wavelet function.
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5 Design of Time–Frequency-Localized Three-Band Orthogonal Single
Vanishing Moment Wavelet Filter Bank

The M-band orthogonal filter bank in its canonical form is represented by [49],

h(z) = [H0(z) H1(z) . . . HM−1(z)]T

The analysis filters h(z) can be obtained from the analysis polyphase matrix, E(z)
using h(z) = E(zM )e(z), where e(z) = [1 z−1 . . . z−(M−1)]T [49]. An M-band filter
bank is said to be orthogonal and K -regular, if it satisfies < hi [−n], h j [n − Mk] >=
δ(i − j)δ(k) or equivalently, E(z)ET (z−1) = I, and if low-pass filter has K zeros
[5] at ωk = 2πm/M for m = 1, 2, . . . M − 1. K -regular low-pass filter can be given
by,

H0(z) =
(
1 + z−1 + · · · + z−(M−1)

M

)K

Q(z).

It means that H0(z) is (K − 1)th-order flat at aliasing frequencies. For an orthogonal
filter bank, K regularity implies H0(e j0) = √

M and each high-pass filter has K
VMs [29]. We must note that regularity of H0(z) does not guarantee any degree of
differentiability of the scaling or wavelet function, and the regularity of filter bank is
not sufficient for regularity of functions generated from cascade iterations [51]. Even
if the scaling filter satisfies the necessary and sufficient condition for convergence of
cascade iterations in L2(�) [42], it does not ensure regularity more than that of the
box function. Let p[n] represents the autocorrelation of the sequence q[n] such that
Q(e j0) = 1. The transitionmatrix is given by [TQ]i j = Mp[Mi− j] [5,41]. Letλ(TQ)

denote the eigenvalues of the matrix [TQ]. For orthogonal filter banks λ(TH0) ≤ 1
[41]. Sobolev regularity or L2 differentiability [13,27] of a scaling function φ(t)
is defined as the smallest real number Smax such that for all s < Smax,

∫∞
−∞(1 +

Ω2)s |Φ(Ω)|2dΩ < ∞. Note that Smax = K − log |λmax(TQ)|
2 log(M)

, and it is completely
determined by the scaling filter H0(z) [5,13]. Smax = 0.5 for the Haar filter bank
[33,42] and Smax > 0.5 ensures the regularity of scaling and wavelet functions to be
more than that of the box function. Interestingly, it is found that Smax > 0.5 for all the
filter banks designed in this paper. It can be noted that scaling filter g0[n] in Table 1
has unit Sobolev regularity. Since the wavelet is a linear combination of the dilates
and translates of the scaling function, regularity of the wavelet is same as the scaling
function.

In the proposed designmethod, rather than representing a filter bank in its canonical
form, we use the dyadic factorization of polyphase matrix proposed by Vaidyanathan
[5,49]. The use of the dyadic framework has a number of advantages over the canon-
ical form. The key benefit is that orthogonality condition is automatically satisfied
and explicit optimization constraints are not required. This greatly reduces the com-
plexity of the constrained optimization problem and converts it into an unconstrained
optimization problem.
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5.1 Design Methodology for TFP Optimal Three-Band Orthogonal Single
Vanishing Moment Wavelet Filter Bank

To design time–frequency optimal three-band orthogonal wavelet bases, we minimize
a weighted sum of TFPs of wavelets and scaling functions with respect to filter coef-
ficients, under orthogonality and VM constraint. The optimization problem is given
by,

minimize[h0[n],h1[n],h2[n]]w0ρ0(h0[n]) + w1ρ1(h0[n], h1[n]) + w2ρ2(h0[n], h2[n])
subject to < hi [−n], h j [n − 3k] >= δ(i − j)δ(k) i, j = 0, 1, 2

H0(e
j2π/3) = H0(e

j4π/3) = 0

(31)

where

ρ0(h0[n]) = �̂2
′

t �̂2
′

Ω(h0[n])
ρ1(h0[n], h1[n]) = �̂2

′
t �̂2

′
Ω(h0[n], h1[n])

ρ2(h0[n], h2[n]) = �̂2
′

t �̂2
′

Ω(h0[n], h2[n])

To design three-band filter banks, we have employed the parametrization tech-
nique given by Lizhong et al. [25] and Vaidyanathan [49]. The parameters have been
optimized to obtain TFP optimal wavelets and scaling function. The degree-one parau-
nitary building block Vm(z) is given by [49],

Vm(z) = I − vmvTm + z−1vmvTm
||vm|| = 1

where vm is a column vector of size [M, 1]. For the design of three-band orthogonal
filter bank, we choose the following parametrization [25] for vm.

vm(θ1, θ2) = [cos(θ1) cos(θ2) cos(θ1) sin(θ2) sin(θ1)]T

Note that any degree-N paraunitary polyphase matrix E(z) can be factored as [49]

E(z) = VN(z)VN−1(z) . . .V1(z)E0

where E0 is a unitary factor which can be further parameterized using Householder
[5] or Given’s rotation building blocks [25]. Irrespective of the above two choices,
three degrees of freedom are available for the unitary factor E0 [49] and two degrees
of freedom for each dyadic block Vm(z). Thus, in order to span the complete class of
(3N +3) length orthogonal filter bank, E(z) or h(z), (2N +3) degrees of freedom are
available without redundancy [49]. Two degrees of freedom are consumed in imposing
one VM. Thus, (2N + 1) degrees of freedom are available for time–frequency opti-
mization. For details on imposing regularity using the matrix E0, reader is suggested
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Table 2 Comparison with Haddad’s [12] measure

Function Frequency variance (�̂2′
Ω ) Time variance (�̂2′

t ) TFP (�̂2′
t �̂2′

Ω )

[12] Ours [12] Ours [12] Ours

Daubechies scaling 5.22 5.2264 0.134 0.1320 0.699 0.6902

Daubechies wavelet 8.97 9.0378 0.178 0.1797 1.596 1.6254

coiflet scaling 11.86 12.1739 0.086 0.0860 1.02 1.0469

coiflet wavelet 39.36 41.5608 0.108 0.1097 4.25 4.5628

to refer previous work [2]. We optimize the free trigonometric variables θ of the filter
bank to obtain a time–frequency-localized orthogonal wavelet filter bank.

6 Results and Discussion

To validate the proposed measures for time and frequency variances of asymmet-
ric time-limited low-pass and band-pass functions, we compare the TFP computed
through expressions developed by us with that of Haddad et al. [12] for length six
Daubechies and Coiflet filter banks. The results are reported in Table 2. We have used
seven cascade iterations to compute the results in Table 2. It demonstrates that pro-
posed expressions for variances for asymmetric time-limited low-pass and band-pass
functions give comparable results.

We study the effect of length of filter banks and weight schemes on time–frequency
localization and Sobolev regularity. We present five design examples with different
weight schemes each for length six and length nine filter banks. We minimize the
objective function in (31) and generate the filter banks that jointly minimizes TFPs of
scaling and wavelet functions. Tables 3, 4, 5 and 6 give filter coefficients for optimized
filter banks for given weights. Figures 7 and 8 show the scaling and wavelet function
plots of TFP optimal length nine and length six filter banks, respectively. TFP of
scaling and wavelet functions is given in Tables 8 and 9. The results in Tables 8
and 9 demonstrate that as we increase the filter length, the lesser value of TFP can be
achieved for scaling as well as wavelet functions. Eigenvalues of Lawton’s matrixTH0

[54] in Table 7 show that the designed filter banks satisfy the necessary and sufficient
condition for convergence of cascade iterations in L2(�). It should be noted that all
the low-pass filters have almost same filter coefficients for the given length.

Optimization problems considered in the paper are nonlinear, and the final solution
of any problemwill depend on the chosen initial guess [9]. The proposed expression for
the TFP is a function of the number of cascade iterations used to generate the samples
of the function. As the number of iterations increase, the number of samples increases
and that further increases the computational time and memory requirement. However,
it is found that designed length six and length nine filter banks are invariably regular
with Sobolev index Smax > 0.5, irrespective of the initial chosen solution, weights
and the number of cascade iterations (Tables 8, 9).
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Table 3 Weights and filter coefficients for length six filter bank

w0 = 1/3, w1 = 1/3, w2 = 1/3 w0 = 0, w1 = 0.5, w2 = 0.5 w0 = 1, w1 = 0, w2 = 0

h0 h1 h2 h0 h1 h2 h0 h1 h2

−0.1186 0.2153 −0.6370 −0.1183 0.6376 0.2147 −0.1210 0.3171 −0.5903

−0.0013 0.2072 0.7669 −0.0017 −0.7665 0.2070 0.0023 0.0847 0.7932

0.2802 −0.9078 −0.0013 0.2808 0.0011 −0.9079 0.2758 −0.8960 −0.1456

0.6959 0.2149 −0.0569 0.6956 0.0566 0.2152 0.6983 0.2191 −0.0254

0.5786 0.1787 −0.0473 0.5791 0.0471 0.1792 0.5751 0.1804 −0.0209

0.2971 0.0917 −0.0243 0.2965 0.0241 0.0918 0.3015 0.0946 −0.0110

Table 4 Weights and filter
coefficients for length six filter
bank

w0 = 0, w1 = 1, w2 = 0 w0 = 0, w1 = 0, w2 = 1

h0 h1 h2 h0 h1 h2

−0.1211 0.1219 −0.6580 −0.1211 −0.6580 −0.1219

0.0024 0.3188 0.7309 0.0024 0.7309 −0.3188

0.2785 −0.8981 0.1319 0.2785 0.1318 0.8982

0.6985 0.2032 −0.0909 0.6985 −0.0909 −0.2032

0.5749 0.1673 −0.0749 0.5749 −0.0749 −0.1673

0.2989 0.0870 −0.0389 0.2989 −0.0389 −0.0870

Table 5 Weights and filter coefficients for length nine filter bank

w0 = 1/3, w1 = 1/3, w2 = 1/3 w0 = 0, w1 = 0.5, w2 = 0.5 w0 = 1, w1 = 0, w2 = 0

h0 h1 h2 h0 h1 h2 h0 h1 h2

0.1577 −0.3799 −0.0225 0.1577 −0.3810 −0.0221 0.1744 0.0175 0.2236

0.4287 0.8017 −0.0567 0.4280 0.8023 −0.0583 0.4612 −0.1682 −0.5395

0.6769 −0.4589 −0.0936 0.6764 −0.4572 −0.0936 0.6819 0.0295 0.6684

0.5208 0.0435 0.0171 0.5214 0.0419 0.0174 0.4994 −0.1563 −0.4031

0.1739 0.0101 0.3241 0.1749 0.0103 0.3223 0.1213 0.6559 −0.1474

−0.1391 −0.0181 0.4665 −0.1390 −0.0168 0.4687 −0.1327 0.1363 0.1003

−0.1011 0.0017 −0.7394 −0.1018 0.0006 −0.7384 −0.0965 −0.6762 0.1283

−0.0253 0.0004 −0.1848 −0.0256 0.0002 −0.1856 −0.0051 −0.0359 0.0068

0.0396 −0.0007 0.2893 0.0399 −0.0003 0.2896 0.0281 0.1972 −0.0374

Designed length nine and length six filter banks have Sobolev regularity of 0.99
and 0.88, respectively. Empirically, we found that the PRFB realization using dyadic
decomposition of polyphasematrix exhibits a particular property that relates frequency
variance of the generated scaling function and the objective function in (31). It is
observed that minimizing the objective function in (31) minimizes the frequency vari-
ance of the scaling function irrespective of the chosen initial point.
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Table 6 Weights and filter
coefficients for length nine filter
bank

w0 = 0, w1 = 1, w2 = 0 w0 = 0, w1 = 0, w2 = 1

h0 h1 h2 h0 h1 h2

0.1531 −0.3916 −0.0217 0.1525 −0.0223 0.3923

0.4236 0.8150 −0.0593 0.4222 −0.0584 −0.8146

0.6742 −0.4272 −0.0950 0.6736 −0.0963 0.4272

0.5269 0.0044 0.0330 0.5283 0.0314 −0.0060

0.1817 0.0011 0.2823 0.1833 0.2841 −0.0011

−0.1377 −0.0019 0.4989 −0.1374 0.4999 0.0033

−0.1027 0.0002 −0.7304 −0.1034 −0.7291 −0.0013

−0.0279 0.0001 −0.1986 −0.0282 −0.1991 −0.0004

0.0409 −0.0001 0.2907 0.0411 0.2898 0.0005

Fig. 7 TFP optimized functions for length nine filter bank corresponding to weights w0 = 1/3, w1 =
1/3, w2 = 1/3. a Scaling function. bWavelet1 function. c Wavelet2 function

Fig. 8 TFP optimized functions for length six filter bank corresponding to weights w0 = 1/3, w1 =
1/3, w2 = 1/3. a Scaling function. bWavelet1 function. c Wavelet2 function

As frequency variance of scaling function decreases, the decay of Fourier trans-
formbecomes faster and scaling function becomes smoother or regular. In the proposed
framework of dyadic factorization of polyphase matrix, functions generated from fil-
ter banks have upper bound on their smoothness or Sobolev regularity. This upper
bound is imposed by the number of degrees of freedom available for time–frequency
optimization. The maximum Sobolev regularity of the scaling function that can be
achieved with single VM is one [13]. Thus, the value of upper bound increases with
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Table 7 Eigenvalues of
Lawton’s matrix TH0

Length nine filter Length six filter

1.0000 1.0000

0.3333 0.3333

0.1114 0.1449

0.0393 0.0520

0.0383 0.0015

0.0207 –

0.0062 –

0.0062 –

0.0011 –

Table 8 TFP and Sobolev regularity of designed length nine filter banks

Weights Time–frequency product Sobolev index (Smax)

w0 w1 w2 Scaling Wavelet1 Wavelet2

0.3333 0.3333 0.3333 0.5635 0.8152 1.4109 0.9988

0 0.5000 0.5000 0.5646 0.8074 1.4078 0.9986

1.0000 0 0 0.5302 2.0943 1.7910 0.9996

0 1.0000 0 0.5692 0.7717 1.4433 0.9983

0 0 1.0000 0.5703 1.4431 0.7731 0.9983

Table 9 TFP and Sobolev regularity of designed length six filter banks

Weights Time–frequency product Sobolev index (Smax)

w0 w1 w2 Scaling Wavelet1 Wavelet2

0.3333 0.3333 0.3333 1.0304 3.4578 2.9102 0.8794

0 0.5000 0.5000 1.0318 2.9070 3.4605 0.8781

1.0000 0 0 1.0255 4.0580 2.8279 0.8884

0 1.0000 0 1.0260 3.2384 3.6009 0.8866

0 0 1.0000 1.0260 3.6007 3.2384 0.8866

number of degrees of freedom and it saturates to unity in case of single VM filter
banks. As an example, for length nine filter bank, Figures 9 and 10 show that fre-
quency variance of the scaling function decreases with the objective function in (31)
and Sobolev regularity reaches to the maximum of one. Since number of degrees of
freedom is only three for length six filter banks, the Sobolev regularity saturates to
0.88. However, in case of length nine filter banks five degrees of freedom are available
and the Sobolev regularity reaches to the maximum of one. Note that there may exist
PRFB structures in which minimizing the TFP do not minimize frequency variance
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Fig. 9 Frequency variance of scaling function with respect to number of optimization iterations while
minimizing objective function in (31) for length nine filter bank. The figure demonstrates that frequency
variance of scaling function decreases with objective function

Fig. 10 Sobolev regularity of scaling function with respect to number of optimization iterations while
minimizing objective function in (31) for length nine filter bank. The figure demonstrates that Sobolev
regularity saturates to unity

and the maximal Sobolev regularity achieved will depend on the structure of the PRFB
and other design constraints.

Based on the empirical results, we conjecture that the time–frequency optimal,
single VM filter banks, designed with the proposed time–frequency expressions and
the framework of dyadic factorization of polyphasematrix, always lead to unit Sobolev
regularity of functions, if sufficient number of degrees of freedom are available. In
case of three-band, time–frequency optimal, orthogonal, single VM filter banks, five
degrees of freedomof the dyadic structure are sufficient enough to achieve unit Sobolev
regularity. Thus, the proposed methodology designs maximal Sobolev regularity filter



4524 Circuits Syst Signal Process (2016) 35:4501–4531

banks with single vanishing moment. Since the optimization problem is nonlinear, it
is important to note that maximal Sobolev regularity do not imply global maxima.

Functions with finite frequency variance cannot be discontinuous. Thus, finite fre-
quency variance of a function is sufficient to ensure its continuity. A new design
methodology forM-band biorthogonal filter bank can be proposed in which frequency
variance of analysis and synthesis scaling function is constrained to be less than any
arbitrary value and TFP, coding gain, stop band and pass band energy or any other
objective function of analysis and/or synthesis filter bank can be optimized. Unlike
Daubechies [8] and Strang [41] conditions of regularity, the proposed design method-
ology provides direct and arbitrary fine control on the frequency variance of the scaling
function.

Mean and variances are first and second moments of energy of a function. In the
literature, there exist many time–frequency inequalities that relate energy of the func-
tion with other time frequency measures that involves higher moments of energy of
Fourier transform. Consider the theorem [14, p. 221] given below which states that
finite value of the product of time variance and higher moments of energy of Fourier
transform implies f (t) ∈ L2(�).

Theorem: Suppose that 1 < p, q < ∞ and U (Ω), v(t) are nonnegative weight
functions. Set || f (t)||L p

v
= (||| f (t)|pv||L1)1/p. If there is a constant C > 0 such that,

for f (t) ∈ L p
v (�), ||F(Ω)||Lq

U
≤ C || f (t)||L p

v
holds, then,

||F( jΩ)||2 ≤ 2C

([∫
|ΩF(Ω)|qU (Ω)−qdΩ

]1/q[ ∫
|t f (t)|pv(t)dt

]1/p)

(32)

For our discussion, we assume, p = 2, q = 2 and U (Ω) = 1/(ΩN ). First integral
on the right side involves the energy of Fourier transform of the (N + 1)th derivative
of f (t). For N = 0 and v(t) = 1, right side becomes the product of square root of
time variance and frequency variance. Finite value of the product at right-hand side
in the inequality (32) not only ensure finite energy but also smoothness or differentia-
bility of function f (t). A design methodology can be proposed in which (N + 1)th
differentiability of the scaling function is imposed by minimizing the product of time
variance and higher moments of energy of Fourier transform of the function. Note that
regularity order of more than two in higher-order M-band filter banks is not known
[5].

Three-band filter banks perform better than two-band filter banks in extracting fea-
tures of 1D or higher-dimensional signals. For example, two level wavelet transform
decomposition using two- and three-band filter banks generate three and five decor-
related subbands, respectively. The energy of decorrelated subbands can be used for
the classification of signals. Thus, designed three-band filter banks has applications in
discriminating 1D signals like electroencephalogram (EEG) [30], electrocardiogram
(ECG) [20] and classification [4] and segmentation [22] of 2D signals with low- and
high-frequency content. The designed time–frequency-localized filter banks may find
applications in content-based image retrieval [32] and fingerprint recognition [1].
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7 Conclusion

We have obtained explicit expressions for the mean in time and the mean in frequency
for asymmetric band-pass time-limited functions from the samples of the Fourier
transform of the function. The variance expressions proposed by Venkatesh et al. [50]
for zero-phase low-pass band-limited functions are extended to asymmetric band-pass
time-limited functions. We designed time–frequency-localized time-limited wavelets
and scaling functions without orthogonality constraint. The time–frequency product
of the designed functions is close to 0.25 with unit Sobolev regularity. We determine
discrete-time filter of length eight that generates the time–frequency optimal time-
limited function using cascade algorithm with scaling factor of three. The proposed
measures for variances are used to design time–frequency-localized orthogonal three-
band wavelet filter banks. Filter banks with length six and nine are designed, and it
is shown that better joint localization can be achieved by increasing the filter length.
We have proposed a single vanishing moment wavelet filter bank design methodology
with maximal Sobolev regularity.
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Appendix

Mean in Time from Samples of Band-Limited Function

In this appendix, we derive the expression for mean in time μt for real-valued band-
limited function f (t) ∈ L2(�) in terms of samples f (nTs) sampled at Ts < π

σ
.

Substituting f (t) from (16) in (1), we get

μt = 1

E

∫ ∞

t=−∞

[ (
t
∑

f (mTs)g(t − mTs)
) (∑

f (nTs)g(t − nTs)
)
dt

]

where m, n ∈ Z . or,

μt = 1

E

∑∑
f (mTs) f (nTs)

[ ∫ ∞

t=−∞
tg(t − mTs)g(t − nTs)dt

]

Let H1(Ω) and H2(Ω) are Fourier transforms of tg(t − nTs) and g(t −mTs), respec-
tively. Then, using generalized Parseval’s theorem,

∫ ∞

t=−∞
tg(t − mTs)g(t − nTs)dt = 1

2π

∫ ∞

Ω=−∞
H1(Ω)H∗

2 (Ω)dΩ



4526 Circuits Syst Signal Process (2016) 35:4501–4531

Thus,

μt = 1

2πE

∑∑
f (mTs) f (nTs)

∫ ∞

−∞
H1(Ω)H∗

2 (Ω)dΩ (33)

Since G(Ω) is differentiable, the Fourier transform H1(Ω) and H2(Ω) is given by

H1(Ω) = j
d

dΩ

[
G(Ω)e− jΩnTs

]
= j

dG(Ω)

dΩ
e− jΩnTs + nTsG(Ω)e− jΩnTs

H2(Ω) = G(Ω)e− jΩmTs

Since G(Ω) is a real function,

H∗
2 (Ω) = G(Ω)e jΩmTs

Then,

H1(Ω)H∗
2 (Ω) =

[
jG(Ω)

dG(Ω)

dΩ
+ (nTs)|G(Ω)|2

]
e jΩ(m−n)Ts

To simplify the integral in (33), define the integrals I1 and I2 as,

I1(m, n) =
∫ ∞

Ω=−∞
jG(Ω)

dG(Ω)

dΩ
e jΩ(m−n)TsdΩ

and,

I2(m, n) =
∫ ∞

Ω=−∞
(nTs)|G(Ω)|2e jΩ(m−n)TsdΩ

Differentiating G(Ω) in (9), we get,

dG(Ω)

dΩ
=

⎧⎪⎪⎨
⎪⎪⎩

−Tsπ
2ε sin

(
π(Ω+σ)

ε

)
: − σ − ε ≤ Ω < −σ

−Tsπ
2ε sin

(
π(Ω−σ)

ε

)
: σ < Ω ≤ σ + ε

0 : elsewhere.

Split the integral I1 into C1 and C2 corresponding to frequency range −σ − ε ≤ Ω <

−σ and σ < Ω ≤ σ + ε. Let I1(m, n) = C1(m, n) + C2(m, n), where

C1(m, n)

=
∫ −σ

−σ−ε

j

[
Ts
2

(
cos

(
π(Ω + σ)

ε

)
+ 1

)(−Tsπ

2ε
sin

(
π(Ω + σ)

ε

))
e jΩ(m−n)TsdΩ

]

C2(m, n)

=
∫ σ+ε

σ

j

[
Ts
2

(
cos

(
π(Ω − σ)

ε

)
+ 1

)(−Tsπ

2ε
sin

(
π(Ω − σ)

ε

))
e jΩ(m−n)TsdΩ

]
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Solving the above integrals and substituting σ = π
Ts

− ε, we get

C1 = jπ2T 2
s e

j (−π+Tsε)(m−n)
(
3π2e− jTs (m−n)ε + 5π2 − 2T 2

s (m − n)2ε2
)

4
(
T 4
s (m − n)4ε4 − 5π2T 2

s (m − n)2ε2 + 4π4
)

C2 = − j

4

π2T 2
s e

− j (−π+Tsε)(m−n)
(
3π2e jTs (m−n)ε + 5π2 − 2T 2

s (m − n)2ε2
)

T 4
s (m − n)4ε4 − 5π2T 2

s (m − n)2ε2 + 4π4

Let

I2(m, n) =
∫ ∞

Ω=−∞
(nTs)|G(Ω)|2e jΩ(m−n)Ts eΩ = nTs A

then A is given by [50],

A(m, n) = 2σT 2
s δmn + T 2

s (−1)(m−n)

2

(
ε
sin((m − n)Tsε)

(m − n)Tsε

+ sin((m − n)Tsε)

2

2(m − n)Ts

(π
ε
)2 − (m − n)2T 2

s

)

+ T 2
s (−1)(m−n)

2

⎛
⎜⎜⎝ε

sin((m − n)Tsε)

(m − n)Tsε

⎛
⎜⎜⎝1 −

1
2[

1 −
(

(m−n)Tsε
2π

)2]
⎞
⎟⎟⎠

⎞
⎟⎟⎠

Thus,

μt = 1

2πE

∑
m∈Z

∑
n∈Z

f (mTs) f (nTs)(C1(m, n) + C2(m, n) + nTs A(m, n))

or,

μt = 1

2πE
(fHSμf)

where

Sμ(m, n) = C1(m, n) + C2(m, n) + nTs A(m, n)

Mean in Frequency from Samples of Band-Limited Function

Mean frequency of band-pass function f (t) ∈ L2(�) can be obtained from its spec-
trum for positive frequencies. It is defined by (4). Since we have to compute μΩ from
the samples of band-limited function f (t), representing Fourier transform F(Ω) in
terms of DTFT F(e jω), and using the relation Ω = ω

Ts
, we have

F(Ω) =
{
Ts F(e jΩTs ) : ∀|Ω| ≤ π

Ts
0 : elsewhere.

(34)
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Substituting for F(Ω) from (34) in the expression for μ(Ω), we get

μΩ = 1

πE

∫ π

ω=0
ω|F(e jω)|2dω (35)

Since f [n] is a real-valued sequence, we have

|F(e jω)|2 = F(e jω)F(e jω)∗ =
(∑
n∈Z

f [n]e− jnω

)(∑
m∈Z

f [m]e jmω

)
(36)

Substituting |F(e jω)|2 from (36) in (35), we get

μΩ = 1

πE

∫ π

ω=0
ω

(∑
m∈Z

f [m]e jmω

)(∑
n∈Z

f [n]e− jnω

)
dω

= 1

πE

∑∑
f [m] f [n]

∫ π

ω=0
ωe jω(m−n)dω

or,

μΩ = 1

πE
(fHBvf)

where

Bv(m, n) =
∫ π

ω=0
ωe jω(m−n)dω = −[(−1)(m−n)(−1 + π j (m − n)) + 1]

(m − n)2

Note that for m = n,

Bμ(m, n) = π2/2

Mean of Time-Limited Functions from the Samples of Fourier Transform

For a real-valued function f (t) ∈ L2(�), mean in time μt is defined as

μt = 1

E

∫ ∞

t=−∞
(t f (t))( f (t))∗dt

The Dual of (34) is given by,

f (t) =
{

Ωs
2π

∑∞
k=−∞ F(kΩs)e jkΩs t : ∀|Ω| ≤ π

Ts
0 : elsewhere.

(37)

Then,

μt = 1

E

∫ π/Ωs

t=−π/Ωs

[
t

(
Ωs

2π

∑
m

F(mΩs)e
jmΩs t

)][(
Ωs

2π

∑
n

F(nΩs)e
jnΩs t

)]∗
dt
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or,

μt = Ω2
s

4π2E

∑
m

∑
n

F(mΩs)F(nΩs)
∗
∫ π/Ωs

t=−π/Ωs

td jΩs(m−n)tdt

Let

∫ π/Ωs

t=−π/Ωs

[te jΩs (m−n)t ]dt = 2 j

[
sin(π(m − n)) − π(m − n) cos(π(m − n))

((m − n)Ωs)2

]

= R(m, n)

Then,

μt = Ω2
s

4π2E
(f̂HRf̂)

Note that for m = n,

R(m, n) = 0
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