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Abstract This paper presents a new approach to analysis and design of ADC-based
random number generators. To this end, different full-bit and half-bit redundant stages
of algorithmic converter are used to design chaotic maps. It is shown that, in the redun-
dant and nonredundant structures, output probability density function of the converter
stages and their related chaotic functions always converge to uniformity. It is demon-
strated that residues become independent and uniformly distributed. This fact leads
to the randomness and uniformity of distribution of the random number generator
output bits. Moreover, it is shown that some common chaotic maps that are employed
in chaotic random number generators can be implemented using nonredundant and
half-bit redundant stages of algorithmic converter. In this way, the capability of ADC-
based generators in designing chaotic maps and producing random number sequences
is illustrated. The validity of the proposed chaos-based random number generator is
confirmed using NIST statistical tests even in the presence of nonidealities in algo-
rithmic converter. Since the ADCs are mixed-signal integrated circuits and can be
used in high-speed applications, the ADC-based random number generator has high
throughput and is easily embeddable in all analog and digital circuits.
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1 Introduction

Multistage analog-to-digital converters (ADCs) such as pipelined, algorithmic
(cyclic), and successive approximation register (SAR) are widely used in medium-
to-high-resolution and bandwidth applications. In these architectures, the analog-to-
digital conversion is performed by using one or several successive simple stages in a
way that makes it possible to compromise between speed, power consumption, reso-
lution, and circuit area. Among all kinds of ADCs, algorithmic converter, due to the
cyclic nature of its conversion process, needs smaller area and lower power and is
preferred for some applications [14,17].

One of the very important issues in analog-to-digital converters is the quantization
noise theory.Basedon this theory, if anADCismodeled as a uniformquantizer,without
considering its internal structure, the output quantization noise is almost white with
uniform distribution [27,31]. Few studies have been carried out on the analysis of
quantization noise specified for multistage converters. In [8,16], it has been shown
that with the passage of signal from different stages of a full-bit and half-bit redundant
pipelined converter, the residue probability density function (pdf) and the residue
joint pdf at different times converge to uniformity. The obtained results reveal that in
a redundant pipeline ADC, the last-stage residue distribution is uniform but does not
cover the full converter dynamic range. The same feature exists for the algorithmic
converters with full-bit and half-bit redundant structures. These properties allow us
to use them as random number generators (RNGs) and produce independent and
identically distributed random bit sequences.

Random number generators have numerous applications in symmetric- and public-
key cryptography algorithms [1,7], communication systems [6] as well as calibration
of algorithmic and pipelined ADCs by dither injection [13]. RNGs can be divided into
two categories: pseudorandom number generators (PRNGs) and true random number
generators (TRNGs) [10,23]. PRNGs have high throughput and because of their intrin-
sic nature can be easily embedded in any digital circuit or system. However, because
of their deterministic and finite memory algorithms, they have periodic behavior and
are far from the ideal features required in some important applications such as infor-
mation security and cryptography [12,28]. Accordingly, TRNGs which are called
physical generators are preferred to be used for high-end security applications [12].
They are usually implemented with a combination of three blocks: entropy source,
harvesting mechanism, and postprocessing, and physical random processes are used
as their entropy sources [21,32].

Low throughput [4] and high cost of embedding physical RNGs in digital circuits
[1,7] have led the attention of recent researches to the sources that have both features
of the physical RNGs and the simplicity of digital sources simultaneously. There-
fore, chaos-based RNGs which use chaotic maps have found widespread applications
[18,21,29]. Some of these chaotic maps are very similar to the building blocks of
practical electronic circuits. For instance, the input–output characteristic of the half-bit
redundant stage which has been exploited in designing pipelined ADC in [26] is fully
equivalent to the chaotic map that has been used in [6,29]. For this reason, in [1,21],
this 1.5-bit stage was employed to implement an ADC- based chaotic RNG. Although
today this characteristic is not commonly used in multistage ADCs, it is shown that
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popular used full-bit and half-bit redundant stages are also efficient to design chaotic
maps. Since the ADCs are mixed-signal integrated circuits and can be used in high
speeds [11], the ADC-based random number generator has high throughput and is
easily embeddable in all analog and digital circuits.

In this paper, the input–output characteristics of the various stages of the algo-
rithmic ADC are compared with some of the common chaotic maps that are used in
chaos-based RNGs. It is shown that they are fully similar to each other. One of these
chaotic maps is Bernoulli map [3,12,30], which fully matches with the characteristic
of the ideal 1-bit stage. The characteristic of the full k-bit stage is also fully identical
to the N -way Bernoulli shift map with N = 2k [25], which is the more general form
of the Bernoulli map. Furthermore, using the fundamental theorem for function of a
random variable [20], a new approach to analyze the output of chaotic maps as well
as the different cycle residues of algorithmic ADC is presented. To this end, the prop-
agation of the output pdf of the chaotic maps in different cycles of the algorithmic
ADC is studied. It is demonstrated that regarding the random nature and the uniform
distribution of the nonredundant algorithmic ADC output bits, this converter can be
used to implement N -way Bernoulli shift map and generate random sequences. For
the half-bit redundant algorithmic ADC, the residue pdf converges to uniformity in
the center half of the stage full-scale range and out of it converges to zero. Thus, after
a sufficiently large number of cycles, each stage will be fully equivalent to the com-
mon chaotic map which has been used in [6,29]. The performance of the proposed
ADC-based RNG is evaluated by using the US National Institute for Standards and
Technology (NIST) randomness test suite [24]. Since analog-to-digital converters are
sensitive to device parameters’ variations [5,11,22], these nonidealities are also con-
sidered. Test results show that algorithmic-based RNG successfully passes all NIST
800-22 statistical tests in the presence of mismatches.

The rest of the paper is organized as follows. In Sect. 2, some of the common
chaotic maps that are very similar to the characteristic of ADC building blocks are
investigated. Section 3 introduces the algorithmic ADC architecture. In Sect. 4, the
use of full-bit algorithmic ADC, and in Sect. 5, the application of half-bit redundant
converter in random bit generation is explored. Section 6 evaluates the performance
of the proposed RNG using the NIST statistical test suite, and a brief conclusion is
drawn in Sect. 7.

2 Chaos-Based RNGs

Random sequence generation can be modeled by the toss of an ideal coin, which
the probability of each side is 1/2. Such tosses are independent from each other, and
seeing each toss does not affect the probability of the next tosses observations. That is,
the system state cannot be predicted. This behavior can be described as the two-state
Markov chain of Fig. 1, which is a special kind of Markov processes. Several chaotic
maps were presented for this Markov chain. One of them is Bernoulli map which is
expressed as follows [12,30]:

M : [−1, 1] → [−1, 1], M(x) = μx mod 2 − 1 (1)
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Fig. 1 Markov chain of the fair
coin toss
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Fig. 2 N -way Bernoulli shift map for different values of N

where 0 < μ ≤ 2 is the chaos control parameter and the maximum entropy of the
source is obtained by μ = 2. Equation (1) can be expressed as follows:

M : [−1, 1] → [−1, 1], M(x) =
{

μx + 1 −1 < x < 0

μx − 1 0 < x < 1.
(2)

Assuming μ = 2, Bernoulli shift map fully matches with the 1-bit stage input–output
characteristic of algorithmic converter. In Sect. 4, it will be shown that after suffi-
cient iterations of this map, the distribution of the x-samples becomes uniform over
[−1, 1]. In this way, the Bernoulli map and 1-bit stage of algorithmic ADC are exactly
equivalent to Markov chain of Fig. 1 and knowing the previous sequences reveals no
information about its future values. Also, since the probability of being in each of two
states equals 1/2, the entropy of the source is one bit.

The more general form of (1) and (2) is N -way Bernoulli shift map [25], which can
be expressed as

M : [−1, 1] → [−1, 1], M(x) = Nx mod 2 − 1. (3)

The N -wayBernoulli shift map that is widely used in signal- processing tasks is shown
in Fig. 2 for different values of N . Since this map can be modeled by two-stateMarkov
chain of Fig. 1 [1,21], knowing the previous sequences reveals no information about
its future values.

Another chaotic map that has been found to have a good performance in RNGs is
according to the following expression [6,29]:

M : [−1, 1] → [−1, 1], M(x) = (2x + 1) mod 2 − 1. (4)
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Fig. 3 The chaotic map (5)
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This map that is shown in Fig. 3 can be expressed as:

M : [−1, 1] → [−1, 1], M(x) =
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(5)

This chaotic map is identical to the characteristic of the 1.5-bit stage employed in
[26] for pipelined ADC which uses the half-bit redundancy in order to achieve the
related advantages. An important feature of this map compared with Bernoulli map is
its flexibility against noise and nonideality impacts on electronic circuits in a way that
it has all the necessary conditions for a piecewise affine Markov chaotic map [21]. In
this map, the distribution of x-samples over [−1, 1] converges to uniformity. It can be
shown that from the statistical point of view and after sufficient iterations, the behavior
of the map can be illustrated exactly as the Bernoulli process and two-state Markov
chain of Fig. 1 [1].

3 Algorithmic ADC Architecture

The architecture of an algorithmic analog-to-digital converter is shown in Fig. 4. This
ADC consists of an input sample-and-hold amplifier (SHA) and one or several number
of successive simple stages.All signals are normalized toVref , so the converter dynamic
range is [−1, 1]. The SHA converts the continuous-time input signal xin into a sampled
sequence x(k) = xin (kTs ), where Ts denotes the sampling period. Each algorithmic
stage consists of a flash sub-ADC, a sub-DAC, a subtractor, and an interstage amplifier.
In the i th stage, the flash sub-ADC generates an mi -bit digital estimation Di of the
stage input xi and the sub-DAC converts this digital word to an analog signal. Then, the
difference between the sampled signal xi and its quantized version (Qi ) is amplified
with the interstage gain Gi to produce a residue signal yi which is used as the input
xi+1 to the next stage. The algorithmic converter extracts the required number of bits
in several clock cycles and by returning back to a sequential approach.

In the algorithmic converter, input–output characteristic of each stage is according
to the following expression:
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Fig. 4 Algorithmic ADC
architecture
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Assuming the input signal is passed sequentially through N cycles, it can be written
as [13,16]

x =
N∑
i=1

⎛
⎝ i−1∏

j=1

1

G j

⎞
⎠Qi + e, (7)

where e is the quantization error and

e =
(

N−1∏
i=1

1

Gi

)
xN . (8)

If there are no other error sources than the quantization noise, the converter signal-to-
quantization-noise ratio (SQNR) is obtained by:

SQNR = 10 log

(
x2

e2

)
= 10 log

(
x2

)
− 10 log

(
e2

)
. (9)

By applying a full-scale sinusoidal input, the converter effective number of bits
(ENOBs) can be calculated by [19]:

ENOB = SQNR − 1.76

6.02
. (10)

In terms of the structure and function of the algorithmic ADC and according to (8),
by increasing the number of cycles, the quantization error can be reduced to any desired
level. Thus, the SQNR and ENOB of this converter can be theoretically increased to
any arbitrary level. But, in an analog circuit, the initial conditions cannot be determined
with infinite precision and the impact of noise is inevitable. By applying one initial
condition to the circuit, and after too many cycles that the high significant bits are
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extracted, the low significant bits indicate the noise value, which affects the initial
conditions, and thus, the output bits become quite random. So, it is sufficient to throw
away the extracted bits of the first cycles to see an exactly unpredictable behavior in
the circuit of Fig. 4.

One important property of the algorithmic ADC is converting analog to digital by
the aid of a series redundant or nonredundant successive simple stages. This property
makes it possible to map each stage input pdf to its output pdf and use this feature
for easier analysis of the noise distribution. To this end, the fundamental theorem for
function of a random variable [20] can be exploited and the propagation of the residual
pdf in successive stages with full-bit and half-bit redundant architectures can be shown
[8]. In the algorithmic ADC architecture (Fig. 4), each stage might be redundant or
nonredundant. Firstly, the analysis of the residue pdf in ideal nonredundant stages is
investigated. This is exactly the same as analysis of the Bernoulli shift chaotic map. It
will be shown that after sufficient iterations the system will be fully equivalent to the
Markov chain of Fig. 1. This fact indicates that the system can be used as a chaos-based
RNG.

4 RNG Using Full-Bit Algorithmic ADC Structure

In 1-bit/stage algorithmic ADC, Gi = 2 and (6) can be expressed as

xi+1 = yi =

⎧⎪⎪⎨
⎪⎪⎩
2

(
xi + 1

2

)
−1 < xi < 0 (Di = 0)

2

(
xi − 1

2

)
0 < xi < 1 (Di = 1) .

(11)

This characteristic is fully matched to the Bernoulli map with μ = 2, which was
described in (2) and depicted in Fig. 2a. Thus, the algorithmic ADC structure can be
used to implement and iterate the Bernoulli shift map.

The residue transfer characteristic of the different cycles in a 1-bit/cycle converter
is shown in Fig. 5. Comparing Figs. 2 and 5 shows that two cycles of the converter is
same as the four-way Bernoulli shift map and, in general, N cycles of the algorithmic
ADC are exactly identical to M-way Bernoulli shift map where M = 2N .

In [8], using the fundamental theorem for function of a random variable, it has been
shown that for the input pdf fx (x), the converter N th cycle output pdf is obtained by

fyN =

⎧⎪⎪⎨
⎪⎪⎩

1

M

M−1∑
m=0

fx

(
y − (2m + 1 − M)

M

)
−1 < y < +1

0 otherwise,

(12)

where M = 2N . It is clear that if the input pdf is uniform over [−1, 1], then the first
cycle output pdf and, as a result, the output distributions of all the subsequent cycles
are uniform. Therefore, N -way Bernoulli shift map does not change the pdf of an input
with uniform density.
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Fig. 5 The different cycle residues in a 1-bit/cycle algorithmic converter

Since fx (x) and fyN (y) are nonzero only over [−1,+1], they can be extended
into periodic signals f̃x (x) and f̃ yN (y) with period 2 and Fourier series coefficients
ak and bk , respectively. The Fourier series representation of these periodic signals can
be written as

f̃x (x) =
+∞∑

k=−∞
ake

jπkx ⇔ ak = 1

2

∫ +1

−1
fx (x)e

− jπkxdx (13)

and

f̃ yN (y) =
+∞∑

k=−∞
bke

jπky ⇔ bk = 1

2

∫ +1

−1
fyN (y)e− jπkydy. (14)

By substituting (12) in (14), bk can be calculated as

bk = 1

2M

∫ +1

−1

M−1∑
m=0

fx

(
y − (2m + 1 − M)

M

)
e− jπkydy

= 1

2

M−1∑
m=0

(∫ 1− 2m
M

1− 2(m+1)
M

fx (x)e
− jπMkxdx

)
e− jπk(2m+1−M). (15)

As regards e− jπk(2m+1−M) = (−1)k

bk = (−1)k

2

M−1∑
m=0

∫ 1− 2m
M

1− 2(m+1)
M

fx (x)e
− jπMkxdx

= (−1)k

2

∫ +1

−1
fx (x)e

− jπMkxdx . (16)
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Comparing (13) and (16) reveals that

bk = (−1)kaMk . (17)

It can be observed that kth Fourier coefficient of f̃ yN (y) is equal to (Mk)th harmonic
of f̃x (x). Hence, the last-stage residue pdf retains only the Fourier series coefficients
which are integer multiples of M . So, after propagating through a sufficient number
of stages, only the DC component

b0 = a0 = 1

2

∫ +1

−1
fx (x)dx = 1

2
(18)

is preserved and all harmonics are weeded out. It is clear that with increasing the total
number of bits of the ADC (N ), the last-stage residue pdf converges to the uniform
distribution:

fyN (y) =
⎧⎨
⎩

1

2
−1 < y < +1

0 otherwise.
(19)

In this way, the probability of the N th stage output bit is Pr (DN = 0) =
Pr (DN = 1) = 1/2, which indicates the uniform distribution of the output streams.
After this, each stage of the generator acts like the Markov chain of Fig. 1, which
can be directly used to implement ideal RNG. In order to implement this RNG, it is
enough to consider a 1-bit/cycle algorithmic ADC without its digital correction logic
according to Fig. 6, and let it run for infinite number of bits. This is equivalent to
iterate the Bernoulli chaotic map xn+1 = M (xn) that the output bit determines the
RNG output and the circuit state.

To illustrate the results, a simulation was performed for the 1-bit/cycle algorithmic
ADCofFig. 6. Initial conditionwas set to 0.25VFS andnoise to 0.001VFS.The converter
residual pdfs after different cycles are shown in Fig. 7. It can be seen that after many
cycles, residue pdf converges to uniformity. So, after passing less than 18 cycles, the
system will be exactly equivalent to the Markov chain of Fig. 1. Two runs of the
system starting at the same initial condition with a 0.1-mV noise floor, which has led
to different trajectories, are shown in Fig. 8. It can be observed that by throwing less
than 18 first samples of the output sequence, the system will have a quite random
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and unpredictable output bitstream. Running this system for a thousand sequences of
length 10,000 at different times, the entropy of the output sequences is shown in Fig. 9.
As it is expected, this RNG has one bit of entropy.

The input–output characteristic of a k-bit stage algorithmic ADC is identical to
k × 1-bit stages (Fig. 6). This characteristic is equivalent to the 2k-way Bernoulli
shift map and can be used to implement this map. In [8,16], it has been shown that the
impact of each k-bit stage on input pdf is the same as to k×1-bit stages. Consequently,
in an algorithmic converter with a k-bit stage, every cycle is exactly identical to one
run of 2k-way Bernoulli shift map. Thus, by increasing the number of converter cycles,
residue probability density function converges to uniform distribution of (19).

Small variations in Bernoulli map parameters can bring about stable equilibrium
points in the system; thus, this map is not suitable for the electronic implementation
[21]. In fact, the impact of noise and nonidealities of the electronic circuits onBernoulli



3840 Circuits Syst Signal Process (2016) 35:3830–3846

100 200 300 400 500 600 700 800 900 1000
0.9994

0.9996

0.9998

1

Fig. 9 The output sequence entropy of Fig. 6

map is similar to the nonidealities impacts on the algorithmic full-bit stage character-
istic, which there is not enough safety against them. So, redundancy is employed in
such stages.

5 RNG Using Half-Bit Redundant Algorithmic ADC

Half-bit redundancy is widely used in the structure of multistage converters. Using
redundancy inmultistage ADCs, in addition to increasing the speed and decreasing the
circuit power [15], canmake converters less sensitive against the elements nonidealities
impacts and environmental mismatches [2,9].

For an ideal 1.5-bit/cycle algorithmic ADC, the stage input–output characteristic
is according to the following expression:

xi+1 = yi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2

(
xi + 1

2

)
−1 < xi < −1

4

(
di1di2 = 00

)
2xi −1

4
< xi <

1

4

(
di1di2 = 01

)
2

(
xi − 1

2

)
1

4
< xi < 1

(
di1di2 = 10

)
.

(20)

In [18], it has been shown that for the input pdf fx (x), the converter N th cycle output
pdf is obtained by:

fyN =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2N
fx

(
y − (2N − 1)

2N

)
−1 < y < −1

2

1

2N

(2N−1)∑
m=−(2N−1)

fx

(
y − m

2N

)
−1

2
< y <

1

2

1

2N
fx

(
y + (2N − 1)

2N

)
1

2
< y < 1.

(21)

It is observed that with increasing the total number of bits (N ), the output pdf is more
concentrated in center half of the stage full-scale range. Since after a sufficient number
of stages, fyN (y) is fully concentrated over [−1/2, 1/2], by repeating the middle half
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of the last-stage full-scale range it can be extended into a periodic signal f̂ yN (y) with
period 1 and Fourier series coefficients ck

f̂yN (y) =
+∞∑

k=−∞
cke

j2πky ⇔ ck =
∫ +1/2

−1/2
fyN (y)e− j2πkydy. (22)

By substituting (21) in (22), ck can be calculated as

ck = 1

M

∫ +1/2

−1/2

M−1∑
m=−(M−1)

fx

(
y − m

M

)
e− j2πkydy

=
M−1∑

m=−(M−1)

(∫ − m
M + 1

2M

− m
M − 1

2M

fx (x)e
− j2πMkxdx

)
e− j2πmk (23)

where M = 2N . As regards e− j2πmk = 1

ck =
∫ +1− 1

2M

−1+ 1
2M

fx (x)e
− j2πMkxdx . (24)

Comparing (13) and (24) reveals that with increasing the total number of bits of
the converter (N ), ck converges to 2a2Mk . It means that the last-stage residue pdf
retains only the Fourier series coefficients which are integer multiples of 2M . So, after
propagating through a sufficient number of stages, only the DC component

c0 = 2a0 =
∫ +1

−1
fx (x)dx = 1 (25)

is preserved and all harmonics areweeded out. Therefore, aftermany number of cycles,
residue pdf converges to the uniform distribution:

fyN =
⎧⎨
⎩ 1 −1

2
< y <

1

2
0 otherwise

. (26)

In order to studywhether the characteristic of (20) can be used for RNG, the interval
partition X0 = [−1,−1/2), X1 = [−1/2,−1/4), X2 = [−1/4, 0), X3 = [0, 1/4),
X4 = [1/4, 1/2), X5 = [1/2, 1] of [−1, 1] is considered and the state xi is defined
as x ∈ Xi . Since the distribution of the x-samples, after passing sufficient cycles
becomes uniform and limited over [−1/2, 1/2], the probability of the x0 and x5 is 0
and other states have the probability 1/4. So, after sufficient cycles, the system will
be fully equivalent to the chaotic map shown in Fig. 3. In [21], it has been shown that
the evolution of this process can be expressed by the Markov chain of Fig. 10a. Since
this chain has memory and its different states are not independent, it is not suitable for
direct implementation of the RNG. To eliminate this drawback, the state aggregations
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Fig. 10 a Markov chain of 1.5-bit stage, b related state aggregation
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Fig. 11 RNG using 1.5-bit/cycle algorithmic ADC structure

of Fig. 10b can be exploited and an easier Markov chain with two macrostates S0 and
S1 be obtained [7,21]. It is evident that the new Markov chain is equivalent to the
two-state Markov chain of Fig. 1. By considering the thermometric digital coding for
the 1.5-bit stage:

xi+1 = yi = M(xi ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2

(
xi + 1

2

)
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4

(
di1di2 = 00

)
2xi −1

4
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1

4

(
di1di2 = 01

)
2

(
xi − 1

2

)
1

4
< xi < 1

(
di1di2 = 11

)
(27)

it is sufficient to calculate XOR of di1 and di2 to determine whether the system is in
S0 or S1 [21].

To clarify the obtained results, a simulation was performed for the algorithmic
converter of Fig. 11 including an ideal 1.5-bit stage. The converter residue pdfs after
different cycles are shown in Fig. 12. It can be observed that after many cycles, the
residue probability density function over [−1/2, 1/2] converges to uniformity. So,
after passing less than 15 cycles, the system will be exactly equivalent to the Markov
chain of Fig. 1. Two runs of the system starting at the same initial condition with a
0.1-mV noise floor, which has led to different trajectories, are shown in Fig. 13. It can
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be seen that by throwing away less than 15 first samples of the output bitstream, a quite
random and unpredictable sequence appears in the output. This system was run for
a thousand sequences of length 10,000 at different times, which the output sequence
entropies are shown in Fig. 14. As it is expected, this RNG has one bit of entropy.

6 Randomness Test Results

To evaluate the randomness of the proposed ADC-based RNG output bitstream using
1.5-bit stage of pipelined converter, the NIST test suit [24] is applied to the RNG
output bit stream of Fig. 11. The statistical test suite v2.1.2, July 2014, which is the
latest version available at the time of this study, is used for evaluation of the captured
data. α = 0.01 gives the set of p values as shown in Table 1. p value ≥0.01 means the
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Table 1 NIST test results for
the ideal 1.5 bit/cycle

NIST SP800-22 tests p value Proportion Result

Frequency 0.791422 0.9860 Pass

Block frequency 0.512530 0.9910 Pass

Cumulative sums 0.813214 0.9890 Pass

Runs 0.772305 0.9860 Pass

Longest run of ones 0.412538 0.9850 Pass

Rank 0.876172 0.9910 Pass

Spectral (DFT) 0.887691 0.9900 Pass

Nonperiodic template 0.780481 0.9920 Pass

Overlapping template 0.618628 0.9860 Pass

Universal statistical 0.659372 0.9880 Pass

Approx. entropy 0.553671 0.9840 Pass

Random excursions 0.491826 0.9920 Pass

Random exc. var. 0.574307 0.9860 Pass

Serial 0.459146 0.9930 Pass

Linear complexity 0.809135 0.9890 Pass

test is passed and p value ≥0.01 is interpreted as the test is failed [24]. The test results
show that output random bitstream successfully passes all NIST 800-22 statistical tests
without any postprocessing.

Since all ADCs are sensitive to device parameters variations, we take into account
the inevitable circuit nonidealities such as comparator offset errors, capacitor mis-
matches and gain error that may go along with the ADC-based RNG of Fig. 11.
Assuming these nonidealities, the RNG of Fig. 11 output bit stream was evaluated.
A Monte Carlo simulation model was run for 1,000,000 length sequences. The NIST
statistical test results are shown in Table 2. Test results show that algorithmic-based
RNG successfully passes all NIST 800-22 statistical tests.

7 Conclusion

A new approach to analysis and design of chaos-based RNGs using ADC building
blocks has been presented. Regarding the fact that multistage converters have theoret-
ically infinite precision, the structure of algorithmic ADC was used to design random
number generators. The input–output characteristics of the full-bit and half-bit redun-
dant stages of algorithmic ADC were compared with different chaotic maps. It was
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Table 2 NIST test results in the
presence of nonidealities

NIST SP800-22 tests p value Proportion Result

Frequency 0.706815 0.9850 Pass

Block frequency 0.513376 0.9840 Pass

Cumulative sums 0.735904 0.9870 Pass

Runs 0.659325 0.9900 Pass

Longest run of ones 0.490765 0.9850 Pass

Rank 0.561729 0.9910 Pass

Spectral (DFT) 0.783120 0.9830 Pass

Nonperiodic template 0.539106 0.9880 Pass

Overlapping template 0.458136 0.9900 Pass

Universal statistical 0.513914 0.9920 Pass

Approx. entropy 0.421976 0.9820 Pass

Random excursions 0.583054 0.9830 Pass

Random exc. var. 0.413716 0.9810 Pass

Serial 0.437819 0.9880 Pass

Linear complexity 0.516293 0.9930 Pass

found that 1-bit stage of this converter can be used to implement the Bernoulli map,
and also the 2k-way Bernoulli shift map can be implemented using k × 1-bit stages
or one k-bit stage. It was revealed that in the half-bit redundant algorithmic ADC,
after a sufficiently large number of cycles, residue pdf becomes concentrated in the
center half of the stage full-scale range. In this way, the 1.5-bit stage characteristic will
be fully equivalent to the common chaotic map that is employed to generate random
number sequences. Therefore, this stage is suitable to implement chaotic RNG. With
regard to the uniformly distributed and statistically independent residue signals of this
converter at different times, it was found that the structure of multistage algorithmic
converter is suitable to implement multi-bit chaos-based RNGs and is capable of being
embedded to high-speed analog and digital circuits.
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