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Abstract This paper deals with the design, analysis, computer simulation, and
experimental measurement of fractional-order sinusoidal oscillator with two current
conveyors, two resistors, and two fractional immittance elements. The used conveyor is
based on the bulk-driven quasi-floating-gate technique in order to offer high threshold-
to-supply voltage ratio andmaximum input-to-supply voltage ratio. The supply voltage
of the oscillator is 1V, and the power consumption is 74µW, and hence the proposed
oscillator can be suitable for biomedical, portable, battery-powered, and other appli-
cations where the low-power consumption is critical. A number of equations along
with graphs describing the theoretical properties of the oscillator are presented. The
unique features of fractional-order oscillator are highlighted considering practical uti-
lization, element computation, tuning, phase shift of output signals, sensitivities, etc.
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The simulations performed in the Cadence environment and the measurements of a
real chip confirm the attractive features of the proposed oscillator.

Keywords Fractional-order circuits · Fractional-order oscillator ·
Low-voltage CMOS · Bulk-driven quasi-floating-gate MOS

1 Introduction

Fractional-order calculus is nowadays widespread in many fields of our (not only
scientific) world, such as in biology, chemistry, medicine, mechanics, thermody-
namics, control theory, finances, and nanotechnologies. It is mainly thanks to the
fact that differential equations whose order is a non-integer number better describe
many dynamic systems around us and that this topic is mathematically very well
worked out. Today fractional-order systems are an emerging area of multidiscipli-
nary research which has given rise to many new potential applications [3]. Also,
designers of analog circuits are recently getting on this research although a solid-
state fractional-order element has not been commercially available yet. Nevertheless,
a number of circuits with fractional elements have been published, such as filters
[5,10,17,19,22,25–28], oscillators [11,16,18], controllers [14], and differentiators
[13,29]; also, various methods to implement the fractional impedance have been pre-
sented [1,2,9,12,15,18,20,23,24,26].

Let us consider a fractional-order admittance Yα at the general frequency ω which
is characterized by the following relation

Yα = |Yα0|
ωα
0

( jω)α = Cα( jω)α. (1)

Here |Yα0| is the magnitude of the admittance at a reference frequency ω0, while
α is the order of the admittance which lies in the range 0 < α < 1. The variable
Cα = |Yα0|/ωα

0 is usually considered as pseudo-capacitance, and it should be noted
that the physical meaning of this quantity depends on the value of α. If α converges
to one, Cα represents capacitance as apparent from (1). However, if α tends to zero,
Cα has the meaning of conductance. The unit of Cα is also somehow changeable—it
shifts between F (Farad) when α is one and�−1 when it is zero. Considering arbitrary
value of α, the Cα unit should be Fsα−1 [30].

Moreover, the value of Cα does not provide us with quick information about the
magnitude of the fractional-order admittance at an important frequency, such as oscil-
lation or cutoff frequency. We must always compute it taking care of the value of α.
When α is close to zero, Yα is approximately equal to Cα , and almost independent
of frequency. But on the contrary when α is higher, the magnitude of the admittance
is frequency dependent, and this dependency is not so clear due to the non-integer
exponent α. Thus, it seems more suitable to use the values |Yα0| and ω0 instead of
Cα to describe fractional admittance. (Of course knowing α is also necessary in both
cases.) These values will be also used later in the description of the designed oscillator,
whereas ω0 will be the oscillation frequency.
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The magnitude of the admittance Yα varies with frequency with a slope of 20α
dB/dec. Its phase is constant vs frequency and is equal to (π/2)α. Thus one-port circuits
with fractional-order immittance are also called constant phase elements (CPE).

Our work deals with the design, analysis, computer simulation, and experimental
measurement of a sinusoidal oscillator with two current conveyors and two fractional
immittance elements. Although several previously published papers offer a detailed
look on the general principles of fractional oscillators [11,16,18] and verify selected
ones by PSpice simulation, we aimed at the design, properties, and verification of
one particular circuit and refer to its special properties that are not present at integer-
order oscillators. Utilization of fractional elements brings the benefits of tunability
through the order of the employed elements, availability of arbitrary/variable phase
shift between the outputs of oscillator, and setting the slope of the oscillation frequency
while tuning it by resistances.

The employment of current conveyors as active elements offers the following
advantages, with regards to the corresponding discrete component op-amp RC imple-
mentations: only grounded resistors and capacitors, reduced active component count,
and significantly lower power supply voltage. In comparison with the fractional oscil-
lators in [11,16,18], our circuit employs less passive elements which are all grounded.
The circuits in [11] contain also more active elements. The previously published frac-
tional oscillators do not provide three outputs with arbitrary phase shift proportional
to the orders of two fractances.

Moreover, we utilized a recent sample of low-voltage and low-power current
conveyor, and thus this oscillator can be suitable for biomedical, portable, battery-
powered, and other applications where the low-power consumption is necessary.
Unlike the conventional conveyor, the used one utilizes the bulk-driven quasi-floating-
gate (BD-QFG) technique in order to offer high threshold-to-supply voltage ratio
(VTH/VDD) and maximum input-to-supply voltage ratio (Vin.max/VDD) [8]. The BD-
QFG technique is well described in [7,8].

This paper is organized as follows: The oscillator design is presented in Sect. 2,
while in Sect. 3 the tuning possibilities alongwith theoretical graphs are demonstrated.
In Sect. 4 Cadence simulation and experimental results are illustrated and finally the
paper is concluded in Sect. 5.

2 Fractional-Order Oscillator Design

The basic circuit for the fractional-order oscillator design is shown in Fig. 1. Two
differential voltage current conveyors (DVCC) [4] were employed as active elements.
DVCC is a very versatile active element that was previously used also for design-
ing integer-order oscillators [21]. The terminal currents and voltages of DVCC are
described by the following relations: IY+ = IY− = 0, VX = VY+ − VY−, and
IZ = IX . Voltages are referenced to ground, and currents are considered positive
when flowing into the block. Two grounded fractional-order admittances (Yα, Yβ) are
connected to Z terminals of conveyors.

It should be noted here that the circuit can also operate as oscillator only with
one fractional-order admittance, while the second one is replaced by a classic (i.e.,
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Fig. 1 Oscillator with current
conveyors and fractional-order
admittances
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integer-order) capacitor. But it can be shown that this solution leads to very different
values of passive elements which are not suitable from the integration point of view.

The characteristic equation of the circuit is

YαYβ R1R2 − Yβ R2 + 1 = 0. (2)

Assuming that ω0 is the oscillation frequency, the formula in (1) for the fractional
admittance Yα will be simplified at this frequency to Yα = |Yα0| jα , and similarly
Yβ = |Yβ0| jβ . After substituting these relations into (2), rearranging terms in order
to separate real and imaginary parts and equating them to zero, we can derive the
following relations

R1 = sin
(

π
2 β

)

|Yα0| sin
[

π
2 (α + β)

] , (3)

R2 = sin
[

π
2 (α + β)

]
∣∣Yβ0

∣∣ sin
(

π
2 α

) . (4)

The expressions in (3)–(4) are used for computing the values of the resistances R1
and R2 in order the circuit to oscillate at the frequency ω0. In other words, the values
described by (3) and (4) fulfill the condition of oscillation.We do not show any relation
for oscillation frequency as in fact it does not exist. It is due to the mathematical
description of fractional admittances (1) chosen in the oscillator design. The oscillation
frequency is simply ω0, i.e., the value of frequency where the fractional admittances
used in the oscillator have their magnitudes |Yα0| and |Yβ0|.

Unfortunately, the oscillation frequency and condition cannot be set independently,
but this problem seems to be common to this class of fractional-order oscillators.

To tune the oscillation frequency to a new value ω′
0, the following formulas can be

used

ω′
0

ω0
=

{
sin

(
π
2 β ′)

|Yα0| R′
1 sin

[
π
2 (α′ + β ′)

]

} 1
α′

=
{

sin
[

π
2

(
α′ + β ′)]

∣∣Yβ0
∣∣ R′

2 sin
(

π
2 α′)

} 1
β′

. (5)

Here |Yα0| and |Yβ0| are still the admittance magnitudes at the original oscillation
frequencyω0 and the single quotes at R1, R2, α, and β mean that their values are going
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to be modified in order to tune. The whole relation (5) must be valid to keep the circuit
at the oscillation boundary, i.e., it represents the oscillation condition. Obtaining the
relation (5) is similar to deriving (3) and (4) from the characteristic equation (2) with
the difference in the substitution of fractional admittances by the relations

Yα = |Yα0|
(
jω′

0

)α′
/ωα′

0 and Yβ = ∣∣Yβ0
∣∣ ( jω′

0

)β ′/
ω

β ′
0 .

It is apparent that the oscillation frequency and condition are influenced not only
by resistances and magnitudes of admittances as in the case of classic oscillators but
also by the admittance orders α and β. This increases the degree of freedom and brings
other interesting properties that will be shown below.

Three voltage outputs (v0, v1, and v2) are available as indicated in Fig. 1. Their
voltages are related in the following way

v0 = v1 |Yα0| R1e
j π
2 α, (6)

v2 = v1∣
∣Yβ0

∣
∣ R2

e− j π
2 β. (7)

It is seen that the phase shift between v0 and v1 is απ/2, between v2 and v1 is -
βπ/2, and between v0 and v2 is (α +β)π/2. The phase difference between the output
voltages can be set continuously depending on the parameters α and β. This property
is unique and is not available at integer-order oscillators.

It is also interesting to determine sensitivities of the normalized oscillation fre-
quency (ω′

0/ω0) to the passive element parameters:

S
ω′
0

ω0|Yα0| = S
ω′
0

ω0
R1

= − 1

α
, (8)

S
ω′
0

ω0|Yβ0| = S
ω′
0

ω0
R2

= − 1

β
. (9)

The sensitivities increase in their absolute values with decreasing coefficients α and β.
The oscillation frequency can be controlled by setting α and β as seen in (5), but one
must consider that in particular for low values of α and β, the oscillation frequency
could be very sensitive to tolerances of passive element parameters.

3 Tuning of the Oscillation Frequency

Equation (5) suggests the possibilities of tuning the oscillation frequency. The first
option is tomodify the order (α′ andβ ′) of the admittances. This requires a controllable
fractional-order elementwhich can be based on principles described in [6]. The authors
introduced an electronically controllable RC element with distributed parameters in
bipolar technology. The second tuning possibility is varying resistances R1 and R2.
This section analyzes both these tuning options and brings several characteristics that
graphically illustrate the theoretical relations.
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3.1 Tuning Through the Order of the Fractional Admittances

Let us aim at the tuning by the coefficients α′ and β ′. To simplify the analysis, both
these coefficients will be considered equal (α′ = β ′) and, thus, (5) is transformed to

ω′
0

ω0
=

[
1

|Yα0| 2R′
1 cos

(
π
2 α′)

] 1
α′

=
[
2 cos

(
π
2 α′)

∣∣Yβ0
∣∣ R′

2

] 1
α′

=
(

1

|Yα0|
∣∣Yβ0

∣∣ R′
1R

′
2

) 1
2α′

. (10)

Let us choose the initial magnitudes of fractional-order admittances |Yα0| =
|Yβ0| = 1/17,000�−1 and the fractional orders α = β = 0.5. As already men-
tioned, if the admittances Yα and Yβ had these properties at a chosen frequency ω0 and
the resistances R1 and R2 are computed by (3) and (4), ω0 would be the oscillation
frequency. The calculated resistance values are R1 = 12,021�, R2 = 24,042�. The
effect of increasing or decreasing the value of α′ compared to the initial value of 0.5
on the normalized oscillation frequency is presented in Fig. 2a. It should be noted that
the resistance R1 remained constant during this tuning (R1 = R′

1 = 12,021�), and
R2 was computed as a new value R′

2 by R′
2 = 4R′

1cos
2(πα′/2) in order to keep the

whole relation (10) valid and thus to meet the oscillation condition. The computed
values of R′

2 vs α′ are depicted in Fig. 2b.
Another possibility is to set R2 constant (R2 = R′

2 = 24,042�) and to compute
R′
1. This variant is presented in Fig. 3.
The curve of the normalized oscillation frequency in Fig. 3a has inverse slope com-

pared to the one in Fig. 2a, i.e., the frequency decreases with increasing α′. Figure 3b
shows that the range of the computed resistance R′

1 is high and R′
1 rises dramatically

at values of α′ close to one.

3.2 Tuning Through the Resistances R1 and R2

Another possibility of setting the oscillation frequency resulting from (5) or (10) is
changing resistances R′

1 and R′
2 while keeping constant the properties of fractional

elements. Choosing |Yα0| = Yβ0| = 1/17,000�−1 and α = β = const., the relation
between R′

1 and R′
2 is similar to the previous subsection R′

2 = 4R′
1cos

2(πα/2).
Figure 4 depicts the tuning of the oscillator frequency by the resistances R′

1 and R′
2

for various values of α = β = const.
It is obvious from the figure above that the slope of the oscillation frequency vs

R′
1 can be modified by α = β. Of particular interest is the increased range of the

oscillation frequency at lower values of α. For example, with α = 0.2 the oscillation
frequency changes by five decades when the resistances R′

1 and R′
2 change by one

decade. Thus, it is possible to obtain high oscillation frequencies when resistances
and capacitances are relatively large compared to their values in classic oscillators.
Similarly very low oscillation frequencies can be reachedwithout necessity to increase
R and C excessively. Of course one should again remember that sensitivities rise in
this case as mentioned in the end of the Sect. 2.
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4 Simulation and Experimental Measurement

The used BD-QFG DVCC was designed and fabricated in Cadence platform using
0.35µm CMOS AMIS process with total chip area of 213 × 266µm [8]. The para-
meters of fractional elements are α = β = 0.5, |Yα0| = |Yβ0| = 1/17,000�−1

at ω0 = 10,000 rad/s ( f0 = 1592 Hz). The resistances computed from (3) and
(4) are again R1 = 12,021�, R2 = 24,042�. The value of oscillation frequency
was chosen with respect to the properties of the BD-QFG conveyors and to the
possible application of the oscillator in biomedical and/or other low-power appli-
cations.
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The fractional elements were designed as RC circuits whose parameters were
computed by amethod that uses elliptic functions and results in an equal ripple approx-
imation of the constant-argument characteristic [24]. The schematic of the RC circuit
is illustrated in Fig. 5.

Structure with 10 resistors and nine capacitors was chosen in order to approximate
the fractional admittance more accurately in a wider frequency range for the purpose
of tuning verification. Approximation with a simpler structure can be sufficient if
frequency tuning is not necessary or is limited to a narrow band. The impedance mag-
nitude and phase frequency characteristics of the approximation RC circuit are shown
by thick lines in Fig. 6. The effect of resistor and capacitor tolerances on the impedance
magnitude and phase variations of the circuit in Fig. 5 has been studied. Monte Carlo
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analysis with 500 runs and 10% tolerances of passive elements has been carried out.
The most deviated magnitude and phase values from all the runs are presented by
thin lines in Fig. 6. The standard deviations of the impedance magnitude and phase at
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Fig. 7 Simulated output voltages of the designed oscillator versus time
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the theoretical oscillation frequency 1592Hz are 400 � and 0.88◦, respectively. With
regard to the 10% deviations of the passive elements, the approximating circuit offers
satisfactory tolerances.

Cadence simulations of the designed oscillator have been carried out and the
obtained output voltage waveforms of the oscillator are presented in Fig. 7.

The simulated oscillation frequency is 1560Hz which is near to the theoretically
expected value 1592Hz. The amplitudes are V0 = 85 mV, V1 = 120 mV, V2 =
86 mV and phase shifts are 45◦.

In order to verify the tuning capability of the oscillator, the plot of the simulated
oscillation frequency, setting α′ = β ′ and keeping R1 constant, as a function of the
order is presented in Fig. 8.
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Fig. 10 The experimental sample of the measured oscillator using BD-QFG DVCC. a Top side. b Bottom
side

The second considered possibility of tuning—by changing R′
1 (while keeping α =

β = 0.5 and maintaining oscillation condition R′
2 ≈ 2R′

1) is shown in Fig. 9.
The oscillator was also implemented with samples of BD-QFG DVCC and passive

element parameters mentioned at the beginning of this section. The experimental
circuit is shown in Fig. 10, and the measured waveforms are presented in Fig. 11.

The measured oscillation frequency is 1600Hz which is almost equal to the theo-
retical one. Also the phase shifts between outputs (45.6 and 46.2◦) and amplitudes are
in accordance with expectations.

The spectrum of the first output signal is shown in Fig. 12. The basic harmonic
component is at least 40dB larger than the higher ones. The value of THD computed
from measured spectral components is approximately 1%.
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Fig. 11 Measured output voltages of the designed oscillator versus time

Fig. 12 Measured spectrum of the first output voltage (vertical scale 20dB/div, horizontal 2kHz/div)

Tuning the oscillation frequency by changing R′
1 was also carried out with the

experimental circuit. With R′
1 = 24 k� the oscillation frequency was 416Hz (theoret-

ically 399Hz) andwith R′
1 = 6.2 k� the oscillation frequencywas 6kHz (theoretically

5.98kHz).

5 Conclusion

The aimof this paperwas to present design and evaluation of fractional-order oscillator
from the practical point of view.We have chosen a particular basic circuit with two cur-
rent conveyors (employed in simulation and measurement by low-voltage low-power
BD-QFG DVCCs), two grounded resistors, and two grounded fractional immittance
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elements (employed in simulation and measurement by RC ladder circuits). The the-
oretical analysis showed design rules for passive elements and possibilities of tuning
which is possible also by setting orders of fractional elements. An arbitrary phase
shift of output signals is another unique property which is not present in common
integer-order oscillators. Simulation and the experimental results are very close to the
theoretical ones and prove the attractive features of the designed oscillator.

Acknowledgments Research described in this paper was financed by the National Sustainability Program
under Grant LO1401 and by the Czech Science Foundation under Grant No. P102-15-21942S. For the
research, infrastructure of the SIXCenter was used. Also it was supported byGrant E.029 from the Research
Committee of the University of Patras (Programme K. Karatheodori).

References

1. G.Carlson,C.Halijak,Approximation of fractional capacitors (1/s)∧(1/n)by a regularNewtonprocess.
IEEE Trans. Circuits Syst. 11, 210–213 (1964)

2. A.M. Elshurafa, M.N. Almadhoun, K.N. Salama, H.N. Alshareef, Microscale electrostatic fractional
capacitors using reduced graphene oxide percolated polymer composites. Appl. Phys. Lett. 102,
232,901 (2013)

3. A.S. Elwakil, Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE
Circuits Syst. Mag. 10, 40–50 (2010)

4. H.O. Elwan, A.M. Soliman, Novel CMOS differential voltage current conveyor and its applications.
Circuits Devices Syst. IEE Proc. 144, 3 (1997)

5. T. Freeborn, B. Maundy, A. Elwakil, Field programmable analogue array implementation of fractional
step filters. IET Circuits Devices Syst. 4, 514–524 (2010)

6. A.K. Gil’mutdinov, N.V. Porivaev, P.A. Ushakov, Active RC-filter on parametric RC-EDP for adaptive
communication systems. Nelineynyy Mir 11, 740–746 (2011)

7. F. Khateb, Bulk-driven floating-gate and bulk-driven quasi-floating-gate techniques for low-voltage,
low-power analog circuits design. Int. J. Electron. Commun. (AEU) 68, 64–72 (2014)

8. F. Khateb, The experimental results of the bulk-driven quasi-floating-gate MOS transistor. Int. J. Elec-
tron. Commun. (AEU) 69, 462–466 (2015)

9. M.S. Krishna, S. Das, K. Biswas, B. Goswami, Fabrication of a fractional order capacitor with desired
specifications: a study on process identification and characterization. IEEE Trans. Electron Devices
58, 4067–4073 (2011)

10. B.Maundy, A.S. Elwakil, T. Freeborn, On the practical realization of higher-order filters with fractional
stepping. Signal Process. 91, 484–491 (2011)

11. B. Maundy, A.S. Elwakil, S. Gift, On the realization of multi-phase oscillators using fractional-order
allpass filters. Circuits Syst. Signal Process. 31, 3–17 (2012)

12. D. Mondal, K. Biswas, Performance study of fractional order integrator using single component frac-
tional order elements. IET Circuits Devices Syst. 5, 334–342 (2011)

13. A. Oustaloup, F. Levron, B. Mathieu, F.M. Nanot, Frequency-band complex noninteger differentiator:
characterization and synthesis. IEEE Trans. Circuits Syst. I(47), 25–39 (2000)

14. I. Podlubny, I. Petráš, B.M. Vinagre, P. O’Leary, L’. Dorčák, Analogue realizations of fractional-order
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