
Circuits Syst Signal Process (2015) 34:2765–2783
DOI 10.1007/s00034-015-9995-6

Boundary Dynamics of Memcapacitor in
Voltage-Excited Circuits and Relaxation Oscillators

Mohammed E. Fouda · Ahmed G. Radwan

Received: 27 August 2014 / Revised: 29 January 2015 / Accepted: 29 January 2015 /
Published online: 14 February 2015
© Springer Science+Business Media New York 2015

Abstract This paper discusses the boundary dynamics of the charge-controlled mem-
capacitor for Joglekar’s window function that describes the nonlinearities of the mem-
capacitor’s boundaries. A closed form solution for the memcapacitance is introduced
for general doping factor p. The derived formulas are used to predict the behavior of
the memcapacitor under different voltage excitation sources showing a great match-
ing with the circuit simulations. The effect of the doping factor p on the time domain
response of the memcapacitor has been studied as compared to the linear model using
the proposed formulas. Moreover, the generalized fundamentals such as the saturation
time of the memcapacitor are introduced, which play an important role in many con-
trol applications. Then the boundary dynamics under sinusoidal excitation are used
as a basis to analyze any periodic signal by Fourier series, and the results have been
verified using PSPICE simulations showing a great matching. As an application, two
configuration of resistive-less memcapacitor-based relaxation oscillators are proposed
and closed form expressions for oscillation frequency and conditions for oscillation
are derived in presence of nonlinear model. The proposed oscillator is verified using
PSPICE simulation showing a perfect matching.
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1 Introduction

Mem-elements have become fundamental aspects of the circuit theory due to their
promising potential in many needed applications. The first postulated element was by
Chua in 1971, and it was the memristor “memory resistor” [5] that was not experimen-
tally fabricated as a solid-state device until HP announced that the missing element was
physically implemented [29]. Then later, two elements were added to the mem-element
family, which are the memcapacitor and meminductor [8,9]. Moreover, Chua gener-
alized his theory about mem-elements to include infinite higher-order mem-elements
and presented them in [6]. The memcapacitor is one of the new infinite higher-order
elements where the constitutive relation between the charge q(t) and the voltage v(t)
has pinched hysteresis [6].

A lot of prospective research on the solid-state memcapacitor has been started to
implement memcapacitors [4,20,22,23,28]. One of these implementation depends on
using the concept and analysis of a multilayer structure embedded in the dielectric
of a conventional capacitor was introduced as a solid-state memcapacitor in [22]
where the multi-layer structure is formed by metallic layers separated by an insulator.
This memcapacitor shows hysteretic charge–voltage and capacitance–voltage curves.
However, it is not commercially available for experimental research, emulators have
been introduced to emulate the behavior of the memcapacitor [3,11,25,31]. In addition,
the memcapacitor has been used in different applications such as synapses [16,21],
non-volatile memory arrays [23], and oscillators[17].

Various papers have been published to model and analyze mem-elements such as
the memristor [7,26,27], the meminductor [14] and the memcapacitor [15]. However,
there is no significant work in the area of the nonlinear mathematical modeling of
the memcapacitor, which is very important since it describes the real behavior of the
memcapacitor nearby the boundary which affects the response of the memcapacitor.
The first nonlinear model of the memristor was initially proposed by Joglekar and
Wolf [18] showing a symmetric window function and gives single-valued characteris-
tics under any excitation source [7]. The Joglekar’s window function decreases as the
boundary approaches until it reaches the boundary where it tends to zero as shown in
Fig. 1. Then, this nonlinear window function was suggested to be used for modeling
the memcapacitor [2]. The second common nonlinear model was proposed by Biolek
et al. [2] where the window function depends on a discontinuous window decreasing
toward zero as the boundary layer approaches any of the two ends and having sharp
discontinuity transitions when the excitation source reverses its polarity. Biolek’s win-
dow function may allow for multi-valued characteristics under the sign-variation of
the excitation source[7]. In this paper, the proposed analysis is based on Joglekar’s
window function that is more suitable for most mem-elements due to single-valued
characteristics.

The charge-controlled model of the memcapacitor is introduced in [1] based on the
general model of the memcapacitor [8].The reciprocal of the capacitance D is given by:

D(t) = Dmax + x(t)(Dmin − Dmax), D ∈ (Dmax, Dmin), (1)

where x(t) represents the state variable of the memcapacitor, Dmax and Dmin are the
reciprocal of the boundaries of the memcapacitance Cmax and Cmin, respectively. This
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Fig. 1 Joglekar’s window function f (x) for different p

definition is an analogy to the definition of HP’s memristor that was presented in 2008
[18]. The state equation of the memcapacitance was defined as:

dx

dt
= ηk f (x)q(t) = ηk f (x)

dσ

dt
, (2)

where η is the memcapacitor polarity and σ(t) is the time integral of the charge q(t).
The rate of change in the state variable is directly proportional to the mobility factor
k and the window function, which is modeled by Joglekar’s window function [18]
and is given by f (x) = 1 − (2x − 1)2p, where p represents the dopant factor of
the memcapacitor, which affects the rate of change in memcapacitor state variable as
shown in Fig. 1. In this work, we are interested to show the effect of the boundary, so
lower values of p have the dominant effect as shown in Fig. 1 for p = 1, 2, 5 and 100.

The pinched hysteresis relation of the charge-controlled memcapacitor [8] is given
by:

q(t) = C(x, q, t)v(t) or v(t) = D(x, q, t)q(t). (3)

This paper is organized as follows: Section 2 discusses the analytical solution of the
memcapacitor’s nonlinear model, which is described by Joglekar’s window function
and compares it with the linear model solution. Then, Sect. 3 discusses the responses
of nonlinear and linear models of the memcapacitor under unit step voltage excitation
where the maximum time required for memcapacitance to reach its boundary is derived
for both cases. Section 4 discusses the memcapacitance’s behavior that is subjected to
a sinusoidal voltage source to be used for analyzing any periodic signal using Fourier
series expansion in Sect. 5. Finally, a resistive-less memcapacitor-based relaxation
oscillator is discussed with the necessary conditions for oscillation and verified using
PSPICE simulation.

2 Analytical Solution of Memcapacitor’s Modeling Equations

In this section, solution of linear and nonlinear models is derived using the memca-
pacitance, which is given by (1). The modelling equations of the memcapacitor can be
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represented as a state space representation that describes the memcapacitor behavior
and are given from (2) and (3) as follows:

(
dσ

dt
dx
dt

)
= 1

D(t)

(
1 0

ηk f (x) −D(t)

) (
v(t)

0

)
. (4)

The rate of change of the memcapacitance state variable x(t) is given by:

dx

dt
= ηk f (x)

D(t)
v(t). (5)

By integrating both sides relative to time where the state variable changes from xin
to x(t),

x∫
x in

Dmax + xDd

f (x)
dx =

t∫
0

ηkv(t)dt, (6)

where x(t) = (D(t) − Dmax)/Dd , xin = (Din − Dmax)/Dd and Dd = Dmin − Dmax.

2.1 Linear Model Analysis

The linear model can be considered a good approximation for the highly doped non-
linear model for p > 10 so f (x) ≈ 1. Then, the reciprocal of the memcapacitance
can be obtained as:

D2(t) = D2
o + 2ηk′(ϕ(t) − ϕ(0)

)
, D = [Dmax, Dmin] , (7)

where k′ = kDd , ϕ(t) is the time integral of the voltage, ϕ(0) is the flux at t = 0
and Do represents the reciprocal of the memcapacitance at t = 0. The initial flux
ϕ(0) can be added to the initial memcapacitance and its expression is simplified to
D2(t) = D2

in +2ηk′ϕ(t) so it can be assumed that ϕ(0) = 0. It is noted that the square
of the inverse memcapacitance is directly proportional to the flux ϕ(t). In order to
keep the memcapacitance out of boundary, the absolute value of the flux |ϕ(t)| should
be enclosed between ϕ1 = (D2

in − D2
max)/2k′ and ϕ2 = (D2

min − D2
in)/2k′.

2.2 Nonlinear Model Analysis

The nonlinear dopant model of the memcapacitor is f (x) = 1 − (2x − 1)2p and by
substituting by f (x) into (6) and by letting y = 1 − 2x so dx = −dy/2 , the integral
Eq. (6) can be written as follows:

y∫
yin

Ds − yDd

1 − y2p dy =
t∫

0

−4ηkv (t) dt, (8)
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where y and yin are given by (Ds − 2D (t)) /Dd and (Ds − 2Din) /Dd , respectively,
and Ds = Dmin + Dmax. The time integral of the right-hand side equals −4kϕ (t) but
the left-hand-side part is divided into two integrations. Using binomial expansion and
the integral of the left-hand-side parts,

I1 =
∫

1

1 − y2p dy =
∞∑
r=0

y2pr+1

2pr + 1
+ c, (9a)

I2 =
∫

y

1 − y2p dy =
∞∑
r=0

y2pr+2

2pr + 2
+ c, (9b)

Then, the left-hand side L.H.S is Ds I1|yyin − Dd I2 |yyin so let h(D(t), p)
= Ds I1 − Dd I2 so L.H.S = h(D(t), p) − h(Din, p). Therefore, the function
h(D(t), p) is given by:

h(D(t), p) =
∞∑
r=0

y2pr+1
(

(2pr + 2)Ds − (2pr + 1)Dd y

(2pr + 1)(2pr + 2)

)

=
∞∑
r=0

(
Ds − 2D(t)

Dd

)2pr+1 (
Ds + 2(2pr + 1)D(t)

(2pr + 1)(2pr + 2)

)
. (10)

The implicit relation of the memcapacitance for any dopant drift window function
having any arbitrary p is given as follows:

∞∑
r=0

(
2D (t) − Ds

Dd

)2pr+1 (
Ds + 2 (2pr + 1) D (t)

(2pr + 1) (2pr + 2)

)

=
∞∑
r=0

(
2Din − Ds

Dd

)2pr+1 (
Ds + 2 (2pr + 1) Din

(2pr + 1) (2pr + 2)

)
+ 4kϕ (t). (11)

This general relation can be used for any value of p even when p tends to infinity
where (11) tends to (7) (The detailed analysis is shown in “Appendix”). Although it
is not easy to get a closed form expression for each p but in the case of the minimum
window functionp = 1, the memcapacitance can be given as:

(
C(t)

Cin

)Dd
(
Cmax − C(t)

Cmax − Cin

)Dmax(
Cin − Cmin

C(t) − Cmin

)Dmin

= e4ηkϕ(t). (12)

Although (11) gives a closed form solution for instantaneous memcapacitance for
any voltage excitations, but it is better to evaluate the memcapacitance using inverse
problem technique. So, there is a need to prove that this function is a bijective function
(one to one function) or a monotonic function across the working region (Dmax, Dmin)

as discussed in [7]. Then, the flux ϕ(t) can take any value that belongs to R unlike the
linear case (p = 1) where the flux is enclosed between two values {ϕ1, ϕ2} as shown
in Fig. 2.
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Fig. 3 a Memcapacitance-flux characteristics, b relative error in capacitance-flux for different p of
Joglekars window

Figure 3a shows the change in memcapacitance due to change in flux for different
doping factors p = 1, 2, 5 and 100 where η,Cin,Cmin,Cmax and k equal 1, 1µF, 10 nF,
10µF and 10 MC−1S−1, respectively. Moreover, Fig. 3b shows the relative error in
memcapacitance in reference to the memcapacitance of the linear model, which is
defined as

(
Cp − C∞

)
/C∞. As obvious for p > 10; the behavior of higher value p

is similar to the linear model (p = ∞).
In the following sections, the memcapacitor response with its closed form expres-

sions will be derived for different input voltage signals: DC, sinusoidal and periodic
signals which will be analyzed for linear and nonlinear dopant drift models.
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Fig. 4 Transient memcapacitance for different positive applied voltage at doping factor p = 1 (dotted line)
and p = ∞ (solid line) for η, k,Cmin,Cmax,Cin = 1, 10MC−1S−1, 10 nF, 10µF,100 nF

3 Step Response

Step response is a standard measure to characterize any system where the step voltage
V (t) = VDCu(t); where u(t) is a unit step function, and VDC is the amplitude. In order
to obtain an expression for the memcapacitance, the flux ϕ(t) should be calculated,
which is the time integration of the excitation voltage. In this case, the flux of step
input is equal to VDCt , consequently the memcapacitance for the linear case is given
by:

C(t) = Cin√
1 + 2ηC2

ink
′VDCt

, C(t) ∈ [Cmin,Cmax]. (13)

But for the nonlinear case (p = 1), the memcapacitance is given as follows:

(
C(t)

Cin

)Dd
(
Cmax − C(t)

Cmax − Cin

)Dmax(
Cin − Cmin

C(t) − Cmin

)Dmin

= e4ηkVDCt. (14)

The more the step voltage increases, the memcapacitance decreases for positive VDC
shown in Fig. 4 where the initial memcapacitance is 100 nF and the rate of decrease in
the memcapacitance depends on the amplitude of the applied voltage until the memca-
pacitance reaches its minimum Cmin. Also, the rate of change in the nonlinear model
is slower than the linear case so the time to reach its boundary is longer. Moreover in
case of negative applied voltage, the memcapacitance increases as the absolute of the
applied voltage increases until the memcapacitance reaches its maximum Cmax.

From the previous discussion, there is a certain time duration in which the memca-
pacitance reaches its boundary either maximum or minimum depending on the sign
of the input voltage, which is called the saturation time tsat and given by:
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tsat = C2
in − C

2
bd

2ηC2
inC

2
bdk

′VDC
, (15)

whereCbd represents the boundary memcapacitance that is eitherCmax orCmin. More-
over, the saturation time for nonlinear case is given by:

tsat = 1

4kVDC
ln

((
Cbd

Cin

)Dd
(
Cmax − Cbd

Cmax − Cin

)Dmax(
Cin − Cmin

Cbd − Cmin

)Dmin
)

. (16)

As obvious from the saturation time tsat tends to infinity for Cbd = Cmin and for
Cbd = Cmax as shown in Fig. 2, so it would not cling to its boundary. However, The
maximum saturation time for the linear dopant model is reached when the memcapac-
itor changes its state from the minimum to maximum values or vice versa. Therefore,
the maximum saturation time is given by:

tsat|maxp=∞ = Cmax + Cmin

2CmaxCmink|VDC| , (17)

which is a function of the applied voltage and the mobility factor k. But for the nonlinear
dopant model p = 1, the maximum saturation time is infinite, so a new definition for
maximum saturation time is defined. It can be assumed that the memcapacitor is
saturated when the state variable reaches xon or xoff corresponding to Dsatmin and
Dsatmax , respectively.

Dsatmin = Dmax (1 − xon) + xonDmin, (18a)

Dsatmax = Dmax (1 − xoff) + xoff Dmin. (18b)

So the maximum saturation to reach from Dsatmin to Dsatmax or vice versa is defined
by substituting in (16) as follows:

tsat|maxp=1
= 1

4k |VDC| ln

((
xoff

xon

)Dmax
(

1 − xon

1 − xoff

)Dmin
)

. (19)

But Joglekar’s window function f (x) = 1 − (2x − 1)2p is symmetric with respect to
x = 0.5 so xoff = 1 − xon, then

tsat|maxp=1
= Cmax + Cmin

4CmaxCmink |VDC| ln

(
xoff

xon

)
. (20)

which is similar to the linear dopant model relation but is greater by a scaling factor

α = 1
2 ln

(
xoff
xon

)
. The maximum saturation time depends on the capacitance boundaries

and the applied voltage where it is linearly inverse proportional to the applied voltage.
Figure 5a shows the maximum saturation time for linear and nonlinear models where
case I shows the saturation time when xon and xoff equal 0.1 and 0.9, respectively,
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Fig. 5 Maximum saturation time versus voltage amplitude for η, k,Cmin,Cmax = 1, 10 MC−1S−1, 10 nF,
10µF

where α = 1.0986 which is approximately equal to the linear case, moreover, case II
shows the saturation time when xon and xoff equal 0.01 and 0.99, respectively, where
α = 2.2976. Figure 5b shows the scaling factor α versus xon where α reaches zero
when xon = xoff = 0.5 and tends to ∞ when xon tends to zero which matches Eq. (16).

4 Sinusoidal Response

One of the main important responses which should be obtained is the sinusoidal
response where a single tone signal is applied to the memcapacitor. For the capacitor,
the i−v curve is a circle, but in case of the memcapacitor, the i−v curve is deformed, as
shown in Fig. 6a for different frequencies, due to the nonlinear behavior and pinching
the q − v hysteresis. Moreover, when the frequency increases, this curve becomes
more circular and tends to act more like the capacitor at very high frequencies. The
pinched q−v hysteresis of the simulated memcapacitor is shown in Fig. 6b for different
input frequencies using the SPICE model, proposed in [2]. Also, when the frequency
increases, the area inside the q − v hysteresis decreases and the curve becomes more
linear. If the q − v characteristic is pinched, this element represents a memcapacitor
which is similar to the i − v characteristic in the memristor [8].

Assuming a single tone voltage is applied to the memcapacitor given by v(t) =
Vo sin(ωot), then by substituting into (7), the memcapacitance of linear dopant model
can be given by:

D2(t) = D2
in + 4k′Vo

ωo
sin2

(
ωot

2

)
. (21)

but in case of the nonlinear dopant, the memcapacitance is given by:

((
C(t)

Cin

)Dd
(
Cmax − C(t)

Cmax − Cin

)Dmax(
Cin − Cmin

C(t) − Cmin

)Dmin
)

= exp

(
8ηkVo

ωo
sin2

(
ωot

2

) )
.

(22)
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Fig. 6 PSPICE simulation of linear model: a I–V characteristics of the memcapacitor, b q − V hysteresis
for η, k,Cmin,Cmax = 1, 10 MC−1S−1, 10 nF, 10µF
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Fig. 7 PSPICE and numerical transient simulation of the memcapacitance: a p = ∞, b p = 1 for
Vo, η, k,Cmin,Cmax,Cin, fo = 1 V, 1, 10 MC−1S−1, 10 nF, 10µF, 100 nF, 1 Hz

It is clear from (21) and (22) that the memcapacitance relation is a function of the
input amplitude and the frequency where the more the frequency increases, the more
the memcapacitance decreases and the area inside the hysteresis curve decreases as
shown in Fig. 6b. The verification of the memcapacitance Eqs. (21) and (22) using
MATLAB compared to the SPICE simulation of the memcapacitor is as shown in
Fig. 7a, b for the linear (p = ∞) and the nonlinear (p = 1) dopant model, respec-
tively. It is worth noting that in the linear model, the memcapacitance changes widely
rather than the nonlinear dopant model due to the effect of the window function
which decreases near the boundary. As a result, the rate of change in memcapacitance
decreases and reaches zero at the boundary (see Fig. 2).

The more the frequency increases, the memcapacitance tends to be the initial mem-
capacitance Cin. Figure 8a shows the effect of changing the frequency on the transient
simulation of the memcapacitance where the range of the memcapacitance decreases
by increasing the frequency. Moreover, Fig. 8b shows the 3D surface q = q(v, f ) over
v − f , i.e. the frequency dependence of the pinched hysteresis q − v loop, where the
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Fig. 8 Transient simulation for linear case (p = 1); a memcapacitance for sinusoidal input voltage, and
(b) memcapacitor 3D q − v pinched hysteresis of memcapacitance for sinusoidal input voltage

curve rotates when increasing the frequency until the effect of the memory vanishes
which means that there is a linear relation between the charge and the voltage.

5 General Periodic Excitation Response

Any periodic signal could be expanded using Fourier series expansion as a composite
of the summation of the DC signal and sinusoidal signals as:

v(t) = ao +
∞∑
n=1

ancos(nωot) + bnsin(nωot), (23)

where ao represents the DC component in the applied signal and an and bn represent
the amplitudes of cosine and sine terms of the nth harmonic component of the signal,
respectively. By substituting by (23) into (7), the instantaneous memcapacitance for
linear dopant model is given by:

D2(t) = D2
in + 2ηk′

(
aot +

∞∑
n=1

1

nωo

(
ansin(nωot) − bn(cos(nωot) − 1)

))
. (24)

A similar expression can be obtained for nonlinear dopant model, by substituting
(23) into (12) which describes the nonlinear behavior of the applied periodic signals.

Figure 9 is plotted for applying a square wave signal with amplitudes 1V and −1V ,
and the memcapacitor parameters are k = 10 MC−1S−1,Cin = 100 nF,Cmin = 10 nF
and Cmax = 10µF. Any periodic signals having a DC component (ao �= 0) leads the
memcapacitor to saturate as shown in Fig. 9 since the average of (23) increases or
decreases with time depending on the sign of ao, so a condition on the periodic signal
for zero net DC component should be obtained which comes from ao = 0. But in case
of nonzero ao, the memcapacitor reaches one of its boundaries after the time given in
(17) where VDC = ao.
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Fig. 9 Numerical simulation of memcapacitance for square wave signal input at p = 1 (dotted line) and
p = ∞ (solid line) a without DC component, and b with DC component= 0.2 V at f = 1 Hz

As an application to voltage-excited memcapacitor, the memcapacitor-based relax-
ation oscillator is analyzed and simulated using the linear and nonlinear dopant models.
In this oscillator, the memcapacitor is excited using the output voltage of oscillator
(feedback voltage in case of oscillator).

6 Application: Resistive-Less Memcapacitor-Based Relaxation Oscillator

One of the novel applications is the mem-element-based relaxation oscillator that is
discussed for the first time in [24,32] where the reactive element, capacitor, is replaced
by the memristor. Then later on, a generalized analysis of symmetric and asymmet-
ric relaxation oscillators is introduced in [10,19,30,33] and also a memristor-based
voltage-controlled relaxation oscillator is introduced in [12,13]. In these oscillators,
the current-/charge-controlled models are used due to the availability of SPICE and
solid-state models, but a similar analysis can be done for the voltage-controlled models.
The main problem that faces the memristor-based oscillator is its power consumption,
as discussed in [24]. In order to overcome this problem, the memcapacitor and capac-
itor are used instead of resistive elements such as the memristor and resistor [17].

6.1 C-MC Oscillator Configuration

The oscillation concept of the resistive-less memcapacitor-based relaxation oscillator,
shown in Fig. 10a, was discussed in [17] where the oscillation concept can be traced
using the transfer function shown in Fig. 10b and for η = 1 as follows:

Starting at Vo = Voh (any point between points (a) and (b)), dD/dt is positive which
means that Dm increases and Vi increases until it reaches Vp (point (b)), the upper
comparator would change its output to be Vol and the output of the lower comparator
is still Voh. Therefore, the output of the AND gate is Vol and Vi is inverted to Vp (point
(c)). So the output of the upper comparator changes to Voh, lower comparator changes
to Vol and Vo is still Vol. As a result of that, Dm decreases and |Vi | decreases until it
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Fig. 10 C-MC relaxation oscillator configuration. a circuit, and b transfer function

reaches Vn (point (d)), which is negative, such that the lower comparator output is Voh
and the upper comparator is still Voh, so the output of the AND gate will be Voh and
Vi will change to −Vn (point (a)) and so on.

In [17], the oscillation frequency, and necessary and sufficient conditions of oscil-
lation were derived. However, these expressions were derived for the linear dopant
model of the memcapacitor, so in this section, the effect of the boundary is discussed
on the oscillation frequency and conditions for oscillation for nonlinear model (p = 1)

where f (x) = 4x(1 − x). The input voltage to the comparators Vi is given by:

Vi = Vo
( Dm

Da + Dm

)
, (25)

where Da = C−1
a and Dm = C−1

m . The threshold voltages where the oscillator changes
its outputs are when Vi = Vp and Vi = Vn , the corresponding inverse memcapaci-
tances of Dm are Dmp and Dmn, respectively, and are given by:

Dmp = Da

(
Vp

Voh − Vp

)
, (26a)

Dmn = Da

(
Vn

Vol − Vn

)
. (26b)

From the previous equation and to ensure positive values of Ca and Cm , it follows
that Voh > Vp and that −Vol > −Vn Moreover, the necessary and sufficient conditions
for oscillation are to ensure that the memcapacitance should be within its boundary;
Dmin > Dmp > Dm > Dmn > Dmax. So the conditions for oscillation are given
by:

Dmin
Voh − Vp

Vp
> Da > Dmax

Vol − Vn
Vn

, (27a)

Vp > Vn
Voh

Vol
. (27b)
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The charge passing through the memcapacitor q(t) = Vo(t)
Da+Dm

and by substituting
into (2). Thus, the rate of change in the state variable x is

dx

dt
= k

Vo
Dm + Da

f (x) = 4kx(1 − x)
Vo

Dm + Da
. (28)

Substituting by Dm from (1),

(
Dmax + Da

x
+ Dmin + Da

1 − x

)
dx

dt
= 4kVo. (29)

By integrating the left-han-side term from xmn (corresponding to Cmn) to xmp (cor-
responding to Cmp) and the right-hand-side term from 0 to TH and performing some
simplifications, the time of positive half cycle TH is given by:

TH =
(Dmax + Da)ln

(
xmp
xmn

)
− (Dmin + Da) ln

(
1−xmp
1−xmn

)
4kVoh

. (30)

Substituting by xmn and xmp, the oscillation frequency is given as follows:

fo = 2kVoh

(Dmax + Da)ln
(
Dmp−Dmax
Dmn−Dmax

)
+ (Dmin + Da) ln

(
Dmin−Dmn
Dmin−Dmp

) . (31)

In the linear dopant case, the conditions for oscillation are the same as the nonlinear
case; however, the oscillation condition is given by:

fo = k′Voh(
Dmp − Dmn

)(
Dmn + Dmp + 2Da

) . (32)

Substituting by the value of Dmn and Dmp, the oscillation frequency is given by:

fo = k′VohC2
a (Voh − Vp)

2(Vol − Vn)2

(VpVol − VnVoh)(2VohVol − VohVn − VolVp)
. (33)

6.2 MC-C Oscillator Configuration

Another configuration can be obtained by swapping the memcapacitor with a capacitor
as shown in Fig. 11a. The oscillation concept is traced using the transfer function shown
in Fig. 10b where η = −1 as follows:

Starting at Vo = Voh, dD/dt is negative, which means that Dm decreases and Vi
increases until it reaches Vp (point (b)). Then, the output of the AND gate is Vol and
Vi is switched to Vp (point (c)). So the output of the upper comparator changes to Voh,
lower comparator changes to Vol and Vo is still Vol. Consequently, Dm increases and
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Fig. 11 MC-C relaxation
oscillator configuration
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pV

nV

mC

|Vi | decreases until it reaches Vn (point (d)), which is negative, where the output of
the AND gate changes to Voh and Vi is switched (point (a)) and so on.

The maximum and minimum inverse memcapacitances Dmn and Dmp , correspond-
ing to Vn and Vp, respectively, are given by:

Dmp = Db

(
Voh − Vp

Vp

)
, (34a)

Dmn = Db

(
Vol − Vn

Vn

)
. (34b)

where Db = C−1
b . The necessary and sufficient conditions for oscillation are derived

as done for C-MC oscillator such that Dmin > Dmn > Dm > Dmp > Dmax and are
given as follows:

Dmin
Vn

Vol − Vn
> Db > Dmax

Vp

Voh − Vp
, (35a)

Vp > Vn
Voh

Vol
. (35b)

Then, the oscillation frequency in case of nonlinear dopant model (p = 1) is given
by

fo = 2kVoh

(Dmax + Db)ln
(
Dmn−Dmax
Dmp−Dmax

)
+ (Dmin + Db)ln

(
Dmin−Dmp
Dmin−Dmn

) . (36)

But, in linear dopant case, the oscillation condition is given by:

fo = k′VohC2
bV

2
p V

2
n

V 2
p V

2
ol − V 2

n V
2
oh

. (37)

6.3 Results and Discussion

In the aforementioned expressions, the oscillation frequency is always linearly pro-
portional to the doping factor k of the memcapacitor. Also, as clear from (33) and
(37), the oscillation frequency in the linear case is proportional to the square of series
capacitance Ca or Cb that are bounded by Camin and Camax or Cbmin and Cbmax obtained
from (27a) and (35a), respectively. However, in the case of the nonlinear model, the
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Fig. 12 Obtained oscillation frequency versus series capacitance for both models and both configurations
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Fig. 13 PSPICE simulation of C-MC oscillator with a linear model (p = ∞), b nonlinear model (p = 1)

for Ca = 0.1µF

oscillation frequency tends to zero at minimum and maximum series capacitance as
shown in Fig. 12. Figure 12 is plotted for Cmin,Cmax, k, Vol, Voh, Vn and Vp equal
to 10 nF, 10µF, 10 MC−1S−1, −1 V, 1 V, 0.5 V and 0.75 V, respectively. Moreover,
MC-C configuration gives higher frequency than C-MC configuration for linear and
nonlinear models in the common region [Camin ,Cbmax ] except for a narrow region in
the nonlinear case as shown in Fig. 12.

In case of using 100 nF series capacitance, the oscillation frequency in case of
MC-C configuration is higher than in case of C-MC configuration as clear in Fig. 12.
Figure 13a shows the transient output of the C-MC oscillator configuration where the
obtained oscillation frequency=0.8325 Hz which matches the calculated frequency
from (32). And, Fig. 13b shows the transient response for nonlinear dopant drift model
(p = 1) where the oscillation frequency equals 0.512 Hz matching that calculated
from (36). In both models, the memcapacitance Cm changes from 0.0333 to 0.1µF.
Moreover, in MC-C oscillator configuration, the obtained oscillation frequency for
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Fig. 14 PSPICE simulation of MC-C oscillator with a linear model (p = ∞), bnonlinear model (p = 1)

linear and nonlinear model is 4.4955 and 1.0437 Hz matching that calculated from
(37) and (36), respectively, as shown in Fig. 14. But here, the memcapacitance Cm

changes from 0.1 to 0.3µF.
Note that the memcapacitor behavior differs from the memristor behavior where the

memristance decreases with positive applied voltage but memcapacitance increases
which reverses the oscillation conditions. Also the expression for the oscillation fre-
quency is the same, by replacing R with 1/C . Moreover, there is no static power
consumption in memcapacitor, which makes memcapacitor-based oscillators suitable
for low power applications.

7 Conclusion

This paper discussed the dynamics of the linear and nonlinear dopant drift model of the
memcapacitor where the instantaneous memcapacitance was defined and character-
ized. The closed form mathematical expressions of the memcapacitance were derived
for linear and nonlinear Joglekar’s models under DC step and periodic voltage exci-
tations. In addition, the saturation time formula is presented, which can be used for
a transient response of the memcapacitor. The derived time domain expressions can
be used to analyze circuits having memcapacitors as it was used to derive an expres-
sion for the oscillation frequency in two configurations of the memcapacitor-based
relaxation oscillator. The derived formulas of the memcapacitance were verified using
PSPICE simulations showing great matching.

Appendix

To prove that (11) will be reduced to its conventional linear dopant formula, (10) can
be rewriten as

h(D(t), p) = y
(
Ds − Dd

2
y
)

+
∞∑
r=1

y2pr+1
(

(2pr + 2)Ds − (2pr + 1)Dd y

(2pr + 1)(2pr + 2)

)
.

(38)
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Taking the limit p → ∞,

h(D(t),∞)=Ds y−Dd y2

2
+

∞∑
r=1

lim
p→∞

(
y2pr+1

(
(2pr + 2)Ds − (2pr + 1)Dd y

(2pr + 1)(2pr + 2)

))
.

(39)
Since y ∈ [−1, 1], then y2p → 0, the previous formula will be reduced to:

h(D(t),∞) = D2
s

2Dd
− 2D2(t)

Dd
. (40)

Consequently,
D2(t) = D2

in + 2ηkϕ(t). (41)
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