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Abstract This paper considers the problem of robust H∞ fault detection for a class
of Itô stochastic Takagi–Sugeno fuzzy systems with time-varying delays and para-
meter uncertainties. The purpose is to design fuzzy-rule-independent and fuzzy-rule-
dependent fault detection filters, which guarantee the fault detection system is not
only mean square asymptotically stable, but also satisfies a prescribed H∞-norm level
for all admissible uncertainties. Via the application of Lyapunov stability theory and
the linear matrix inequality technique, novel delay-dependent solvability conditions
are obtained. Weighting fault signal approach is utilized to improve the performance
of the fault detection system, and explicit expression of the desired filter parameters
is characterized by congruence transformation, matrix decomposition, and convex
optimization technique. A numerical example and a mass-spring-damper mechanical
system are employed to illustrate the usefulness and effectiveness of the proposed
method.
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1 Introduction

Over the past decades, a great deal of attention in research has been devoted to the fault
detection (FD) problem for a lot of control systems due to an increasing demand for
higher performance, higher safety, and reliability standards; see, e.g., [1,2,15,19,23,
24], and the references therein. In practical applications, structures of many systems
are usually subject to random variations, which are usually referred to as faults and
may result from component and interconnection failures, tracking, parameter shifting,
and other sources. For a feedback control system, these faults may possibly result in
unsatisfactory performance or even instability when they appear in actuators, sensors,
or controllers. In order to maintain the performance of a designed control system,
faults and failures have to be detected as quickly as possible. Thus, the basic idea of
FD is to construct a residual signal in order to provide a residual evaluation function
to compare with a predefined threshold. When the residual evaluation function has a
value larger than the threshold, an alarmof fault is engendered.Amongmany important
properties of a FD system, the most important one is that FD systems have to be robust
to unavoidable modeling errors or external disturbances that may seriously affect the
performance of model-based FD systems. At the same time, FD systems should be
sensitive to faults in order to detect faults and failures just in time [4].

Up to now, various kinds of FD techniques, such as unknown input observer
approach, parity relations method, optimization-based method, artificial intelligence
technique, FDfilter approach, and so on, have been extensively utilized inmodernman-
ufacturing processes, nuclear engineering, chemical engineering, automotive system,
aerospace engineering, etc. [5,13,14,31,32,42]. Recently, as an efficient method, H∞
FD filter method has been investigated by many researchers and a significant body of
literature has appeared on both the theoretical research and practical applications; see,
e.g., [8,11,20,30,36,40,44,45], and the references therein. Practically speaking, [45]
is the first to take into account the robust H∞ FDfilter design for a class of discrete-time
linear Markovian jump systems by using a general observer-based FD filter as resid-
ual generator, where the robust FD filter design is formulated as an H∞-filtering; [40]
investigates the H∞ FDfiltering for a class of discrete-timeMarkov jump linear system
with partially unknown and completely unknown transition probabilities; [8,36,44]
study the problem of robust H∞ FD filter design for uncertain systems, Markovian
jump singular systems, fuzzy systems, respectively, where missing measurements are
all considered and Bernoulli random binary distribution is employed to characterize
the data missing phenomenon; and [11,20,30] deal with robust H∞ FD filtering for
discrete-time networked systems with global Lipschitz nonlinearities and/or multiple
state delays, where random communication delays, data packet dropouts, and signal
quantisation are involved.

It is worth noting that, in reality, most physical systems are nonlinear, and thus,
how to develop effective FD methods for nonlinear systems is an important and prac-
tical problem. It is well known that the Takagi–Sugeno (T–S) fuzzy model has been



Circuits Syst Signal Process (2015) 34:2839–2871 2841

recognized as a popular and powerful tool in approximating complex nonlinear sys-
tems [7]. A T–S fuzzy model is described by a family of fuzzy IF-THEN rules that
represent local linear input–output relations of the system. Many results on analy-
sis and synthesis of fuzzy systems can be found in the literature; see, for instance,
[9,10,16–18,26], and the references therein. Since T–S fuzzy models have provided
a convenient way to study nonlinear systems, a feasible solution of the FD problem
for nonlinear systems can be converted to that of FD for T–S fuzzy systems. In recent
years, much attention has been paid to the study of FD for fuzzy systems. For example,
[2] studies the problem of robust fault detection observer design for T–S models using
the descriptor approach; [24] considers the problem of designing a robust FD filter
for an uncertain T–S fuzzy models in terms of LMIs; and [44] is concerned with the
H∞ FD filter design for T–S fuzzy systems with intermittent measurements, where the
communication links between the plant and the FD filter are assumed to be imperfect,
and a stochastic variable satisfying the Bernoulli random binary distribution is used
to model the unreliable communication links.

On the other hand, owing to systems in many fields of engineering and science are
often disturbed by stochastic noise, the study of stochastic systems has been of great
interest; see, e.g., [6,34,35,37], and so on. Very recently, there has been a growing
attention on the study of stochastic fuzzy systems. To mention a few, delay-dependent
robust control problem for uncertain stochastic fuzzy systems with time-varying delay
is investigated in [12]; delay-dependent stabilization problem for a class of time-delay
stochastic fuzzy systems is studied in [38]; the stabilization problem for a class of
uncertain Itô stochastic fuzzy systems driven by a multidimensional wiener process is
considered in [46]; delay-dependent guaranteed cost control for uncertain stochastic
fuzzy systems with time delay is discussed in [39]; the robust filtering problem for
discrete fuzzy stochastic systems with sensor nonlinearities is studied in [25]; and
the robust fuzzy filter design problem for a class of nonlinear stochastic systems is
researched in [29], while the robust H∞ FD filter for a class of Itô stochastic T–S fuzzy
systems is discussed in [33], where the time delays and parameter uncertainty are not
considered.

Note that time delays and parameter uncertainties arise quite naturally in many
practical applications, which are frequently sources of poor performance and insta-
bility of various kinds of real systems including stochastic fuzzy systems; see, e.g.,
[12,21,38,39,43,46]. Therefore, it is reasonable and necessary to take into account
time delays and parameter uncertainties when investigating robust FD for stochas-
tic fuzzy systems. However, to the best of the authors’ knowledge, so far, there are
few research results reported on the FD filtering for uncertain stochastic fuzzy time-
delay systems. Thus, the problem of FD filter design for uncertain stochastic fuzzy
time-delay systems still remains open and challenging.

It should be pointed out that, for the FDfilter design problem of fuzzy systems, there
are fuzzy-rule-dependent filter and fuzzy-rule-independent filter. When the premise
variable of the original fuzzy model is available in filter implementation, the filter
structure will be dependent of the fuzzy rules, which causes the so-called fuzzy-
rule-dependent filter [24,44]. On the contrary, if the premise variable of the fuzzy
model is unavailable in filter implementation, then the condition leads to the fuzzy-
rule-independent filter [33]. Because the information of the premise variable is fully
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considered in filter design by applying the fuzzy-rule-dependent line, the result
obtained is sure less conservative. However, the filter design will become more com-
plicated by the fuzzy-rule-dependent line [24,33,44].

Motivated by the above discussion, this paper considers the robust H∞ FD problem
for a class of uncertain Itô stochastic T–S fuzzy systems with time-varying delays. We
deal with the FD by designing fuzzy-rule-independent and fuzzy-rule-dependent FD
filters that generate a residual signal to estimate the fault signal. The main idea is to
make the error between residual and fault as small as possible. A numerical example
and a MSD mechanical system are used to illustrate the usefulness and effectiveness
of our method. The main contributions of this paper are summarized as follows: (1) A
new class of Itô stochastic T–S fuzzy systemswith time-varying delays, norm-bounded
parameter uncertainties, which have not been considered in the existing references, is
proposed; (2) aLyapunov–Krasovskii function is constructed to reflect the inherent two
time-varying delays in the system itself, and some novel delay-dependent sufficient
conditions in terms of linear matrix inequality (LMI) are proposed to guarantee the
existence of the desired fuzzy-rule-independent and fuzzy-rule-dependent detection
filters; (3) the difficult problem of norm-bounded parameter uncertainties is solved by
settling several well-known matrix inequations, and weighting fault signal approach
is employed to improve the performance of the FD system; and (4) explicit expres-
sion of the desired fuzzy-rule-independent and fuzzy-rule-dependent filter parameters
is characterized by congruence transformation, matrix decomposition, and convex
optimization technique.
Notation R

n and R
n×m represent, respectively, the n-dimensional Euclidean space

and the set of all n × m real matrices. MT represents transpose of the matrix M; X >

Y (respectively, X ≥ Y ) means that symmetric matrix X − Y is positive definite
(respectively, positive semidefinite). I and O refer to the identity matrix and a zero
matrix with appropriate dimensions, respectively. The notation (∗) represents a term
that is induced by symmetry. Let τ > 0 and C([−τ, 0];Rn) represent the family of
continuous functions ϕ from [−τ, 0] to R

n with the norm ‖ϕ‖ = sup−τ≤θ≤0 |ϕ(θ)|,
where | · | is the Euclidean norm in Rn . (�, F , {Ft }t≥0, P) is a complete probability
space with a filtration {Ft }t≥0 satisfying the usual conditions. Lp

F0
([−τ, 0] ; R

n)

denotes the family of allF0-measurableC([−τ, 0];Rn)-valued random variables ϕ =
{ϕ(θ) : −τ ≤ θ ≤ 0}, such that sup−τ≤θ≤0 E |ϕ(θ)|p < ∞, where E{·} refers to the
expectation operator with respect to the given probability measure P . L2[0,∞) is
the space of square-integrable vector functions over [0,∞); ‖·‖2 stands for the usual
L2[0,∞) norm, while ‖·‖E2 denotes the norm in L2((�,F ,P), [0,∞)).

2 Problem Formulation and Preliminaries

We consider a class of nonlinear stochastic systems with parameter uncertainties and
time delays described by the following T–S fuzzy stochastic model (�):

Plant Rule i : IF θ1(t) is μi1 and θ2(t) is μi2 and · · · and θg(t) is μig , THEN

dx(t) = [Ai (t)x(t) + A1i (t)x(t − τ1(t)) + B0i (t)u(t) + Bi (t)ω(t)

+ B1i (t) f (t)] dt + Ei (t)x(t − τ2(t))d�, (1)
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dy(t) = [Ci (t)x(t) + C1i (t)x(t − τ1(t)) + D0i (t)u(t) + Di (t)ω(t)

+ D1i (t) f (t)] dt + Fi (t)x(t − τ2(t))d�, (2)

x(t) = φ(t), ∀t ∈ [−τ, 0], i = 1, 2, . . . , r, (3)

where μi1, μi2, . . . , μig are the fuzzy sets; r is the number of IF-THEN rules; x(t) ∈
R

n is the state vector; y(t) ∈ R
p is the measured output; u(t) ∈ R

m is the known
input; ω(t) ∈ R

q is the unknown disturbance input; f (t) ∈ R
l is the fault to be

detected; u(t), ω(t), and f (t) belong to L2[0,∞); θ(t) = [θ1(t), θ2(t), . . . , θg(t)]
are the premise variables; and φ(t) is the initial condition. Throughout this paper, it is
assumed that the premise variables do not depend on the input variables u(t) explicitly.
�(t) is a zero-mean real scalar Brownian motion (Wiener process) on (�,F ,P)

relative to an increasing family (Ft )t∈[0,∞) of σ -algebras Ft ⊂ F satisfying

E{d�(t)} = 0, E{d�(t)2} = dt. (4)

τ1(t), τ2(t) are the time delays satisfying

0 < τ1(t) ≤ τ < ∞, 0 < τ2(t) ≤ τ < ∞, τ̇1(t) ≤ μ1 < 1, τ̇2(t) ≤ μ2 < 1,

(5)

where τ, μ1 and μ2 are constant scalars. Parameters in system (�) are described as
follows:

Ai (t) = Ai + �Ai (t), A1i (t) = A1i + �A1i (t), B0i (t) = B0i + �B0i (t),

B1i (t) = B1i + �B1i (t), Ei (t) = Ei + �Ei (t), Ci (t) = Ci + �Ci (t),

C1i (t) = C1i + �C1i (t), D0i (t) = D0i + �D0i (t), D1i (t) = D1i + �D1i (t),

Fi (t) = Fi + �Fi (t), Bi (t) = Bi , Di (t) = Di , (6)

where Ai , A1i , B0i , Bi , B1i , Ei , Ci , C1i , D0i , Di , D1i , Fi are known constant matri-
ces with compatible dimensions, and �Ai (t),�A1i (t),�B0i (t),�B1i (t),�Ei (t),
�Ci (t),�C1i (t),�D0i (t),�D1i (t),�Fi (t) represent the parameter uncertainties of
the system, which are assumed to be of the form[

�Ai (t) �A1i (t) �B0i (t) �B1i (t) �Ei (t)
�Ci (t) �C1i (t) �D0i (t) �D1i (t) �Fi (t)

]

=
[

M1i

M2i

]
Gi (t)

[
N1i N2i N3i N4i N5i

]
, (7)

where M1i , M2i , N1i , N2i , N3i , N4i , N5i are knownconstantmatriceswith compatible
dimensions and Gi (t) are unknown Lebesgue measurable matrix functions satisfying

Gi (t)
TGi (t) ≤ I, i = 1, 2, . . . , r. (8)

The parameter uncertainties �Ai (t),�A1i (t),�B0i (t),�B1i (t),�Ei (t),�Ci (t),
�C1i (t),�D0i (t),�D1i (t),�Fi (t) are said to be admissible if both (7) and (8) hold.
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Given a pair of (x(t), u(t)), by using singleton fuzzier, product inference, and
center-average defuzzier, the final output of the fuzzy stochastic system is inferred as
follows:

(�1) : dx(t) =
r∑

i=1

hi (θ(t))

⎧⎨
⎩
[Ai (t)x(t) + A1i (t)x(t − τ1(t)) + B0i (t)u(t)
+Bi (t)ω(t) + B1i (t) f (t)] dt
+Ei (t)x(t − τ2(t))d�,

⎫⎬
⎭

dy(t) =
r∑

i=1

hi (θ(t))

⎧⎨
⎩
[Ci (t)x(t) + C1i (t)x(t − τ1(t)) + D0i (t)u(t)
+Di (t)ω(t) + D1i (t) f (t)] dt
+Fi (t)x(t − τ2(t))d�,

⎫⎬
⎭ (9)

where hi (θ(t)) = νi (θ(t))∑r
i=1 νi (θ(t))

, νi (θ(t)) = ∏g
j=1 μi j (θ j (t)), μi j (θ j (t)), is the grade

of membership of θ j (t) in μi j , νi (θ(t)) ≥ 0, i = 1, 2, . . . , r,
∑r

i=1 νi (θ(t)) > 0 for
all t. Therefore, hi (θ(t)) ≥ 0, for i = 1, 2, . . . , r , and

∑r
i=1 hi (θ(t)) = 1 for all t.

Throughout this paper, the nominal system of �1 in (9) is assumed to be stable.
Our FD schemes are concerned with the construction of a residual generator. For the
plant represented by (1–9), we consider the following two kinds of FD filters.

2.1 Fuzzy-Rule-Independent Filter

In the case that the premise variable of the original fuzzy model θ(t) is unavailable
in filter implementation, the filter structure will have to be independent of the fuzzy
rules. Then, the FD filter is designed as the following form.

(�c) : dxc(t) = Acxc(t)dt + Bcdy(t),

χc(t) = Ccxc(t), (10)

where xc(t) ∈ R
n is the state vector of the FDfilter,χc(t) ∈ R

l is the so-called residual
signal, and Ac, Bc, Cc are the filter parameters to be designed.

The objective of FD is to identify the fault f (t) when it appears. To improve the
performance of the fault detection system, we add a weighting matrix function into the
fault f (t), i.e., fw(s) = W (s) f (s), where fw(s) and f (s) denote, respectively, the
Laplace transforms of fw(t) and f (t). One minimal state-space realization of fw(s)
and f (s) can be

(�w) : ẋw(t) = Awxw(t) + Bw f (t),

fw(t) = Cwxw(t) + Dw f (t),

xw(0) = 0, (11)

where xw(t) ∈ R
k is the state vector and Aw, Bw, Cw, Dw are constant matrices.

Denoting ec(t) � χc(t)− fw(t) and augmenting the model of (�) to include the states
of (�c) and (�w), the overall dynamics of the fault detection system is governed by
(�̃c):
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dξ(t) =
r∑

i=1

hi (θ(t))

{ [ Ãi (t)ξ(t) + Ã1i (t)Hξ(t − τ1(t)) + B̃i (t)v(t)]dt
+Ẽi (t)Hξ(t − τ2(t))d�

}
,

ec(t) � χc(t) − fw(t) =
r∑

i=1

hi (θ(t))
{

C̃i (t)ξ(t) + D̃i (t)v(t)
}

, (12)

where

ξ(t) =
⎡
⎣ x(t)

xc(t)
xw(t)

⎤
⎦ , v(t) =

⎡
⎣ u(t)

ω(t)
f (t)

⎤
⎦ ,

Ãi (t) =
⎡
⎣ Ai + �Ai (t) 0 0

Bc(Ci + �Ci (t)) Ac 0
0 0 Aw

⎤
⎦ , H = [

I 0 0
]
,

Ã1i (t) =
⎡
⎣ A1i + �A1i (t)

Bc(C1i + �C1i (t))
0

⎤
⎦ ,

B̃i (t) =
⎡
⎣ B0i + �B0i (t) Bi B1i + �B1i (t)

Bc(D0i + �D0i (t)) Bc Di Bc(D1i + �D1i (t))
0 0 Bw

⎤
⎦ ,

Ẽi (t) =
⎡
⎣ Ei + �Ei (t)

Bc(Fi + �Fi (t))
0

⎤
⎦ , C̃i (t) � C̃i = [

0 Cc −Cw

]
,

D̃i (t) � D̃i = [
0 0 −Dw

]
,

� Ãi (t) =
⎡
⎣ �Ai (t) 0 0

Bc�Ci (t) 0 0
0 0 0

⎤
⎦ , � Ã1i (t) =

⎡
⎣ �A1i (t)

Bc�C1i (t)
0

⎤
⎦ ,

�B̃i (t) =
⎡
⎣ �B0i (t) 0 �B1i (t)

Bc�D0i (t) 0 Bc�D1i (t)
0 0 0

⎤
⎦ ,

�Ẽi (t) =
⎡
⎣ �Ei (t)

Bc�Fi (t)
0

⎤
⎦ ,

Ãi (t) = Ãi + � Ãi (t), Ã1i (t) = Ã1i + � Ã1i (t),

B̃i (t) = B̃i + �B̃i (t), Ẽi (t) = Ẽi + �Ẽi (t). (13)

2.2 Fuzzy-Rule-Dependent Filter

Now, assume that the premise variable of the fuzzy model θ(t) is available in filter
implementation, which implies that hi (θ(t)) is available for feedback. Suppose that
the filter’s premise variable is the same as the plant’s premise variable. Using the
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parallel distributed compensation (PDC) technique, the fuzzy-rule-dependent filter is
designed as follows:

Rule i : IF θ1(t) is μi1 and θ2(t) is μi2 and · · · and θg(t) is μig , THEN

dx f (t) = A f i x f (t)dt + B f idy(t),

χ f (t) = C f i x f (t), i = 1, 2, . . . , r (14)

where x f (t) ∈ R
n is the state vector , χ f (t) ∈ R

l is the so-called residual signal, and
A f i , B f i , C f i are the filter parameters to be designed. The above filter plant can
also be represented by (� f ):

dx f (t) =
r∑

i=1

hi (θ(t)){A f i x f (t)dt + B f idy(t)},

χ f (t) =
r∑

i=1

hi (θ(t))C f i x f (t). (15)

Denoting e f (t) � χ f (t) − fw(t) and augmenting the model of (�) to include the
states of (� f ) and (�w), the fault detection system is described by (�̃ f ):

dζ(t) =
r∑

j=1

r∑
i=1

hi (θ(t))h j (θ(t))

⎧⎪⎪⎨
⎪⎪⎩

[
Ãi j (t)ζ(t) + Ã1i j (t)Hζ(t − τ1(t))

+ B̃i j (t)v(t)
]
dt

+Ẽi j (t)Hζ(t − τ2(t))d�

⎫⎪⎪⎬
⎪⎪⎭

,

e f (t) � χ f (t) − fw(t)

=
r∑

j=1

r∑
i=1

hi (θ(t))h j (θ(t)){C̃i j (t)ζ(t) + D̃i j (t)v(t)}, (16)

where

ζ(t) =
⎡
⎣ x(t)

x f (t)
xw(t)

⎤
⎦ , v(t) =

⎡
⎣ u(t)

ω(t)
f (t)

⎤
⎦ ,

Ãi j (t) =
⎡
⎣ Ai + �Ai (t) 0 0

B f j (Ci + �Ci (t)) A f j 0
0 0 Aw

⎤
⎦ , H = [

I 0 0
]
,

Ã1i j (t) =
⎡
⎣ A1i + �A1i (t)

B f j (C1i + �C1i (t))
0

⎤
⎦ ,

B̃i j (t) =
⎡
⎣ B0i + �B0i (t) Bi B1i + �B1i (t)

B f j (D0i + �D0i (t)) B f j Di B f j (D1i + �D1i (t))
0 0 Bw

⎤
⎦ ,
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Ẽi j (t) =
⎡
⎣ Ei + �Ei (t)

B f j (Fi + �Fi (t))
0

⎤
⎦ , C̃i j (t) � C̃i j = [

0 C f j −Cw

]
,

D̃i j (t) � D̃i j = [
0 0 −Dw

]
,

� Ãi j (t) =
⎡
⎣ �Ai (t) 0 0

B f j�Ci (t) 0 0
0 0 0

⎤
⎦ , � Ã1i j (t) =

⎡
⎣ �A1i (t)

B f j�C1i (t)
0

⎤
⎦ ,

�B̃i j (t) =
⎡
⎣ �B0i (t) 0 �B1i (t)

B f j�D0i (t) 0 B f j�D1i (t)
0 0 0

⎤
⎦ ,

�Ẽi j (t) =
⎡
⎣ �Ei (t)

B f j�Fi (t)
0

⎤
⎦ ,

Ãi j (t) = Ãi j + � Ãi j (t), Ã1i j (t) = Ã1i j + � Ã1i j (t),

B̃i j (t) = B̃i j + �B̃i j (t), Ẽi j (t) = Ẽi j + �Ẽi j (t). (17)

Before proceeding further, we first introduce the following definitions, which will
play key roles in deriving our main results in the sequel.

Definition 1 [22] For the uncertain time-delay fuzzy stochastic system (�̃c) in (12)
with v(t) = 0 and every ϕ ∈ L2

F0
([−τ, 0]; R

n), the trivial solution is asymptotically
mean square stable if

lim
t→∞ E‖ξ(t, ϕ)‖2 = 0.

Definition 2 Given a scalar γ > 0, the fuzzy stochastic system (�̃c) in (12) is asymp-
totically mean square stable with an H∞ performance level γ if it is asymptotically
mean square stable when v(t) = 0, and under zero initial condition and for all nonzero
v(t) ∈ L2[0, ∞), the following holds:

E
{∫ ∞

0
ec

T(t)ec(t)dt

}
< γ 2

∫ ∞

0
vT(t)v(t)dt

= γ 2
[∫ ∞

0
uT(t)u(t)dt +

∫ ∞

0
ωT(t)ω(t)dt +

∫ ∞

0
f T(t) f (t)dt

]
. (18)

The fault detection problem to be addressed in this paper can be described as the
following two steps:

Step 1 Design a FD filter and generate a residual signal.

For fuzzy stochastic system �1 in (9), design a robust H∞ filter in the form of
(�c) in (10) [or (� f ) in (15)] to generate a residual signal. Meanwhile, the filter is
designed to assure that the resulting FD system (�̃c) in (12) [or (�̃ f ) in (16)] is to be
asymptotically mean square stable with an H∞ performance level γ > 0.
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Step 2 Set up a FD measure.

Select an evaluation function and a threshold. In this paper, a residual evaluation
function J (χ) (where χ denotes χc(t) or χ f (t)) and a threshold Jth are selected as

J (χ) �
(∫ t0+t∗

t0
χT(t)χ(t)dt

)1/2

, (19)

Jth � sup
0 �=ω∈L2, 0 �=u∈L2, f =0

J (χ), (20)

where t0 denotes the initial evaluation time instant and t∗ refers to the evaluation time.
Based on the designing, the occurrence of faults can be detected by comparing J (χ)

and Jth according to the following logical relationship:

J (χ) � Jth �⇒ no faults,

J (χ) > Jth �⇒ with faults �⇒ alarm.

3 Main Results

Before giving the main results of this paper, we first recall some important lemmas
that will be frequently used throughout the proofs.

Lemma 1 ([22] Itô differential formula) Let x(t) be an n-dimensional Itô process on
t > 0 with the stochastic differential

dx(t) = f (t)dt + g(t)d�(t),

where f (t) ∈ R
n and g(t) ∈ R

n×m. Let V (x, t) ∈ C2,1(Rn × R
+; R), C2,1(Rn ×

R
+; R) denotes the family of all real-valued functions defined on R

n × R
+, which

are continuously twice differentiable in the first argument and once differentiable in
the second argument. Then, V (x, t) is a real-valued Itô process with its stochastic
differential given by

dV (x, t) = LV (x, t)dt + Vx (x, t)g(t)d�(t),

LV (x, t) = Vt (x, t) + Vx (x, t) f (t) + 1

2
tr
(

gT(t)Vxx (x, t)g(t)
)

.

Lemma 2 [3] Suppose that matrices {Mi }s
i=1 ∈ R

n×m and a positive semidefinite
matrix P ∈ R

n×n are given. If 0 � hi � 1 and
∑s

i=1 hi = 1, then

(
s∑

i=1

hiMi

)T

P
(

s∑
i=1

hiMi

)
�

s∑
i=1

hiMi
TPMi ;

[10] For any real matrices Xi j , i, j = 1, 2, . . . , s and � > 0 with appropriate dimen-
sions, we have
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s∑
i=1

s∑
j=1

s∑
k=1

s∑
l=1

hi h j hkhl XT
i j�Xkl �

s∑
i=1

s∑
j=1

hi h j XT
i j�Xi j ,

where 0 � hi � 1 for i = 1, 2, . . . , s and
∑s

i=1 hi = 1.

Lemma 3 [34] Let M, N, and F be real matrices of appropriate dimensions with
FTF � I , where F may be time-varying. Then, for any scalar ε �= 0, we have

MFN + NTFTMT � ε2M MT + ε−2NTN .

Lemma 4 [35] Let A,D,S,W , and F be real matrices of appropriate dimensions
such thatW > 0 and FTF � I . Then, for any scalar ε > 0 such thatW−εDDT > 0,
we have

(A + DFS)TW−1(A + DFS) � AT(W − εDDT)−1A + ε−1STS.

First, we will analyze the stability with an H∞ performance level γ > 0 of FD
system (�̃c) in (12) and give the following result.

Theorem 1 Given a scalar γ > 0, the fuzzy stochastic FD system (�̃c) in (12) is
asymptotically mean square stable with an H∞ performance level γ if there exist
scalars ε1 > 0, ε2 > 0 and matrices P > 0, Q > 0, R > 0 such that the following
matrix inequalities hold:

ϒi =

⎡
⎢⎢⎢⎢⎢⎢⎣

ϒ11i ϒ12i 0 ϒ14i 0 C̃T
i∗ ϒ22i 0 ϒ24i 0 0

∗ ∗ ϒ33i 0 ẼT
i 0

∗ ∗ ∗ ϒ44i 0 D̃T
i∗ ∗ ∗ ∗ ϒ55i 0

∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (21)

i = 1, 2, . . . , r , where

ϒ11i = P Ãi + ÃT
i P + HT(Q + R)H + ε−1

1 P M̃1i M̃T
1i P + ε1 ÑT

1i Ñ1i ,

ϒ12i = P Ã1i + ε1 ÑT
1i N2i , ϒ14i = P B̃i + ε1 ÑT

1i Ñ3i ,

ϒ22i = −(1 − μ1)Q + ε1N2i
TN2i , ϒ24i = ε1N2i

T Ñ3i ,

ϒ33i = −(1 − μ2)R + ε2N5i
TN5i , ϒ44i = −γ 2 I + ε1 ÑT

3i Ñ3i ,

ϒ55i = ε−1
2 M̃1i M̃T

1i − P−1,

M̃T
1i = [

M1i
T (Bc M2i )

T 0
]
, Ñ1i = [

N1i 0 0
]
, Ñ3i = [

N3i 0 N4i
]
, (22)
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Ãi =
⎡
⎣ Ai 0 0

BcCi Ac 0
0 0 Aw

⎤
⎦ , Ã1i =

⎡
⎣ A1i

BcC1i

0

⎤
⎦ ,

B̃i =
⎡
⎣ B0i Bi B1i

Bc D0i Bc Di Bc D1i

0 0 Bw

⎤
⎦ , Ẽi =

⎡
⎣ Ei

Bc Fi

0

⎤
⎦ . (23)

Proof Please see the “Appendix”. ��
We are now ready to present a solution to the H∞ FD filter design for (�c) in (10).

Theorem 2 For given scalars γ > 0, ε1 > 0, ε2 > 0 and matrices Q > 0, R > 0,
suppose there exist matrices U > 0,V > 0, V > 0,Ac,Bc, and Cc such that the
following linear matrix inequalities (LMIs) hold as shown in (24) and (25) for all
i = 1, 2, . . . , r ,

�i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11i �12i 0 �14i 0 �16i �17i�18i 0
∗ �22 0 �24i 0 �26i �27i�28i 0
∗ ∗ �33 0 0 0 0�38i 0
∗ ∗ ∗ �44 0 0 00 0
∗ ∗ ∗ ∗ �55 0 00 �59i

∗ ∗ ∗ ∗ ∗ −γ 2 I 00 0
∗ ∗ ∗ ∗ ∗ ∗ −γ 2 I0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗−γ 2 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗∗ −U
∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗
0 0 0 0 �114i N1i

T

0 CTc 0 0 �214i 0
0 −CT

w 0 0 0 0
0 0 0 0 0 N2i

T

�510i 0 N5i
T 0 0 0

0 0 0 0 0 N3i
T

0 0 0 0 0 0
0 −DT

w 0 0 0 N4i
T

−V 0 0 �913i 0 0
−V 0 0 �1013i 0 0
∗ −I 0 0 0 0
∗ ∗ −ε−1

2 I 0 0 0
∗ ∗ ∗ −ε2 I 0 0
∗ ∗ ∗ ∗ −ε1 I 0
∗ ∗ ∗ ∗ ∗ −ε−1

1 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (24)



Circuits Syst Signal Process (2015) 34:2839–2871 2851

[U V
∗ V

]
> 0, (25)

where

�11i = U Ai + Ai
TU + BcCi + Ci

TBc
T + Q + R,

�12i = Ac + Ai
TV + Ci

TBc
T, �22 = Ac + Ac

T,

�14i = U A1i + BcC1i , �24i = VA1i + BcC1i ,

�16i = UB0i + Bc D0i , �17i = UBi + Bc Di ,

�18i = UB1i + Bc D1i , �26i = VB0i + Bc D0i ,

�27i = VBi + Bc Di , �28i = VB1i + Bc D1i ,

�38i = V Bw, �59i = ET
i U + FT

i Bc
T,

�510i = ET
i V + FT

i Bc
T, �114i = �913i = UM1i + Bc M2i ,

�214i = �1013i = VM1i + Bc M2i , �33 = V Aw + AT
wV,

�44 = −(1 − μ1)Q, �55 = −(1 − μ2)R.

Then, there exists a fuzzy-rule-independent FD filter (�c) in (10) such that the fuzzy
stochastic FD system (�̃c) in (12) is asymptotically mean square stable with an H∞
performance level γ . Moreover, if the aforementioned LMI conditions are feasible,
then a desired H∞ filer realization is given by

[
Ac Bc

Cc 0

]
=
[V−1 0

0 I

] [Ac Bc

Cc 0

]
. (26)

Proof Please see the “Appendix”. ��
Next, we will further consider the fuzzy-rule-dependent case and give the following

results.

Theorem 3 Given a scalar γ > 0, the fuzzy stochastic FD system (�̃ f ) in (16) is
asymptotically mean square stable with an H∞ performance level γ if there exist
scalars ε1 > 0, ε2 > 0 and matrices P > 0, Q > 0, R > 0 such that the following
matrix inequalities hold:

ϒi i < 0, i = 1, 2, . . . , r (27)

ϒi j + ϒ j i < 0, 1 � i < j � r, (28)

where

ϒi j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ϒ11i j ϒ12i j 0 ϒ14i j 0 C̃T
i j

∗ ϒ22i j 0 ϒ24i j 0 0
∗ ∗ ϒ33i j 0 ẼT

i j 0

∗ ∗ ∗ ϒ44i j 0 D̃T
i j

∗ ∗ ∗ ∗ ϒ55i j 0
∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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ϒ11i j = P Ãi j + ÃT
i j P + HT(Q + R)H + ε−1

1 P M̃1i j M̃T
1i j P + ε1 ÑT

1i j Ñ1i j ,

ϒ12i j = P Ã1i j + ε1 ÑT
1i j N2i j , ϒ14i j = P B̃i j + ε1 ÑT

1i j Ñ3i j ,

ϒ22i j = −(1 − μ1)Q + ε1N2i j
TN2i j , ϒ24i j = ε1N2i j

T Ñ3i j ,

ϒ33i j = −(1 − μ2)R + ε2N5i j
TN5i j , ϒ44i j = −γ 2 I + ε1 ÑT

3i j Ñ3i j ,

ϒ55i j = ε−1
2 M̃1i j M̃T

1i j − P−1,

M̃T
1i j = [

M1i
T (B f j M2i )

T 0
]
, Ñ1i j = [

N1i 0 0
]
,

Ñ3i j = [
N3i 0 N4i

]
, N2i j = N2i , N5i j = N5i ,

Ãi j =
⎡
⎣ Ai 0 0

B f j Ci A f j 0
0 0 Aw

⎤
⎦ , Ã1i j =

⎡
⎣ A1i

B f j C1i

0

⎤
⎦ ,

B̃i j =
⎡
⎣ B0i Bi B1i

B f j D0i B f j Di B f j D1i

0 0 Bw

⎤
⎦ , Ẽi j =

⎡
⎣ Ei

B f j Fi

0

⎤
⎦ . (29)

Proof By using Lemmas 1–4 and the same line of the proof of Theorem 1, this theorem
can be proved readily, the detailed procedures are omitted here. ��

Now, we will present a solution to the H∞ FD filter design for (� f ) in (15).

Theorem 4 For given scalars γ > 0, ε1 > 0, ε2 > 0 and matrices Q > 0, R > 0,
suppose there exist matrices U > 0,V > 0, V > 0,A f i ,B f i , and C f i such that (25)
and the following LMIs hold:

�i i < 0, i = 1, 2, . . . , r (30)

�i j =
[

�1i j �2i j

∗ �3i j

]
< 0, 1 � i < j � r. (31)

The notations in �i i and �i j of (30)–(31) are given as follows:

�11i i = U Ai + Ai
TU + B f i Ci + Ci

TB f i
T + Q + R,

�12i i = A f i + Ai
TV + Ci

TB f i
T, �22i i = A f i + A f i

T,

�14i i = U A1i + B f i C1i , �24i i = VA1i + B f i C1i ,

�16i i = UB0i + B f i D0i , �17i i = UBi + B f i Di ,

�18i i = UB1i + B f i D1i , �26i i = VB0i + B f i D0i ,

�27i i = VBi + B f i Di , �28i i = VB1i + B f i D1i , �38i i = V Bw,

�59i i = ET
i U + FT

i B f i
T,

�510i i = ET
i V + FT

i B f i
T, �114i i = �913i i = UM1i + B f i M2i ,

�214i i = �1013i i = VM1i + B f i M2i , �33 = V Aw + AT
wV,

�44 = −(1 − μ1)Q, �55 = −(1 − μ2)R.
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�11i j = U Ai + Ai
TU + B f j Ci + Ci

TB f j
T + 2Q + 2R

+U A j + A j
TU + B f i C j + C j

TB f i
T,

�12i j = A f j + Ai
TV + Ci

TB f j
T + A f i + A j

TV + C j
TB f i

T,

�22i j = A f j + A f j
T + A f i + A f i

T,

�14i j = U A1i + B f j C1i + U A1 j + B f i C1 j ,

�24i j = VA1i + B f j C1i + VA1 j + B f i C1 j ,

�16i j = UB0i + B f j D0i + UB0 j + B f i D0 j ,

�17i j = UBi + B f j Di + UB j + B f i D j ,

�26i j = VB0i + B f j D0i + VB0 j + B f i D0 j ,

�27i j = VBi + B f j Di + VB j + B f i D j ,

�18i j = UB1i + B f j D1i + UB1 j + B f i D1 j ,

�28i j = VB1i + B f j D1i + VB1 j + B f i D1 j , �38i j = 2V Bw,

�59i j = ET
i U + FT

i B f j
T + ET

j U + FT
j B f i

T,

�510i j = ET
i V + FT

i B f j
T + ET

j V + FT
j B f i

T,

�116i j = �914i j = UM1i + B f j M2i , �117 j i = �915 j i = UM1 j + B f i M2 j ,

�216i j = �1014i j = VM1i + B f j M2i , �217 j i = �1015 j i = VM1 j + B f i M2 j .

�1i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11i j �12i j 0 �14i j 0 �16i j �17i j �18i j 0 0

∗ �22i j 0 �24i j 0 �26i j �27i j �28i j 0 0

∗ ∗ 2�33 0 0 0 0 �38i j 0 0

∗ ∗ ∗ 2�44 0 0 0 0 0 0

∗ ∗ ∗ ∗ 2�55 0 0 0 �59i j �510i j

∗ ∗ ∗ ∗ ∗ −2γ 2 I 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −2γ 2 I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −2γ 2 I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −2U −2V

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −2V

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�2i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 �116i j �117 j i N1i
T N1 j

T

CT
f j + CT

f i 0 0 0 0 �216i j �217 j i 0 0

−2CT
w 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 N2i
T N2 j

T

0 N5i
T N5 j

T 0 0 0 0 0 0

0 0 0 0 0 0 0 N3i
T N3 j

T

0 0 0 0 0 0 0 0 0

−2DT
w 0 0 0 0 0 0 N4i

T N4 j
T

0 0 0 �914i j �915 j i 0 0 0 0

0 0 0 �1014i j �1015 j i 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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�3i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2I 0 0 0 0 0 0 0 0
∗ −ε−1

2 I 0 0 0 0 0 0 0
∗ ∗ −ε−1

2 I 0 0 0 0 0 0
∗ ∗ ∗ −ε2 I 0 0 0 0 0
∗ ∗ ∗ ∗ −ε2 I 0 0 0 0
∗ ∗ ∗ ∗ ∗ −ε1 I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε1 I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1

1 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1

1 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�i i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11i i �12i i 0 �14i i 0 �16i i �17i i �18i i 0 0 0 0 0 �114i i N1i
T

∗ �22i i 0 �24i i 0 �26i i �27i i �28i i 0 0 CT
f i 0 0 �214i i 0

∗ ∗ �33 0 0 0 0 �38i i 0 0 −CT
w 0 0 0 0

∗ ∗ ∗ �44 0 0 0 0 0 0 0 0 0 0 N2i
T

∗ ∗ ∗ ∗ �55 0 0 0 �59i i �510i i 0 N5i
T 0 0 0

∗ ∗ ∗ ∗ ∗ −γ 2 I 0 0 0 0 0 0 0 0 N3i
T

∗ ∗ ∗ ∗ ∗ ∗ −γ 2 I 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ 2 I 0 0 −DT

w 0 0 0 N4i
T

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −U −V 0 0 �913i i 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −V 0 0 �1013i i 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1

2 I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1

1 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, there exists a fuzzy-rule-dependent FD filter (� f ) in (15) such that the fuzzy
stochastic FD system (�̃ f ) in (16) is asymptotically mean square stable with an H∞
performance level γ . Moreover, if the aforementioned LMI conditions are feasible,
then a desired H∞ filer realization is given by

[
A f i B f i

C f i 0

]
=
[V−1 0

0 I

] [A f i B f i

C f i 0

]
, i = 1, 2, . . . , r. (32)

Proof This theorem can be proved by employing the same technique of the proof of
Theorem 2; the detailed procedures are omitted here. ��
Remark 1 Note that the obtained conditions in Theorems 2 and 4 are all in LMIs
form; desired fuzzy-rule-independent and fuzzy-rule-dependent H∞ FD filters can be
determined by solving the following convex optimization problems:

min δ1 = γ 2 subject to (24), (25);
min δ2 = γ 2 subject to (25), (30), (31). (33)

Remark 2 Owing to most physical systems are nonlinear and T–S fuzzy models have
provided a convenient way to approximate nonlinear systems, a feasible solution of
the FD problem for nonlinear systems can be converted to that of FD for T–S fuzzy
systems. By solving the previous convex optimization problems in (33), we can obtain
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the parameters of the fuzzy-rule-independent and fuzzy-rule-dependent FD filters.
Then, the residual signals χc(t) and χ f (t) are generated, and the first step of the FD
procedure is thus finished. The next work is to set up a FDmeasure, as stated in Sect. 2.
In Sect. 4, we will provide simulation examples to illustrate the effectiveness of the
proposed approach.

4 Simulation Examples

Example 1 Consider the stochastic T–S fuzzy system �1 in (9) with the number of
IF-THEN rules r = 2 and the following parameters:

A1 =
⎡
⎣−3.0 0.2 0.4

0.3 −1.7 0.5
0.2 0.5 −2.5

⎤
⎦ , A11 =

⎡
⎣0.02 0.0 −0.1

0.1 0.03 0.1
0.1 0.2 0.1

⎤
⎦ ,

E1 =
⎡
⎣0.02 0 0.01

0.3 0.1 0.2
0.0 0.1 0.2

⎤
⎦ ,

A2 =
⎡
⎣−2.7 0.3 0.6

0.2 −1.5 0.8
0.3 0.4 −2.4

⎤
⎦ , A12 =

⎡
⎣0.0 −0.02 0.01
0.0 0.01 0.1
0.2 0.00 0.02

⎤
⎦ ,

E2 =
⎡
⎣ 0.3 0.1 0.2
0.1 0.2 0.2
0.0 0.3 0.2

⎤
⎦ ,

B01=
⎡
⎣ 0.3
0.6
0.5

⎤
⎦ , B1=

⎡
⎣ 0.5
0.8
0.6

⎤
⎦ , B11 =

⎡
⎣0.4
0.5
0.4

⎤
⎦ ,

F1 = [
0.01 0.02 0.004

]
,

F2 = [
0.01 0.02 0.02

]
,

B02 =
⎡
⎣0.4
0.6
0.7

⎤
⎦ , B2 =

⎡
⎣0.5
0.6
0.3

⎤
⎦ , B12 =

⎡
⎣ 0.6
0.4
0.3

⎤
⎦ ,

C1 = [
1.5 0.6 1.3

]
, C11 = [

0.3 0.2 0.1
]
,

C2 = [
1.0 1.3 0.7

]
, C12 = [

0.2 0.4 0.3
]
,

M11 = M12 =
⎡
⎣−0.2 0 0.1

0 0.1 0
0 0.2 0.2

⎤
⎦ , M21 = M22 = [

0.1 0 0.3
]
,

N11 =
⎡
⎣−2 0 0.1
0.1 0.01 0.02
0 0.01 0.02

⎤
⎦ , N12 =

⎡
⎣−0.2 0 0.1

0.1 0.01 0.02
0 0.01 0.02

⎤
⎦ ,

N21 = N22 =
⎡
⎣ 0.1 0.02 0.01
0.01 0.03 0
0 0.02 −0.02

⎤
⎦ , N31 = N32 =

⎡
⎣ 0.03

0
0.01

⎤
⎦ ,
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N41= N42=
⎡
⎣ 0.01
0.02
0

⎤
⎦ , N51=

⎡
⎣−0.5 0.9 0.2

0.5 0.5 0.1
0.3 0 0.1

⎤
⎦ , N52 =

⎡
⎣ 0.5 0.09 0.2
0.05 0.5 0.1
0.3 0 0.1

⎤
⎦ ,

D01 = 6, D1 = 0.2, D11 = 5, D02 = 0.4, D2 = 0.3, D12 = 5,

μ1 = 0.1, μ2 = 0.15.

Let Aw = −5, Bw = 5, Cw = 1, Dw = 0 and ε1 = 0.5, ε2 = 0.25; we now
consider the fault detection filter design problem.

Case 1. First, we consider the fuzzy-rule-independent filter design problem. Solving
LMIs (24), (25) in Theorem 2, we obtain the minimized feasible γ is γ ∗ = 1.0015,
and

Q =
⎡
⎣ 0.0774 −0.0226 0.0504

−0.0226 0.0921 −0.0764
0.0504 −0.0764 0.1315

⎤
⎦ , R =

⎡
⎣ 0.2835 −0.0753 0.0997

−0.0753 0.3368 0.0442
0.0997 0.0442 0.1492

⎤
⎦ ,

U =
⎡
⎣ 0.5980 −0.0263 0.0674

−0.0263 0.3739 −0.0182
0.0674 −0.0182 0.2954

⎤
⎦ , V =

⎡
⎣ 0.0087 −0.0003 0.0031

−0.0003 0.0846 −0.0834
0.0031 −0.0834 0.0898

⎤
⎦

Ac =
⎡
⎣−0.3001 −0.3440 0.0975

−0.1385 −0.4068 0.4003
−0.1523 0.0898 −0.3417

⎤
⎦ , Bc =

⎡
⎣−0.0576

−0.0289
−0.0275

⎤
⎦ ,

Cc = [−0.2814 −0.1361 −0.1408
]
.

Then by solving Eq. (26), we obtain the parameters of the desired filter (10) as follows:

Ac =
⎡
⎣−25.0278 −29.7755 10.3045

−30.1708 −34.5250 7.8421
−28.8627 −30.0476 3.1236

⎤
⎦ , Bc =

⎡
⎣−4.7772

−5.9079
−5.6305

⎤
⎦ ,

Cc = [−0.2814 −0.1361 −0.1408
]
. (34)

Case 2 We further consider the fuzzy-rule-dependent filtering problem. By solving
LMIs (25), (30), (31), and Eq. (32) in Theorem 4, we get the minimized feasible γ is
γ ∗ = 1.0001, and

A f 1 =
⎡
⎣−11.8802 1.3521 −7.7204

−3.1232 −3.8051 −9.9838
−6.6983 −0.1698 −13.8786

⎤
⎦ , B f 1 =

⎡
⎣−1.1092

−1.3843
−1.4897

⎤
⎦ ,

C f 1 = [−0.3004 −0.1391 −0.1250
]
,

A f 2 =
⎡
⎣−20.5689 3.6247 −4.9957

−3.9684 −0.5830 −9.8952
−10.5204 2.8429 −13.2596

⎤
⎦ , B f 2 =

⎡
⎣−1.3796

−1.2934
−1.5144

⎤
⎦ ,

C f 2 = [−0.5737 −0.0777 −0.0276
]
. (35)
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Remark 3 Note that the minimized feasible γ for the fuzzy-rule-independent case
is γ ∗ = 1.0015, and for the fuzzy-rule-dependent case is γ ∗ = 1.0001, which has
illustrated that the fuzzy-rule-dependent filter is less conservative than the fuzzy-
rule-independent filter in the sense of the disturbance attenuation performance level.
However, the fuzzy-rule-dependent filter is more complicated in filter implementation
and sometimes that the premise variable of the original fuzzymodel θ(t) is unavailable,
so the fuzzy-rule-independent filter will bemore useful under the aforesaid conditions.

To further show the effectiveness of the obtained filters (34) and (35), let the mem-
bership function be

h1(x1(t)) = 1 − sin(x1(t))

2
, h2(x1(t)) = 1 + sin(x1(t))

2
,

the initial condition be x(0) = [−1 0.5 1
]T. Suppose G1(t) = G2(t) = I and

the unknown disturbance input ω(t) to be uniformly distributed within [−1, 1] for the
time interval [0, 10]; the known input is given as u(t) = 0.1 sin(t), 0 ≤ t ≤ 10; the
fault signal is set up as

f (t) =
{
1, 2.5 � t � 5,
0, otherwise.

We select the residual evaluation function and the threshold as (19) and (20); for the
designed H∞ fault detection filter with (34) and (35), the simulation results along an
individual discretized Brownian path are given in Figs. 1, 2, 3, and 4. Among them,
Fig. 1 depicts the states of the desired fuzzy-rule-independent filter with (34) under
zero disturbance and Fig. 2 shows the states of the desired fuzzy-rule-dependent filter
with (35) under zero disturbance. Figure 3 presents the generated residual signal of
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Fig. 1 States of the fault detection filter in (34)
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Fig. 3 Residual signal of fuzzy-rule-independent case

fuzzy-rule-independent filtering problem; Fig. 4 describes the evaluation function of
fuzzy-rule-independent filtering problem for both the fault case and the fault-free case.
The corresponding simulation results for the fuzzy-rule-dependent filter with (35) can
be depicted by the same line.

For the fuzzy-rule-independent case, with the selected threshold Jth
= supω �=0,u �=0, f =0(

∫ 10
0 χc

T(t)χc(t))1/2 = 0.6483, the results show that

(
∫ 2.63
0 χc

T(t)χc(t))1/2 = 0.6882 > Jth > (
∫ 2.62
0 χc

T(t)χc(t))1/2 = 0.6278. Thus, the
appeared fault can be detected after 0.13 s. For the fuzzy-rule-dependent case, with the
selected threshold J ∗

th = supω �=0,u �=0, f =0(
∫ 10
0 χ f

T(t)χ f (t))1/2 = 0.5945, the results
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Fig. 4 Evaluation function of fuzzy-rule-independent case

Fig. 5 Mass-spring-damper
system

show that (
∫ 2.60
0 χ f

T(t)χ f (t))1/2 = 0.6007 > J ∗
th > (

∫ 2.59
0 χ f

T(t)χ f (t))1/2 =
0.5687. Then, the appeared fault can be detected after 0.1 s.

Remark 4 From the above results, we know that the better H∞ performance level the
FD system can achieve, the less detection times are needed when u(t), ω(t), and f (t)
are given; the similar results can be found in [40]. However, as far as we know, until
now, the phenomenon has not been explained comprehensively in theory. Therefore,
how to verify the relationship between the detection time and H∞ performance level
from a theoretical perspective is worth forthcoming investigation.

Example 2 Consider the following modified uncertain nonlinear mass-spring-damper
(MSD) mechanical system:

η̈(t) = −0.225η̇(t) − 0.02η(t) − 0.67η3(t) + u(t),

where η(t) ∈ [−1.5, 1.5] and u(t) is the force. The practical example is stemmed
from [28,41], which is shown in Fig. 5. It is assumed that the stiffness coefficient of the
spring has nonlinearity, and the MSD system itself is disturbed by stochastic process.
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The aim is to detect the fault appearing on the damper. To illustrate the proposed results,
we also assume the state variables and output variables can bemeasured online and the
system output are perturbed by time delay. The corresponding model data presented
here were borrowed from [28]; the nonlinear term −0.67η3(t) can be represented as

−0.67η3(t) = h1(η(t)) · 0 · η3(t) − h2(η(t)) · 1.5075η(t),

where h1(η(t)), h2(η(t)) ∈ [0, 1], h1(η(t))+h2(η(t)) = 1. By solving the equations,
the membership functions h1(η(t)) and h2(η(t)) are obtained as follows:

h1(η(t)) = 1 − η2(t)

2.25
, h2(η(t)) = η2(t)

2.25
.

Let x1(t) = η̇(t) and x2(t) = η(t); the evolution of the state vector and measured
output can be described by system (1–3) with the following parameters:

A1 =
[−0.225 −0.02

1 0

]
, A2 =

[−0.225 −1.5275
1 0

]
,

A11 = A12 = 0, B01 = B02 =
[
1
0

]
,

B1 =
[
0.02
0.05

]
, B2 =

[
0.01
0.06

]
, B11 =

[
0.4
0.2

]
, B12 =

[
0.25
0.18

]
,

E1 =
[
0.2 0
0.1 0

]
, E2 =

[
0.3 0
0.2 0

]
,

C1 = [
1.5 1.3

]
,

C2 = [
1.4 1.2

]
,

C11 = [
0.2 0.1

]
,

C12 = [
0.2 0.3

]
,

F1 = [
0.01 0.02

]
,

F2 = [
0.01 0.03

]
,

D01 = 0.6,
D02 = 0.4,

D1 = 0.2,
D2 = 0.3,

D11 = 12,
D12 = 13,

M11 = M12 =
[
0.02 0.01
0 −0.01

]
, M21 = M22 = [

0.01 0.03
]
,

N11 = N12 =
N51 = N52 =

[−0.02 0.01
0.01 0.02

]
,

N21 = N22 = 0, M11 = M12 =
[
0.02 0.01
0 −0.01

]
,

N31 = N32 =
[
0.03
0.01

]
, N41 = N42 =

[
0.01
0.02

]
,

Aw = −5, Bw = 5, Cw = 1, Dw = 0, μ1 = 0.4,

μ2 = 0, ε1 = 0.05, ε2 = 0.3.

Case 1 Solving LMIs (24), (25) and Eq. (26) in Theorem 2, we obtain the minimized
feasible γ is γ ∗ = 1.0472, and the parameters of the desired fuzzy-rule-independent
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Fig. 6 Multicycle incipient fault

filter (10) are as follows:

Ac =
[−2.7365 0.0220

−0.8023 −1.7364

]
, Bc =

[
0.0202

−1.1533

]
, Cc =[−0.0028 −0.0058

]
.

(36)

Case 2 By solving LMIs (25), (30), (31), and Eq. (32) in Theorem 4, we get the
minimized feasible γ is γ ∗ = 1.0128 and the parameters of the desired fuzzy-rule-
dependent filter (15) as follows:

A f 1 =
[−3.1421 −0.0950

0.0082 −0.9920

]
, B f 1 =

[−0.0594
−0.6820

]
,

C f 1 = [−0.0033 −0.0064
]
,

A f 2 =
[−2.8512 −2.9786

−7.9889 −28.6139

]
, B f 2 =

[−0.0488
−0.3086

]
,

C f 2 = [−0.0025 −0.0049
]
. (37)

Suppose the initial condition be x(0) = [−0.1 0.1
]T

, G1(t) = G2(t) = I , the
unknown disturbance input ω(t) to be uniformly distributed within [−1, 1] for the
time interval [0, 30]; the known input is given as u(t) = 0.1 sin(t), 0 ≤ t ≤ 30;
the fault signal is a multicycle incipient fault, which has nonzero value for the
time interval [2, 5] and is depicted in Fig. 6. For the designed H∞ FD filter in
(37), Fig. 7 depicts the generated residual signal and Fig. 8 shows the evaluation
function for both the fault case and the fault-free case. Then, the selected thresh-
old J ∗

th = supω �=0,u �=0, f =0(
∫ 10
0 χ f

T(t)χ f (t))1/2 = 0.0206; the results show that

(
∫ 2.44
0 χ f

T(t)χ f (t))1/2 = 0.0214 > J ∗
th > (

∫ 2.43
0 χ f

T(t)χ f (t))1/2 = 0.0205.
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Fig. 7 Residual signal of the detection filter in (37)

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time t

E
va

lu
at

io
n 

fu
nc

tio
n

Fault case
Fault free

Fig. 8 Evaluation function of the detection filter in (37)

Therefore, the appeared fault can be detected after 0.44 s. While when the fault
signal is set up as f (k) = 0.5, 2 ≤ k ≤ 5, otherwise, f (k) = 0, we get that
(
∫ 2.28
0 χ f

T(t)χ f (t))1/2 = 0.0215 > J ∗
th > (

∫ 2.27
0 χ f

T(t)χ f (t))1/2 = 0.0205. The
above result means that the fault can be detected after 0.28 s. So the FD time is shorter
than the incipient fault case.

It should be pointed out that, when a system is subjected to incipient faults and noise
outliers, the FD time will be lengthened or even the faults may be undetected due to
the relatively low fault currents and short duration ranging [27]. From our examples,
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it can be shown that the desired FD filters are not only better suited for step faults with
relatively long duration and high increment in magnitude, but also suited for incipient
faults with relatively low fault currents and short duration ranging.

5 Conclusions

The problem of robust H∞ FD for a class of Itô stochastic T–S fuzzy systems with
time-varying delays and parameter uncertainties has been investigated in this paper.
An LMI approach and Lyapunov stability theory have been developed to design fuzzy-
rule-independent and fuzzy-rule-dependent FD filters that guarantee the FD system is
not only mean square asymptotically stable, but also satisfies a prescribed H∞-norm
level for all admissible uncertainties. The difficult problem of norm-bounded parame-
ter uncertainties has been solved by settling several well-known matrix inequations.
Weighting fault signal approach has been used to improve the performance of the FD
system, and explicit expression of the desired filter parameters has been characterized
by matrix decomposition, congruence transformation, and convex optimization tech-
nique. A numerical example and a MSD mechanical system have been provided to
show the effectiveness and usefulness of the proposed method.
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Appendix

Proof of Theorem 1 Define the following Lyapunov function candidate for the system
(�̃c) in (12) as follows:

V (ξ(t), t) = ξT(t)Pξ(t) +
∫ t

t−τ1(t)
ξT(s)HTQ Hξ(s)ds

+
∫ t

t−τ2(t)
ξT(s)HTRHξ(s)ds.

Using Itô formula in Lemma 1, we obtain the stochastic differential as

dV (ξ(t), t) = LV (ξ(t), t)dt + 2ξT(t)P Ẽi (t)Hξ(t − τ2(t))d�,

LV (ξ(t), t) = 2
r∑

i=1

hi (θ(t))ξT(t)P
[

Ãi (t)ξ(t)+ Ã1i (t)Hξ(t − τ1(t))+ B̃i (t)v(t)
]

+
[

r∑
i=1

hi (θ(t))Ẽi (t)Hξ(t − τ2(t))

]T
P

[
r∑

i=1

hi (θ(t))Ẽi (t)Hξ(t − τ2(t))

]

+ ξT(t)HT(Q + R)Hξ(t) − (1 − τ̇1(t))ξ
T(t − τ1(t))HTQ Hξ(t − τ1(t))

− (1 − τ̇2(t))ξ
T(t − τ2(t))HTRHξ(t − τ2(t)). (38)
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By Lemma 2, we have

LV (ξ(t), t)∑r
i=1 hi (θ(t))

� ξT(t)
[

P Ãi (t) + ÃT
i (t)P + HT(Q + R)H

]
ξ(t)

+ 2ξT(t)P Ã1i (t)x(t − τ1(t))

+ 2ξT(t)P B̃i (t)v(t) + xT(t − τ2(t))ẼT
i (t)P Ẽi (t)x(t − τ2(t))

− (1 − μ1)xT(t − τ1(t))Qx(t − τ1(t))

− (1 − μ2)xT(t − τ2(t))Rx(t − τ2(t)), (39)

where (5) and the relationship

x(t − τ1(t)) = Hξ(t − τ1(t)), x(t − τ2(t)) = Hξ(t − τ2(t))

are used. From (21), it is easy to see

P−1 − ε−1
2 M̃1i M̃T

1i > 0. (40)

Noting (7) and (40) and using Lemmas 3 and 4, we have

2ξT(t)P
[
� Ãi (t)ξ(t) + � Ã1i (t)x(t − τ1(t)) + �B̃i (t)v(t)

]

= 2ξT(t)P M̃1i Gi (t)
[

Ñ1iξ(t) + N2i x(t − τ1(t)) + Ñ3iv(t)
]

� ξT(t)
[
ε−1
1 P M̃1i M̃T

1i P + ε1 ÑT
1i Ñ1i

]
ξ(t)

+ xT(t − τ1(t))
(
ε1N2i

TN2i

)
x(t − τ1(t))

+ vT(t)
(
ε1 ÑT

3i Ñ3i

)
v(t) + 2ξT(t)

(
ε1 ÑT

1i N2i

)
x(t − τ1(t))

+ 2ξT(t)
(
ε1 ÑT

1i Ñ3i

)
v(t) + 2xT(t − τ1(t))

(
ε1N2i

T Ñ3i

)
v(t), (41)

and

ẼT
i (t)P Ẽi (t) � ẼT

i

(
P−1 − ε−1

2 M̃1i M̃T
1i

)−1
Ẽi + ε2N5i

TN5i . (42)

Substituting (41) and (42) into (39) with v(t) = 0 results in

LV (ξ(t), t) �
r∑

i=1

hi (θ(t))
[
ηT(t)�iη(t)

]
, (43)
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where ηT(t) = [
ξT(t) xT(t − τ1(t)) xT(t − τ2(t))

]
and

�i =
⎡
⎢⎣

ϒ11i ϒ12i 0
∗ ϒ22i 0

∗ ∗ ϒ33i + ẼT
i

(
P−1 − ε−1

2 M̃1i M̃T
1i

)−1
Ẽi

⎤
⎥⎦ .

By the Schur complement formula, it follows from (21) that �i < 0, which together
with (43) implies

LV (ξ(t), t) < 0, (44)

for all

η(t) =
[
ξT(t) xT(t − τ1(t)) xT(t − τ2(t))

]T �= 0.

Therefore, we have that the fuzzy stochastic FD system (�̃c) in (12) with v(t) = 0 is
asymptotically mean square stable for all admissible uncertainties.

Now, we will establish the H∞ performance for the fuzzy stochastic FD system
(�̃c) in (12). Assuming zero initial condition, we have

J = E
{∫ ∞

0

(
ec

T(t)ec(t) − γ 2vT(t)v(t)
)
dt

}

� E
{∫ ∞

0

(
ec

T(t)ec(t) − γ 2vT(t)v(t)
)
dt

}

+ E {V (ξ(∞), ∞)} − E{V (0, 0)}
= E

{∫ ∞

0

[
ec

T(t)ec(t) − γ 2vT(t)v(t) + LV (ξ(t), t)
]
dt

}
.

According to Lemma 2, we can find

ec
T(t)ec(t) �

r∑
i=1

hi (θ(t))
[
ξT(t)C̃T

i C̃iξ(t) + 2ξT(t)C̃T
i D̃iv(t) + vT(t)D̃T

i D̃iv(t)
]
.

It follows from (41), (42), that

ec
T(t)ec(t) − γ 2vT(t)v(t) + LV (ξ(t), t) �

r∑
i=1

hi (θ(t))ψT(t)�iψ(t),
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where ψT(t) = [
ξT(t) xT(t − τ2(t)) vT(t)

]
and

�i =

⎡
⎢⎢⎢⎢⎢⎢⎣

ϒ11i + C̃T
i C̃i ϒ12i 0 ϒ14i + C̃T

i D̃i

∗ ϒ22i 0 ϒ24i

∗ ∗ ϒ33i − ẼT
i ϒ−1

55i Ẽi 0

∗ ∗ ∗ ϒ44i + D̃T
i D̃i

⎤
⎥⎥⎥⎥⎥⎥⎦

.

By Schur complement, (21) implies �i < 0, and thus

J = E
{∫ ∞

0

[
ec

T(t)ec(t) − γ 2vT(t)v(t)
]
dt

}
< 0,

which implies (18). The H∞ performance has been established and the proof is com-
pleted. ��
Proof of Theorem 2 By Schur complement, the matrix inequality condition (21) in
Theorem 1 can be described as the following matrix inequality:

�i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11i �12i 0 �14i 0 C̃T
i 0 0 P M̃1i ÑT

1i

∗ �22 0 0 0 0 0 0 0 N2i
T

∗ ∗ �33 0 ẼT
i 0 N5i

T 0 0 0

∗ ∗ ∗ −γ 2 I 0 D̃T
i 0 0 0 ÑT

3i

∗ ∗ ∗ ∗ −P−1 0 0 M̃1i 0 0

∗ ∗ ∗ ∗ ∗ −I 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −ε−1
2 I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1 I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1
1 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(45)

where

�11i = P Ãi + ÃT
i P + HT(Q + R)H, �12i = P Ã1i , �14i = P B̃i ,

�22 = −(1 − μ1)Q, �33 = −(1 − μ2)R.

Performing a congruence transformation to (45) by diagonal matrix diag(I, I, I, I,
P, I, I, I, I, I ), we obtain
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11i �12i 0 �14i 0 C̃T
i 0 0 P M̃1i ÑT

1i∗ �22 0 0 0 0 0 0 0 N2i
T

∗ ∗ �33 0 ẼT
i P 0 N5i

T 0 0 0
∗ ∗ ∗ −γ 2 I 0 D̃T

i 0 0 0 ÑT
3i

∗ ∗ ∗ ∗ −P 0 0 P M̃1i 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε−1

2 I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1

1 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.

(46)

Let P � diag(U, V ) > 0 in (46), where U ∈ R
2n×2n and V ∈ R

k×k ; we get a new
result. Specially, given a scalar γ > 0, the fuzzy stochastic fault detection system
(�̃c) in (12) is asymptotically mean square stable with an H∞ performance level γ if
there exist U > 0 and V > 0 such that the following LMI holds:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11i 0 �13i 0 �15i 0 ĈT
i 0 0 U M̂1i N̂T

1i
∗ �22 0 0 �25i 0 −Cw

T 0 0 0 0
∗ ∗ �33 0 0 0 0 0 0 0 N2i

T

∗ ∗ ∗ �44 0 ÊT
i U 0 N5i

T 0 0 0
∗ ∗ ∗ ∗ −γ 2 I 0 D̃T

i 0 0 0 ÑT
3i

∗ ∗ ∗ ∗ ∗ −U 0 0 U M̂1i 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1

2 I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1

1 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(47)

where

�11i = U Âi + ÂT
i U + W, �22 = V Aw + AT

wV, �33 = �22 = −(1 − μ1)Q,

�44 = �33 = −(1 − μ2)R, �13i = U Â1i , �15i = U B̂i , �25i = V B̂w,

Âi =
[

Ai 0
BcCi Ac

]
, Â1i =

[
A1i

BcC1i

]
, B̂i =

[
B0i Bi B1i

Bc D0i Bc Di Bc D1i

]
,

B̂w = [
0 0 Bw

]
, Êi =

[
Ei

Bc Fi

]
, W =

[
Q + R 0

0 0

]
,

N̂1i = [
N1i 0

]
, M̂T

1i = [
M1i

T (Bc M2i )
T
]
, Ĉi = [

0 Cc
]
.

Now, partition U as

U =
[

U1 U2
∗ U3

]
> 0, (48)

where Uk ∈ R
n×n, k = 1, 2, 3.
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Without loss of generality, we assumeU2 is nonsingular; if not,U2 may be perturbed
by�U2 with sufficiently small norm such thatU2+�U2 is nonsingular and satisfying
(47). Define the following matrices that are also nonsingular:

ℵ =
[

I 0
0 U3

−1U2
T

]
, U = U1, V = U2U3

−1U2
T. (49)

and

[Ac Bc

Cc 0

]
=
[

U2 0
0 I

] [
Ac Bc

Cc 0

] [
U3

−1U2
T 0

0 I

]
=
[

U2AcU3
−1U2

T U2Bc

CcU3
−1U2

T 0

]
.

(50)

Performing a congruence transformation to (47) bydiagonalmatrixdiag(ℵ, I, I, I, I,
ℵ, I, I, I, I, I ), we get

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃11i 0 �̃13i 0 �̃15i 0 ℵTĈT
i 0 0 ℵTU M̂1i ℵT N̂T

1i∗ �22 0 0 �25i 0 −Cw
T 0 0 0 0

∗ ∗ �33 0 0 0 0 0 0 0 N2i
T

∗ ∗ ∗ �44 0 ÊT
i Uℵ 0 N5i

T 0 0 0
∗ ∗ ∗ ∗ −γ 2 I 0 D̃T

i 0 0 0 ÑT
3i

∗ ∗ ∗ ∗ ∗ −ℵTUℵ 0 0 ℵTU M̂1i 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1

2 I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε−1

1 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(51)

where

�̃11i = ℵT(U Âi + ÂT
i U + W )

ℵ =
[U Ai + Ai

TU+BcCi +Ci
TBc

T+Q+R Ac+ Ai
TV + Ci

TBc
T

∗ Ac + Ac
T

]
,

�̃13i = ℵT(U Â1i ) =
[U A1i + BcC1i

VA1i + BcC1i

]
, −ℵTUℵ =

[−U −V
∗ −V

]
,

�̃15i = ℵT(U B̂i ) =
[UB0i + Bc D0i UBi + Bc Di UB1i + Bc D1i

VB0i + Bc D0i VBi + Bc Di VB1i + Bc D1i

]
,

ℵTĈT
i =

[
0
Cc

T

]
,

ℵTU M̂1i =
[UM1i + Bc M2i

VM1i + Bc M2i

]
, ℵT N̂T

1i =
[

NT
1i
0

]
,

ÊT
i Uℵ = [

ET
i U + FT

i Bc
T ET

i V + FT
i Bc

T
]
. (52)



Circuits Syst Signal Process (2015) 34:2839–2871 2869

Considering (52),we can get LMI (24) from (51).Moreover, note that (50) is equivalent
to

[
Ac Bc

Cc 0

]
=
[

U−1
2 0
0 I

] [Ac Bc

Cc 0

] [
U2

−T U3 0
0 I

]

=
[

(U2
−T U3)

−1
0

0 I

] [V−1 0
0 I

] [Ac Bc

Cc 0

] [
U2

−T U3 0
0 I

]
(53)

Also note that the filter matrices Ac, Bc, and Cc in (10) can be written as (53), which
implies that U2

−T U3 can be viewed as a similarity transformation on the state-space
realization of the filter and, as such, has no effect on the filter mapping from y to χc.
Without loss of generality, we set U2

−T U3 = I and thus obtain (26). Therefore, the
filter (�c) in (10) can be constructed by (26). This completes the proof. ��
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