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Abstract Periodic random impulse signals are powerful tools for various situations of
interest and are a natural way formodeling highly localized events occurring randomly
at given times.However, themeasured impulses are oftenmasked because of unwanted
convolution and eventually drowned in noise. Thus, the resulting signal is not legible
and may lead to poor or even erroneous analysis and, hence, the need of deconvolu-
tion to recover the random periodic impulses. As a matter of fact, periodic random
impulse signals are sparse and the sparse coefficients are periodically correlated. It
has thus emerged as to how to combine the data structure and the sparsity jointly for
a best description. The originality of this study lies in the design of new measures of
cyclic sparsity property for the deconvolution of signals that are simultaneously sparse
and cyclostationary. To our knowledge, all related works in this field exploit only one
property, either sparsity or cyclostationarity and never both properties together. The
key feature of cyclic sparsity deconvolution is that it combines the cyclic structure and
the sparsity together which implies a significantly enhanced performance. Finally, we
include examples of computer simulations to illustrate the behavior in deconvolution
context of the proposed algorithms against an �1 sparse deconvolution through con-
vex optimization. We show that deconvolution based on cyclic sparsity hypothesis
increases the performance and reduces significantly the computation cost as well.
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1 Introduction

The past 50years have seen increasing theoretical and practical advances in cyclo-
stationary analysis. Thus, cyclostationarity has become an intense area of research in
signal processing and statistics. It has since been shown that cyclostationary frame-
work is appropriate for any physical phenomenon that gives rise to data with periodic
statistical characteristics [15] such asmechanics [2], telecommunications [16], biome-
chanics [24]. In this article, we focus on wide-sense second-order cyclostationary, i.e.,
first-order and second-order cyclostationary. The signals of interest are assumed to be
made of periodic impulses with random amplitudes, namely a few nonzero impulses
per period. Given the impulse response (IR), the aim is to retrieve the original object
which has been distorted by passage through a known linear and time-invariant sys-
tem in the presence of noise. Indeed, enhancing the resolution of the signal and the
signal-to-noise ratio (SNR) from the knowledge of the IR matches to a deconvolution
problem.

The deconvolution of cyclostationary signals has been addressed by several authors
with different approaches. In [1], aBayesian deconvolution algorithmbasedonMarkov
chain Monte Carlo is presented. Cyclic statistics are often used for deconvolution, in
[18,19] the deconvolution is based on cyclic cepstrum, whereas in [6,8] the deconvo-
lution is based on cyclic correlation. Despite this encouraging perspective, actual con-
tributions of cyclostationarity to deconvolution have remained very limited. The main
drawback of these methods is their inability to detect and restore impulses drowned
in noise.

As a matter of fact, signal deconvolution belongs to inverse problems and is par-
ticularly well known to be an ill-posed problem since the IR acts generally as a low-
pass filter and the convolved signal is always noisy. Fortunately, regularization meth-
ods lead to acceptable solutions accounting for a priori information on the original
object.

Analyzing periodic random impulse signals in detail uncovers another a priori infor-
mation which is sparsity, since only few impulses are nonzero. Thus, data are sparse
on the direct domain. The biggest issue that we are dealing now is how to exploit the
periodic character jointly with sparsity of periodic random impulses. This is possi-
ble thanks to the proposed criterions that gather both properties to better characterize
these signals. Thus, cyclic sparse deconvolution can be performed taking benefit of
the correlation between the impulses at neighborhood cycles.

Recently, in a different framework, sparse approximation has become a subject
of active research. The key idea is that a signal can be very well approximated with
only few elementary signals (hereinafter referred to as atoms) taken from a redundant
family (often referred to as dictionary), while its projection onto a basis of elementary
signals may lead to a larger number of nonzero coefficients. Such a basic idea is the
origin of recent theoretical development and many practical applications in denoising,
compression, blind source separation and inverse problems [4,12,17].

In contrast to orthogonal transforms, a redundant dictionary leads to non-unique
representations of a given signal and several methods and algorithms have been
developed to find the sparse approximations, i.e., the approximation with the smaller
number of nonzero coefficients. In other words, minimizing the number of nonzero
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coefficients in a linear combination approximating the data leads to an exhaustive
search which is a NP hard problem. Various methods and algorithms have been
proposed to attempt to solve this problem and some sufficient conditions for these
algorithms to reach the sparse solution have been established. Algorithms can be
roughly classified in two classes: convex relaxation and greedy pursuit algorithms.
The principle of convex relaxation methods is to replace the minimization of the
number of elements by the minimization of another functional which can be min-
imized more easily and still guarantee the solution to have a large number of zero
coefficients. A �1 norm is mainly used to this end [22,29,30]. Greedy pursuit algo-
rithms iteratively improve the approximation selecting at each iteration an addi-
tional elementary signal, and many algorithms have been proposed based on such
a scheme [7,20,21].

Our work consists of extending sparse approximation to cyclostationary signals
with periodic random impulses, where the main aim is to design appropriate cyclic
sparsity measures. Analyses and algorithms for the traditional �1 norm can readily
be extended to these new norms, making them more efficient and flexible, whereas
we insist on the application of cyclic sparse approximation to deconvolution, i.e., the
dictionary is obviously given by the Toeplitz matrix formed by the IR.

This correspondence is organized as follows, Sect. 2 defines the problem statement
and motivations of the study. In Sect. 3, we summarize the statement of sparse approx-
imation problem. Such a sparse model is taken into account in sparse deconvolution
by convex relaxation algorithms in Sect. 4. The main contributions of this paper are
described in Sects. 5, 6 and 7. New cyclic sparsity measures are taken into account
in sparse deconvolution by convex relaxation; this leads to the Cyclic LASSO, Refer-
encedCyclic LASSO and Joint Cyclic LASSOproblemswhich are actually extensions
of the LASSO. Finally, we propose to test the solutions of the LASSO and the three
proposed algorithms on the same statistical basis, i.e., with the same stopping rule
deduced from statistical properties of the noise. Thus, some numerical experiments
have been performed in order to compare these algorithms as shown in the simulation
results in Sect. 8.

2 Problem Formulation

2.1 Problem Statement

Consider the situation where a known system H (t) is excited by a cyclostationary
signal x(t) consisting of periodic random impulses. By periodic, we mean that the
signal can be divided into portions of length T (which is known as the cyclic period
of the signal) with d impulses in each portion. Moreover, the delay factor τi of the
i th impulse xi is constant for all portions. Note that in general τi will be different for
different i although in most of the cases they may be integral multiples of a constant
τ . An example of x(t) is shown in Fig. 1 with d = 5.

Reconsider the system as described above. Since the impulses are periodic, we can
consider a period of time T and write that portion of the output as

∑d
k=1 xk H (t −
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Fig. 1 Example of cyclic sparse signal x(t)

τk)+n(t), 0 ≤ t < T . This relationship can be generalized to cover the whole signal
as

y(t) =
K−1∑

i=0

d∑

k=1

xi,k H (t − (τk + iT )) + n(t), (1)

where d is the number of effective impulses in the period T , with xi,k and τk being their
amplitude and delay factors, respectively. K denotes the number of period per signal
and the subindex i stands for the period index, so xi,k represents the impulse with τk
as delay factor in the i th period. n(t) represents the random noise of the system.

2.2 Motivations of the Study

The choice of the signal modeling (1) is not arbitrary, but can be justified in practice.
Periodic random impulse processes are suitable tools that allow physicists to model
many situations of interest; indeed, they are a naturalway formodeling highly localized
events occurring randomly at given times or points of the state space [1,8,18,19].

Another additional property of cyclostationary signals with periodic random
impulses is sparsity as only few impulses are nonzero, i.e., K × d nonzero impulses.
Hence, these signals are sparse on the direct domain. Unfortunately, as far as we
are aware, all related works in this area exploit only one property, either sparsity or
cyclostationarity and never both properties jointly. Convinced that combining simul-
taneously sparsity and cyclostationarity may lead to an enhancement of performance
and reduction in the computation cost as well. So we wondered whether it is possible
to build up an approach based on this idea. These were our motivations for introducing
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the new concept of cyclic sparsity that gathers both properties to better characterize
this kind of signals.

3 Reminder of Sparse Approximation

The problem of sparse signal approximation consists in approximating a signal as a
linear combination of a restricted number of elementary signals selected in a redundant
collection (dictionary). It can be written as: find sparse x such that Φx ≈ y, where
y corresponds to measured data and Φ is a known matrix with atoms {φk}k=1...Q as
columns. Sparse approximations have to deal with a compromise between a good
approximation and the number of involved elementary signals. Mathematically, such
compromise arises from minimizing the following criterion with respect to x:

|| y − Φx||22 + β1||x||0, (2)

where

– ||x||0 = Card{k, xk �= 0} is the number of nonzero components of the column
vector x,

– x = [x1, . . . , xLx ]T being the column vector of length Lx constructed from the
signal x(t),

– the superscript T stands for the transpose of a vector or a matrix.

The parameter β1 controls the trade-off between the sparsity of the solution and the
quality of the approximation. The lower is β1, less sparse is the solution and better is
the approximation. Hence, β1 is the key parameter to reach the compromise.

Of course, minimizing such a criterion corresponds to a combinatory optimization
problem which is widely known to be NP hard. However, two approaches are usually
used to avoid sweeping every combination: (1) greedy algorithms, which iteratively
ripen the approximation by successively identifying additional elementary signals that
improve the approximation quality [20,31] and (2) convex relaxation algorithms, i.e.,
based on the relaxation of the criterion (2), which replace the combinatorial problem
with an easier optimization problem often chosen convex [29]. In the latter, the �0

norm is often relaxed with a �p norm, where ||x||p = (
∑

k |xk |p)
1
p (note that p = ∞

is a limiting case for which ||x||∞ = maxk |xk |). For p = 1, this problem corresponds
to the least absolute shrinkage and selection operator (LASSO) regression [30] or basis
pursuit denoising (BPDN) in signal processing [29].

In this work, the interest is focused in the use of sparse approximation techniques in
deconvolution framework for signals that are jointly sparse and cyclostationary. Both
approaches used to avoid exploring every combination of the sparse approximation
problemcan be extended to cyclosparse context: greedy algorithms [25,26] and convex
relaxation. In this paper, we focus on convex relaxation algorithms. Before announc-
ing and describing the proposed criterions, let us first recall the LASSO problem in
deconvolution context.
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4 Sparse Approximation for Deconvolution

4.1 Problem Formulation

Let us first specify the boundary condition accounted for in the convolution operator.
We assume that the convolution (Eq.1) is computedwith the zero-padded edges. Using
this option, the resulting signal has length Ly = Lx + Lh −1, where Lx and Lh stand,
respectively, for the length of the signal to reconstruct and the IR. Of course, such
boundary hypothesis influences size and structure of the dictionary H formed from
the IR. In particular, the columns of the matrix which correspond to shifted versions
of the IR should have a constant �2 norm hTi hi = ∑Lh

j=1H
2
j = ‖H ‖22.

Note thatH is a sparsematrix of dimension Ly×Lx with Lh×Lx nonzero elements
(the length of the IR is generally largely smaller than the length of the signal). But
as the Lx atoms of the dictionary correspond to shifted versions of the IR, matrix H
is composed only with the Lh elements of the IR. Moreover, as matrix H models a
convolution operator, it has a Toeplitz structure (diagonal-constant matrix) and each
operation involving H may be computed as a result of a convolution. Consequently,
the model (1) can be written with matrix notations as:

y = Hx + n,

where the vectors are defined as follows: x = [x1, . . . , xLx ]T, y = [y1, . . . , yLy ]T
and n = [n1, . . . , nLy ]T.

4.2 LASSO Problem

Estimating least squares (LS) parameters subject to an �1 penalty was presented and
popularized independently under the names LASSO [30] andBPDN [29]. The LASSO
has become the dominant expression describing this problem, and for the remainder of
the paper,wewill use the termLASSO todenote theLSproblemwith �1 regularization.

Jl(x) = 1

2
|| y − Hx||22 + β1||x||1

= 1

2

Ly∑

i=1

⎛

⎝yi −
Lx∑

j=1

Hi, j x j

⎞

⎠

2

+ β1

Lx∑

j=1

|x j | (3)

with Hi, j = (H)i, j . x̂(β1) = arg minxJl(x) corresponds to the LASSO problem
in the equivalent Lagrangian form. Computing the optimal LASSO parameters is a
convex optimization problem, and thus, any local minimum found is guaranteed to be
a global minimum.

Tibshirani [30] presented several different methods for optimizing the LASSO,
each of which differed significantly from the method used in [29]. Since these orig-
inal works, there have been a wide variety of approaches proposed for the LASSO
minimization problem. Many have simply been minor variations on methods already
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proposed, but many offer unique ways of viewing the problem. In addition, as the
algorithms may give different solutions, one should test all the existing algorithms.
Schmidt et al. [27,28] review and compare state-of-the-art optimization techniques
for solving the problem of minimizing a twice-differentiable loss function subject to
�1 regularization. The methods are roughly divided into their approach for handling
the non-differentiability of the objective function:

– sub-gradient methods: methods that directly optimize (3) and use sub-gradients at
points of non-differentiability.

– unconstrained approximations: methods that circumvent the lack of smoothness
by optimizing a smooth surrogate objective function.

– constrained optimization methods: the unconstrained non-differentiable problem
is transformed into an equivalent differentiable problem with constraints.

A powerful and famous approach for computing the LASSO solution is the simple
coordinate descent. This idea was proposed by Fu [14] and Daubechies et al. [10], and
later studied and generalized by Friedman et al. [13], Wu and Lange [33] and others.
The idea is to fix the penalty parameter β1 in the Lagrangian form (3) and optimize
successively over each parameter, holding the other parameters fixed at their current
values. Even though the second term is not differentiable, we can easily compute
a simple closed-form solution to this problem using sub-differential calculus with
respect to x j ; We consider selecting (coordinate-wise) the following sub-gradient
∇s

jJl(x) (the superscript s denotes sub-gradient and the index j stands for the one
of x j ) for each x j ,

∇s
jJl(x) =

{
‖H ‖22x j + hTjH�= j x �= j − hTj y + β1sign(x j ), |x j | > 0
|‖H ‖22x j + hTjH�= j x �= j − hTj y| ≤ β1, x j = 0

where H�= j and x �= j denote, respectively, H and x without the jth component and
h j = H{ j}; hence, their sizes are Ly × Lx − 1 for H�= j and Lx − 1 for x �= j . The
signum function takes on the sign of x j if x j is nonzero, and if x j is zero, then the
signum function can take any value in the range [−1; 1].

More precisely,

∇s
jJl(x) =

⎧
⎪⎨

⎪⎩

‖H ‖22x j + hTjH�= j x �= j − hTj y + β1, x j > 0
‖H ‖22x j + hTjH�= j x �= j − hTj y − β1, x j < 0
|‖H ‖22x j + hTjH�= j x �= j − hTj y| ≤ β1, x j = 0

Explicitly, the solution is

x j =

⎧
⎪⎨

⎪⎩

1
‖H ‖22

(hTj y − hTjH�= j x �= j − β1), hTj y − hTjH�= j x �= j > β1

1
‖H ‖22

(hTj y − hTjH�= j x �= j + β1), hTj y − hTjH�= j x �= j < −β1

0, |hTj y − hTjH�= j x �= j | ≤ β1
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Or more elegantly,

x j = 1

‖H ‖22
Sβ1

(
hTj ( y − H�= j x �= j )

)
(4)

The first argument of the soft thresholding operator S (.) (see Appendix 1) is the
simple LS coefficient of the partial residual on the atom hTj . Repeated iteration of (4),
cycling through each variable in turn until convergence, yields the LASSO estimate
x̂(β1).

5 Deconvolution in Cyclic Sparsity Context Through Convex Relaxation

5.1 Background

We now focus on the extension of sparse convex relaxation approximation to cyclic
sparsity context for deconvolution. The dictionary is naturally given by the Toeplitz
matrix H deduced from the IR H . The principle of the proposed cyclic sparse con-
vex relaxation algorithms is to relax the �0 norm penalty function by convex penalty
functions that encourage periodic sparsity of coefficients. To do so, we propose to
combine two penalties with LS; this leads to three cost functions which the optimiza-
tion encourage cyclostationarity and sparsity and are given under the following terms:
Cyclic LASSOproblem, ReferencedCyclic LASSOproblem and Joint Cyclic LASSO
problem.

5.2 Cyclic LASSO Problem

The function to optimize is given by,

Jcl(x) = 1

2
|| y − Hx||22 + β1||x||1 + β2||ALx ,T |x| ||1, (5)

where ALx ,T is an Lx × Lx circulant square and sparse matrix with Ai,i = −1 and
Ai,modulo(i+T,Lx) = 1 (see Appendix 2 for more details). Of course, the cyclic sparsity
measure is given by the term ||ALx ,T |x| ||1 and corresponds to,

||ALx ,T |x| ||1 = (ALx ,TSx)Tsign(ALx ,T |x|)

=
Lx∑

j=1

(|x j+T | − |x j |) ∗ sign(|x j+T | − |x j |)

= · · · + (|x j+T | − |x j |) ∗ sign(|x j+T | − |x j |) + · · ·
+ (|x j | − |x j−T |) sign(|x j | − |x j−T |) + · · · (6)

where S = diag(sign(x)) is a diagonal matrix.
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Criterion (5) can actually be more conveniently rephrased as:

Jcl(x) = 1

2

Ly∑

i=1

⎛

⎝yi −
Lx∑

j=1

Hi, j x j

⎞

⎠

2

+ β1

Lx∑

j=1

|x j |

+β2

Lx∑

j=1

(|x j+T | − |x j |) ∗ sign(|x j+T | − |x j |) (7)

It should be noted that indices j±T are computed circularly, i.e., modulo( j±T, Lx).
The first penalty function encourages sparsity in the coefficients, whereas the second
penalty encourages sparsity in their cyclic differences at neighborhood cycles.

5.3 Referenced Cyclic LASSO Problem

We propose the following cost function:

Jrcl(x) = 1

2
|| y − Hx||22 + β1||x||1 + β2||QLx ,T |x| ||1, (8)

whereQLx ,T (with Lx = KT ) is an (Lx −T )×Lx circulant sparse matrix. The T first
elements of the main diagonal are nonzero and are equal to −1; also, the −T th and
T th off-diagonal elements are, respectively, set to −1 and 1 (see Appendix 3 for more
details). In this case, the cyclic sparsity measure is given by the term ||QLx ,T |x| ||1
and corresponds to,

||QLx ,T |x| ||1 = (QLx ,TSx)Tsign(QLx ,T |x|)

= 1

K − 1

T∑

j=1

K−1∑

k=1

| |x j+kT | − |x j | |

= 1

K − 1

T∑

j=1

K−1∑

k=1

(|x j+kT | − |x j |) sign(|x j+kT | − |x j |) (9)

Moreover, relationship (8) can be more conveniently expressed as:

Jrcl(x) = 1

2

Ly∑

i=1

⎛

⎝yi −
Lx∑

j=1

Hi, j x j

⎞

⎠

2

+ β1

Lx∑

j=1

|x j |

+β2
1

K − 1

T∑

j=1

K−1∑

k=1

(|x j+kT | − |x j |) sign(|x j+kT | − |x j |) (10)

The second penalty encourages sparsity of coefficients in their cyclic differences
simultaneously according to a reference cycle, the first cycle for example, for the
whole remaining cycles. The reference cycle can be any cycle of the signal and not
necessarily the first one.
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5.4 Joint Cyclic LASSO Problem

We consider the criterion given below:

J jcl(x) = 1

2
|| y − Hx||22 + β1||x||1 + β2||NLx ,T |x| ||1, (11)

where NLx ,T is an Lx × Lx circulant square and sparse matrix. The main diagonal
elements are set to K−1

K , and the ±kT th off-diagonal elements (k = 1, . . . , K − 1)
are set to − 1

K (see Appendix 4 for more details). The third and last cyclic sparsity
measure ||NLx ,T |x| ||1 corresponds to,

||NLx ,T |x| ||1 = (NLx ,TSx)Tsign(NLx ,T |x|)

= 1

K − 1

T∑

j=1

K−1∑

k=0

| |x j+kT | − m j |

= 1

K − 1

T∑

j=1

K−1∑

k=0

(|x j+kT | − |x j |) sign(|x j+kT | − m j ), (12)

where m = [m1, . . . ,m j , . . . ,mT ] = 1
K

[∑K−1
l=0 |x1+lT |, . . . ,∑K−1

l=0 |x j+lT |, . . . ,
∑K−1

l=0 |xT+lT |
]
represents the synchronous mean of the absolute value of x.

In addition, criterion (11) can be more conveniently rewritten as:

J jcl(x) = 1

2

Ly∑

i=1

⎛

⎝yi −
Lx∑

j=1

Hi, j x j

⎞

⎠

2

+ β1

Lx∑

j=1

|x j |

+β2
1

K − 1

T∑

j=1

K−1∑

k=0

(|x j+kT | − |x j |) sign(|x j+kT | − m j ) (13)

The secondpenalty encourages sparsity of coefficients in their cyclic differences simul-
taneously according to the absolute synchronous mean. The absolute synchronous
mean gives somewhat a common and joint reference to the whole cycles better than
choosing a reference cycle.

Note that all of the proposed cost functions are convex and, hence, have a unique
minimum. The hyperparameters β1 and β2 control the trade-off between the cyclic
sparsity of the solution and the quality of the approximation.

6 Proposed Solutions

LetJ (x) denotes criterions (5, 8 or 11) and consider the sub-gradient∇s
jJ (x j )with

respect to x j . This leads to,
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∇s
jJ (x) =

{
‖H ‖22x j + hTjH�= j x �= j − hTj y + sign(x j ) [β1 + β2μ] , |x j | > 0
|‖H ‖22x j + hTjH�= j x �= j − hTj y| ≤ β1 + β2μ, x j = 0

where μ depends on the chosen cost function,

– Cyclic LASSO
μcl = (

sign(|x j | − |x j−T |) − sign(|x j+T | − |x j |)
)
,

μcl takes values in the range [−2,−1, 0, 1, 2].
– Referenced cyclic LASSO

μrcl = − 1
K−1

∑K−1
k=1 sign(|x j+kT | − |x j |),

μrcl takes values in the discrete set 1
K−1 [−(K−1), . . . ,−1, 0, 1, . . . , (K−1)].

– Joint Cyclic LASSO

μ jcl = 1
K

(
(K − 1)sign(|x j | − m j ) − ∑K−1

k=1 sign(|x j+kT | − m j )
)
,

μ jcl takes values in the discrete set 1
K [−2(K−1), . . . ,−1, 0, 1, . . . , 2(K−1)].

More specifically,

∇s
jJ (x) =

⎧
⎪⎨

⎪⎩

‖H ‖22x j + hTjH�= j x �= j − hTj y + β1 + β2μ, x j > 0
‖H ‖22x j + hTjH�= j x �= j − hTj y − β1 − β2μ, x j < 0
|‖H ‖22x j + hTjH�= j x �= j − hTj y| ≤ β1 + β2μ, x j = 0

Explicitly, the solution of the (Referenced/Joint) Cyclic LASSO problem is

x j =

⎧
⎪⎨

⎪⎩

1
‖H ‖22

(hTj y − hTjH�= j x �= j − β1 − β2μ), hTj y − hTjH�= j x �= j > β1 + β2μ

1
‖H ‖22

(hTj y − hTjH�= j x �= j + β1 + β2μ), hTj y − hTjH�= j x �= j < −β1 − β2μ

0, |hTj y − hTjH�= j x �= j | ≤ β1 + β2μ

Or more elegantly,

x j = 1

‖H ‖22
Sβ1+β2μ(hTj y − hTjH�= j x �= j ). (14)

The major advantage of the Referenced/Joint Cyclic LASSO over the LASSO and
the Cyclic LASSO is due to the fact that Eq. (14) will be evaluated for j varying
from 1 to T instead of Lx . This is mainly because for a given cycle, x j gathers all
the information given by its multiple, so there is no need to evaluate Eq. (14) for
the multiples of j . Contrarily, the estimation x j of the LASSO explicitly contains no
information about the other impulses and hence the need of evaluating Eq. (4) for
whole indices. Furthermore, the estimation x j of the Cyclic LASSO contains only
information about the neighborhood (up to ±T ) impulses, which is not enough to
ignore Eq. (14) for the multiples of j . Consequently, for the Referenced/Joint Cyclic
LASSO, indices of impulses for the remaining cycles will be deduced as follows:

�(k) =
{
{ j (k)1 , . . . , j (k)Nk

} + mT
}
, where m = 0, . . . , K − 1 and j (k)1 , . . . , j (k)Nk

are the

Nk selected indices at iteration k.
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7 Implementation

7.1 Non-separability of the Penalty Functions

Unfortunately, coordinate-wise descent does not work for (5, 8 or 11). Bertsekas [3]
shows that every limit point of successive coordinate-wise minimization of a con-
tinuously differentiable function is a stationary point for the overall minimization,
provided that the minimum is uniquely obtained along each coordinate. However,
the cost functions of (5, 8 or 11) are not continuously differentiable, which means
that coordinate-wise descent can get stuck. Moreover, Tseng [32] has established that
coordinate descent works in problems like the following. He considers minimizing
functions of the form f (z1, . . . , z p) = g(z1, . . . , z p) + ∑p

j=1 g j (z j ), where g(0) is
differentiable and convex and the g j (.) are convex. Here, each z j can be a vector, but
the different vectors cannot have any overlapping members. He shows that coordinate
descent converges to the minimizer of f . The key to this result is the separability of the
penalty function

∑p
j=1 g j (z j ), a sum of functions of each individual parameter. This

result implies that the coordinate-wise algorithms could not converge to the optimal
solution as the penalty functions of (5, 8 or 11) are not separable, and hence, Tseng’s
theorem cannot be applied in that case.

Despite this, it turns out that the coordinate-wise descent procedure can bemodified
to work for (5, 8 or 11), yielding an algorithm that is powerful.

The key idea is to make an orthogonal projection of the measurements y over
the atoms H�(k) corresponding to the set of nonzero elements �(k) at the iteration
k given by (14). Obviously, this avoids the algorithm to get stuck, but increases the
computation cost as the orthogonal projection is performed for each iteration.

7.2 Regularization Parameters β1 and β2

Running the algorithm involves choosing the hyperparameter pair (β1 andβ2). Because
of the trade-off between the sparsity and cyclostationarity of the solution and thequality
of the approximation. This is not a trivial problem and its analytical resolution is still an
open problem, which would occupy both theoreticians and practitioners in the coming
years.

For the LASSO, we can use (4) to efficiently compute solutions at a grid of values of
β1. We start with the smallest value β1,max for which x̂(β1,max) = 0, decrease it a little
and cycle through the variables until convergence. Then, β1 is decreased again and the
process is repeated, using the previous solution as a warm start for the new value of β1.
Furthermore, we find thatwe can compute the entire regularization path for the LASSO
in not much more time than it takes to solve a single problem instance [11,23]. This
is because we can determine the critical values of β1 for which the solution changes.
It is shown [5] that x̂(β1) is identically zero if β1 > β1,max = max j |hTj y|. Once the
algorithm have converged, starting it with this converged value, it is not possible to
move towards zero. To make it possible, we need to decrease β1 by a small value�β1,
till the new value for which move toward zero is possible.
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Another problem to fix for the (Referenced/Joint) Cyclic LASSO is the estimation
of β2 as the solution depends on it. We limit our interest to a one-dimensional line in
(β1, β2) space, i.e., β1 = aβ2, a ∈ N

∗; we get a piecewise linear solution path. For
our simulations, we took a ≥ 4.

7.3 Modified Coordinate-Wise Algorithm

Let the sub-matrix H� built up from the columns of H where the indices are in �,

�(k) is the set of the selected indices at iteration k and the vector r = [r1, . . . , rLy ]T
denotes the residual. Recall that all methods are biased toward smaller nonzero entries,
due to the �1 penalty. Thus, adopting only the support of the solution and solving for
the nonzero values by LS, we may obtain improved results, and hence, all methods
gain from this modification.

The modified coordinate-wise algorithm for solving (5, 8 or 11) is iterative and
composed of three major steps at each iteration: (1) the selection of the indices �(k)

corresponding to the set of nonzero elements using (14); however, for the Referenced
Cyclic LASSO and the Joint Cyclic LASSO, the selection step will be restricted
to indices j , from 1 to T instead of Lx and the indices of impulses for the rest of

cycles will be deduced as follows: �(k) =
{
{ j (k)1 , . . . , j (k)Nk

} + mT
}
, where m =

0, . . . , K − 1 and j (k)1 , . . . , j (k)Nk
are the Nk selected indices at iteration k; (2) update

the solution x(k),with nonzero elements at indices�(k) and the corresponding residual
r(k); (3) update the parameters (β1, β2); a stopping rule helps decide whether to stop
or continue the iteration; let us consider x(k) the solution of the kth iteration, x(k)

� being
its coefficients at indices � and r(k) = y − Hx(k) the residual corresponding to this
solution (approximation error). The typical structure of the proposed algorithm is:
Initialize k = 0, �(k) = ∅, x(k) = 0, β1 = β1,max, β2 = β1/a and r(k) = y.
Iterate on k = k + 1 until the stopping rule is satisfied:

• Selection: �(k) is the set of nonzero elements given by (14)
• Update:

solution: x(k)
�(k) = (HT

�(k)H�(k) )
−1HT

�(k) y

residual: r(k) = y − H�(k)x(k)
�(k) (15)

• Update β1: β1 = β1 − �β1
• Update β2: β2 = β1/a
• Stopping criterion

Note that the above algorithm can be used to solve the LASSO problem by setting β2
to zero.

7.4 Stopping Rule

As the algorithms LASSO and (Joint/Referenced) Cyclic LASSO may give different
solutions, one should compare them using the same stopping rule. In terms of sparse
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approximation, comparing the norm of the residual to a threshold is a natural stopping
rule, as it corresponds to an expected quality of approximation. On the other hand,
for deconvolution, the residual for the true object corresponds to the noise. The noise
level of real data can often be modeled or at least estimated from the data, so the noise
variance can be considered as a known parameter. Thus, a statistical test on the residual
may be used as stopping rule, which decides whether the residual can be distinguished
from noise. For Gaussian, centered, independent and identically distributed (i.i.d.)

noise, of known variance σ 2, the norm ||n||22/σ 2 = ∑N
k=1

n2k
σ 2 follows a Chi-square

distribution with N degrees of freedom. So, the Chi-square distribution may be used
to determine the value of ε for which Pr(||r(k)|| ≤ ε) = η for a given probability,
e.g., η = 95%.

7.5 Discussion

• The parameter β2μcl = β2
(
sign(|x j | − |x j−T |) − sign(|x j+T | − |x j |)

)
can take

any value in the range {−2β2,−β2, 0, β2, 2β2}. This makes the threshold for the
Cyclic LASSO fluctuating up to β1 ±2β2 (which is not the case for the LASSO as
β2 = 0). Consequently, this allows theCyclic LASSO tomove to zero components,
where the LASSO would not do, even if the condition is not satisfied (for the
LASSO |hTj y−hTjH�= j x �= j | > β1) as long as it is for |hTj y−hTjH�= j x �= j | ≤ β1 +
β2μcl wheneverμcl > 0, and fish out components, where the LASSOwouldmove
to zero, even if the condition is satisfied (for the LASSO |hTj y−hTjH�= j x �= j | ≤ β1)
as long as |hTj y−hTjH�= j x �= j | > β1 +β2μcl whenever μcl < 0. This summarizes
the key feature of the Cyclic LASSO against the LASSO thanks to the combination
of cyclostationarity and sparsity.

• In addition to the advantage of the Cyclic LASSO over the LASSO, the Refer-
enced/Joint Cyclic LASSO presents another important advantage. Actually, the
Referenced/Joint Cyclic LASSO makes a kind of sampling of the threshold β2 to
several levels, as β2μrcl and β2μ jcl , respectively, take values in the discrete sets

β2
K−1 [−(K − 1), . . . ,−1, 0, 1, . . . , (K − 1)] and β2

K ((K − 1)sign(|x j | − m j ) −
∑K−1

k=1 sign(|x j+kT | − m j )). As a consequence, this makes the threshold fluctu-
ating up to β1 ± β2 for the Referenced Cyclic LASSO and approximately up to
β1 ± 2β2 for the Joint Cyclic LASSO. Although the Joint Cyclic LASSO roughly
doubles the number of possible levels to (4K − 3) as compared to that of the
Referenced Cyclic LASSO, which does no exceed (2K − 1) levels. The larger
the K , more are the levels possible and better is the approximation. Consequently,
less false alarms and missing detections are made even for impulses drowned in
noise. This summarizes the key feature of the Referenced Cyclic LASSO and the
Joint Cyclic LASSO against the Cyclic LASSO and the LASSO, thanks to the
combination of cyclostationarity and sparsity in addition to the integration in one
cycle of the information given by the remaining cycles.

• The differences between the three proposed methods lie exclusively in the second
penalty of criteria. Actually, the second penalty encourages sparsity of coefficients
in their cyclic differences,
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Fig. 2 a Observed signal (SNR = 14dB). b IR used for all simulations

– at neighborhood cycles, i.e., left (( j−1)th cycle) and right (( j+1)th cycle) ones, for
Cyclic LASSO. Thus, for the j th cycle, there is no connection with the remaining
cycles.

– simultaneously according to a reference cycle for Referenced Cyclic LASSO.
Hence, the choice of the reference cycle is important as all detections depend
on it.

– simultaneously according to the absolute synchronous mean for Joint Cyclic
LASSO. The absolute synchronous mean represents a common and joint refer-
ence to the whole cycles better than choosing a reference cycle as for Referenced
Cyclic LASSO.

8 Simulation

8.1 Description

The objective of these simulations is to evaluate the contribution of cyclic sparsity
for convex relaxation deconvolution. The proposed methods and the modified LASSO
are tested using synthetic signals in order to evaluate their effectiveness. To do so, we
consider simulation example with the following parameters. A cyclostationary signal
based on periodic random impulses (Lx = 256 and T = 32, so the number of peri-
ods is K = 8). This input signal consists of d = 5 periodic random impulses of the
same positions (7, 9, 11, 13 and 15) in each cycle. The signal is then filtered by an

ARMA system where the transfer function is given as: H(z) = 1+b1 z−1

1+a1 z−1+a2 z−2 where
b1 = −0, 6, a1 = −0, 9 and a2 = 0, 6. The time representation of the IR (Lh = 15)
is reported in Fig. 2b. Then, i.i.d. Gaussian noise (Ly = 270) is added to the convolved
signal, as illustrated by (1), such that the SNR is 14dB. The resulting signal is reported
in Fig. 2a.

For the first evaluation, we consider the time representations of the reconstructed
signals given by each algorithm versus the true signal. Figure 3 reports the true signal
(blue line) described by the relationship (1) and the estimated signal (colored line) for
each method. We note that we constrained the plot to the three first periods in order to



2926 Circuits Syst Signal Process (2015) 34:2911–2934

10 20 30 40 50 60 70 80 90

−5

−4

−3

−2

−1

0

1

2

3

4

5

10 20 30 40 50 60 70 80 90

−5

−4

−3

−2

−1

0

1

2

3

4

5

10 20 30 40 50 60 70 80 90

−5

−4

−3

−2

−1

0

1

2

3

4

5 signal

RCLASSO

10 20 30 40 50 60 70 80 90

−5

−4

−3

−2

−1

0

1

2

3

4

5

signal
LASSO

signal
CLASSO

signal

JCLASSO

Fig. 3 Time representations of the reconstructed signal (colored line) for each method versus the original
one (blue line) described by Eq. (1) (the SNR is set to 14dB)

avoid overloading Fig. 3. Comparing all algorithms based on several simulation tests
as the one of Fig. 3, we note that the Referenced Cyclic LASSO and the Joint Cyclic
LASSOare able to detect and restore almost all impulses. This is not always the case for
the Cyclic LASSO and the LASSO algorithms, although the Cyclic LASSO can some-
times do better than the LASSO algorithm. Therefore, we conclude that deconvolution
across cyclic sparsity hypothesis allows detecting and restoring impulses even drowned
in noise. This point will be examined in detail using other evaluations (mean-squared
error and histogram). The reason why the Referenced Cyclic LASSO and the Joint
Cyclic LASSOhave the same amplitudes for the restored signals (Fig. 3) can be clearly
explained by the fact that the estimation step for both algorithms is based on LS over
the selected indices. Thus, when both algorithms select the same indices (which can
happen for all algorithms), the estimated objectswill have exactly the same amplitudes.

8.2 Mean-Squared Error

We provide here a comparison between the proposed approaches against the original
one. The aim is to show the performance of cyclosparse convex relaxation deconvo-
lutions in various i.i.d. noisy environment.

The simulation is made with the same parameter as the first example except SNR.
Actually, the SNR will vary from 1 to 30dB. And for each value of the SNR, 500
Monte Carlo (MC) runs will be implemented. Thus, for each MC run,
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Fig. 4 Effect of varying SNR from 1 to 30dB over MC runs on the MSE for each method with different
number of cycles K

– the periodic random impulses keep the same positions but with random amplitudes
– the input signal is filtered by the IR of Fig. 2b
– i.i.d. Gaussian noise is added to the convolved signal, as illustrated by (1), such
that the SNR is set to the desired value.

Another measure adopted to evaluate our system involved changing the SNR while
every other variable used in MC simulations remained constant. We aim to examine
the effects of increasing noise on the performance of these methods. The evaluation
quantities for our simulation study, comparing the performances of these methods,
were average mean-squared error (MSE) and average histogram.

The MSE provides a measure of the quality of the reconstructed signal. The MSE
of the estimate x̂ with respect to x is defined as: MSE(x̂) = E

[
(x̂− x)2

]
. These MSE

will be averaged over the number of MC runs.
Figure 4 shows the variation of each output’s MSE, for the proposed methods and

the original one as well, with the SNR. We note from the trend of the graph that
the MSE decreases with increasing SNR. This is because higher SNR implies lower
noise effect on observed data y. This effect allows fewer amplitude estimation errors
after detection takes place; hence, good performances of the algorithms. However,
we note from Fig. 4 (for K = 8) that higher MSE occurs for lower SNR. This is
also as a result of higher noise effect for lower SNR. Also, the MSE is nearly the
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same for the Referenced Cyclic LASSO and the Joint Cyclic LASSO, with highest
MSE occurring for lower SNR. Furthermore, as can be seen from the same figure
(Fig. 4, for K = 8), the algorithms’ behavior with respect to the MSE against noise
can be decomposed into two parts: SNR less or greater than 25dB. For SNR greater
than 25dB, the MSE of the algorithms is almost the same. However, for SNR less
than 25dB, the MSE of the algorithms can be sorted in descending order as, LASSO,
Cyclic LASSO and Referenced/Joint Cyclic LASSO. Therefore, we conclude that
cyclic algorithms perform well even for lower SNR.

8.3 Histogram

The histogram shows the distribution of data values. Thus, performing the histogram
to the reconstructed signal will show the number of the true impulses and false/missing
detections that happen within the true impulses as well. Therefore, this will help us
know how many detections are in error for each algorithm. We made MC simulations
in order to help us determine an average histogram over the number of 500 MC runs.
Figure 5 (for K = 8) shows the variation of each output’s average histogram obtained
by varying SNR from 1 to 30dB for the proposed methods and the original one as
well. As the histogram is almost periodic, we constrained the plot to one period in
order to avoid overloading figures. To do so, we considered the mean over K periods
of the computed average histograms as shown in Fig. 5.

We note from Fig. 5 (for K = 8) that false detections increase with decreasing
SNR. This is because higher SNR implies lower noise effect on observed data y. The
histogram is nearly the same for the Referenced Cyclic LASSO and the Joint Cyclic
LASSO. However, we note that higher missing/false detections occur mainly for lower
SNR. This is also as a result of higher noise effect for lower SNR.

The histogram indicates good detection, false detection/alarms and missing detec-
tion. Based on these three criteria, we can classify the histogram similarly to theMSE.
As can be seen from Fig. 5, the algorithms’ behavior with respect to the histogram
against noise can be decomposed into two parts: SNR less or greater than 25dB. Con-
sequently, the histogram confirms the MSE behavior of the algorithms and leads to
the same sorting of the algorithms.

8.4 Influence of the Number of Cycles

Another parameter which can influence the performances of cyclic algorithms is the
number of cycles/periods K . To examine this, we performed three additional sim-
ulations in which K was gradually increased (K = 2, 4 and 16). The simulations
are made with the same parameters as the second example except for the data size.
Actually, changing the number of cycles means changing the data size as well. So, K
equal to 2, 4, 8 and 16, corresponds, respectively, to data size 64, 128, 256 and 512.
Simulation results for each data size set were reported in Fig. 4 for the average MSE
and Fig. 5 for the average histogram.

We note that for the LASSO algorithm, the histograms are almost identical what-
ever data size with a small increase in false/missing detections. However, as expected
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Fig. 5 Effect of varying SNR from 1 to 30dB over MC runs on the histogram for different number of
cycles K . Each column corresponds to one algorithm’ results. Each color denotes an SNR level. The x axis
represents the first period and, hence, the impulse positions. For a given impulse and a given color (SNR
level), the maximum detection is reached when the bar height is 1 (500 successful detections); however,
the minimum detection is reached when the bar height is 0 (500 missing detections). For a zero element
and a given color, the maximum false detection is reached when the bar height is 1 (500 false detections);
however, the minimum false detection is reached when the bar height is 0 (no false detections)

from theory, increasing the number of cycles leads to good performances, with less
false/missing detections and errors in the estimation of the impulses amplitudes, for
cyclic algorithms in comparison with the LASSO algorithm. The algorithms’ perfor-
mances can be summarized as follows: For K = 2, 4, cyclic algorithms become more
powerful than the LASSO for SNR less than 20dB; for K = 8, 16, cyclic algorithms
become more powerfull than the LASSO for SNR less than 25dB. This enhancement
is more significant specifically for the Referenced Cyclic LASSO and the Joint Cyclic
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LASSO even for lower SNR. Finally, we come to the conclusion that deconvolution
across cyclic sparsity hypothesis allows to detect and restore impulses even drowned
in noise provided that these impulses being significant for the other cycles of the sig-
nal. Also, increasing the number of cycles leads to a considerable enhancement of the
performances of cyclic algorithms.

9 Conclusion

This study aims to introduce the concept of cyclic sparsity for signals based on peri-
odic random impulses. The findings obtained from the integration of this concept for
convex relaxation sparse algorithms will help increase the performances of the decon-
volution and reduce significantly the computation cost as well. The performance of the
new algorithms using computer simulated cyclostationary signals was demonstrated.
It follows that the proposed methods compare favorably with the original one. Rea-
sons for the improved performance of the proposed methods over the original one
include the following: The cyclic sparsity model makes possible the exploitation of
the information given by the periodicity which allows less false alarms and missing
detections as well. Moreover, for the Referenced/Joint Cyclic LASSO, the purpose
is to jointly find a sparse approximation of each cyclic period (or cycle), accounting
for the same elementary signals in each approximation, but shifted with a multiple of
the cyclic period and with different coefficients. The unique additional information
required by cyclic convex relaxation algorithms is the cyclic period T . In general, the
cyclic period is related to the studied system and the problem of its estimation has
been addressed in several articles as [9].

Furthermore, we intend to apply the proposed algorithms to mechanical signals for
bearing fault detection. Actually, bearing with inner rice or outer rice, default signals
are known to be random periodic impulse signals. These signals are convolved by
the IR of the mechanical structure of the rotating machine, and then noise is added
to the convolved signal [2]. Thus, the resulting signal is not legible and, hence, the
need of deconvolution to restore the random periodic impulses in order to estimate the
degree of the default. In addition, the fluctuation of the cyclic period, i.e., the positions
of random impulses may lightly fluctuate (oscillate around average positions), will
dramatically reduce the performances of the proposed methods as the K selected
atoms may not be exactly periodic and, hence, the need to develop additional criteria
to fix this problem.

Appendix 1: The Soft Thresholding Operator

The soft thresholding operator S (.) is defined as:

Sβ(a) =
⎧
⎨

⎩

a − β, a > β

a + β, a < −β

0, |a| ≤ β
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or equivalently,

Sβ(a) = (a − β)+ − (−a − β)+

where(.)+ denotes the positive part operator (defined as (a)+ = a if a ≥ 0, and (a)+
= 0 if a < 0). Yet another formula, which shows that the soft thresholding operator
is a shrinkage operator (i.e., moves a point toward zero), isSβ(a) = (1 − β/|a|)+a.

Appendix 2: Structure of the Matrix ALx,T

The squarematrixALx ,T is sparsewith only 2Lx nonzero elements. Themain diagonal
elements are set to −1, whereas the −(Lx − T )th and T th off-diagonal elements are
set to 1. Also ALx ,T has zero row and column sums. An example of the matrix ALx ,T

for Lx = 8 and T = 3 is given below:

A8,3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 0 1 0 0 0 0
0 −1 0 0 1 0 0 0
0 0 −1 0 0 1 0 0
0 0 0 −1 0 0 1 0
0 0 0 0 −1 0 0 1
1 0 0 0 0 −1 0 0
0 1 0 0 0 0 −1 0
0 0 1 0 0 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Appendix 3: Structure of the Matrix QLx,T

The matrixQLx ,T (with Lx = KT ) is an (Lx − T ) × Lx sparse with only 2(Lx − T )

nonzero elements. The T first elements of the main diagonal are nonzero and are equal
to −1; also, the −T th and T th off-diagonal elements are, respectively, set to −1 and
1. An example of the matrix QLx ,T for Lx = 9 and T = 3 is given below:

Q9,3 = 1

2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 0

−1 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 0 1 0
0 0 −1 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Appendix 4: Structure of the Matrix NLx,T

The square matrix NLx ,T (with Lx = KT ) is an Lx × Lx circulant sparse with only
Lx K nonzero elements. It is easy to show that NLx ,T can be written as:
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NLx ,T = ILx − 1

K
BLx ,T

where ILx is the identity matrix.
Let us first consider the matrix form of the synchronous mean of the absolute value

of x,

m = MLx ,T |x|

with MLx ,T is an T × Lx circulant sparse matrix of Lx nonzero elements. More
precisely, the main diagonal and the kT th off-diagonal elements (k = 1, . . . , K − 1)
are nonzero and are equal to 1. An example of the matrix MLx ,T for Lx = 9 and
T = 3 is given below:

M9,3 =
⎡

⎣
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

⎤

⎦

The circulant square matrix BLx ,T can be deduced from MLx ,T as below:

BLx ,T =

⎡

⎢
⎢
⎢
⎣

MLx ,T

MLx ,T
...

MLx ,T

⎤

⎥
⎥
⎥
⎦

It is clear that the main diagonal and the ±kT th off-diagonal, elements (k = 1, . . . ,
K − 1) are nonzero and are equal to 1. An example of the circulant matrix NLx ,T for
Lx = 9, K = 3 and T = 3 is given below:

N9,3 = 1

3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 0 −1 0 0 −1 0 0
0 2 0 0 −1 0 0 −1 0
0 0 2 0 0 −1 0 0 −1

−1 0 0 2 0 0 −1 0 0
0 −1 0 0 2 0 0 −1 0
0 0 −1 0 0 2 0 0 −1

−1 0 0 −1 0 0 2 0 0
0 −1 0 0 −1 0 0 2 0
0 0 −1 0 0 −1 0 0 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Of course, NLx ,T has the same structure than QLx ,T except the values of nonzero
elements. The main diagonal elements are set to K−1

K , and the ±kT th off-diagonal
elements (k = 1, . . . , K − 1) are set to − 1

K .
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