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Abstract The recently proposed distributed incremental least mean-square (DILMS)
adaptive networks assume that the length of the adaptive filter at each node is equal
to that of the unknown parameter; in other words, a sufficient length adaptive filter
is assumed for each node. However, in many practical situations, the length of the
employed adaptive filter at each node is less than that of the unknown parameter.
In other words, at each node, a deficient length adaptive filter is employed. Since
the analysis results for the sufficient length DILMS algorithm are not necessarily
applicable to the deficient length case, so in this paper, we extend existing analysis to
study the performance of the DILMS algorithm in this realistic case. More precisely,
we derive a closed-form expression for the mean-square deviation (MSD) to explain
the steady-state performance at each individual node. Simulation results support the
theoretical analysis.

Keywords Adaptive networks · Deficient length · Distributed estimation · DILMS
algorithm

1 Introduction

A wireless sensor network (WSN) is composed of a large number of small, low-cost
sensors with integrated sensing, processing, and communication abilities [1]. These
capabilities make it possible to use WSNs in many applications such as physiological
monitoring, environmental monitoring, conditional-based maintenance, smart spaces,
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military, precision agriculture, transportation, factory instrumentation, and inventory
tracking [7]. In most of these applications, we deal with the estimation of an unknown
parameter using noisymeasurements that are collected across sensors. Such a problem
can be solved by either a centralized approach or a distributed one. In the centralized
solution, every node in the network transmits its measurements to a central fusion cen-
ter for processing. The central processor would then perform the required estimation
tasks and send the results back to the other node. This approach has a critical point
of failure at the fusion center and requires large amount of energy for communica-
tion. On the other hand, in distributed solution, each node communicates only with its
closest neighbors and processing is carried out locally at every node. It is generally
believed that in a WSN, the energy required for local computation is much less than
what is used for communications. Furthermore, energy consumption is a critical issue
inWSNs, so distributed solutions are much desirable for such situations. Moreover, in
many applications, it is necessary to perform estimation task in a constantly changing
environment without having a statistical model for the underlying processes of inter-
est. This issue requires the distributed processing to be adaptive. Networks in which
all nodes are equipped with the adaptive capabilities are called adaptive networks, net-
works with distributed adaptive estimation algorithms. Using cooperative processing
in conjunction with adaptive filtering per node not only enables the tracking of the
variations in the environment but also the topology of the network.

Distributed adaptive estimation algorithms could be categorized based on the mode
of cooperation between the nodes and the adaptive filter that they use, such as incre-
mental least mean-square (LMS) algorithm [12], incremental recursive least squares
(RLS) algorithm [18], incremental affine projection-based adaptive (APA) algorithm
[11], diffusion LMS algorithm [13], and diffusion RLS algorithm [4]. In an incremen-
tal mode of cooperation, information is sequentially circulated from one node to the
adjacent node, but in a diffusion implementation, each node communicates with all its
neighbors as dictated by the network topology. Each of these schemes has their own
advantages and disadvantages. From the adaptive algorithm point of view which is
used in the nodes, LMS algorithm has low computational cost, is robust, and has good
tracking performance, but it suffers from slow initial convergence. On the other hand,
RLS algorithm has faster convergence rate but the major drawback of RLS is surely its
high computational complexity. Compared to the RLS algorithm, the APA algorithm
has less computational cost at each node, has reduced internode communications, and
memory cost is low while it retains an acceptable steady-state performance. In addi-
tion, this algorithm shows improved performance as compared to LMS algorithm in
the highly correlated input case. From the cooperation mode approach point of view,
the main advantage of the incremental mode of cooperation is its ability to reduce the
required energy and communication resources, but it has one major drawback. This
algorithm needs to establish a cyclic path through the network, which in large-size
networks is a NP-hard problem, and is not guaranteed to exist in general case. In
addition, cyclic paths are not robust to node or link failure. In comparison, in diffu-
sion strategies, no cyclic path is required, and these schemes are scalable, robust to
node or link failure, and are more amenable to distributed implementation. Neverthe-
less, diffusion-based methods need more communication resources and suffer from
low convergence problem. However, some work has been done to overcome the dis-
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advantages of the incremental and diffusion methods. For example, [14] relaxes the
requirement to establish a cyclic path over the network by defining a random cooper-
ation walk over the nodes, while keeping nearly the same mean-square performance.
In order to save energy and communication resources in diffusion cooperation mode,
in [15], a probabilistic diffusion algorithm is developed that lets the nodes to com-
municate only with a subset of their direct neighbors chosen at random. [17] rather
than picking nodes at random proposes a dynamic technique that enables the node to
choose from among its neighbors those that are likely to lead to the best MSD per-
formance. Also, hierarchical diffusion algorithm [5], multilevel diffusion algorithm
[6], and diffusion algorithm with adaptive combiner [19] are proposed in order to
improve the performance of diffusion algorithm. The effect of noisy links on the per-
formance of incremental and diffusion adaptive networks is studied in [9] and [10].
The importance of such study stems from this fact that the performance of distributed
adaptive estimation algorithm can drastically be deteriorated in the presence of noisy
links [9,10].

In all of the previous works [4–6,9–15,17–19], it is assumed that the length of the
adaptive filter at each node is equal to that of the unknown parameter. Actually, the
length of the unknown parameter is unknown similar to its coefficients. So, in many
practical situations, at each node, a deficient length adaptive filter, whose length is less
than that of the unknown parameter, is employed.

In principle, the minimum mean-squared error (MMSE) is a monotonic non-
increasing function of the tap-length, but the decrease in the MMSE due to the tap-
length increase always becomes trivial when the tap-length is long enough. Obviously,
it is not suitable to have too long a filter, as it not only unnecessarily increases the
complexity but also introduces more adaption noise. Therefore, there exists an opti-
mum tap-length, Lopt, that best balances the steady-state performance and complexity.
Usually, one does not know what is the optimum filter length; therefore, each node
is equipped with an adaptive filter with M coefficients, where we assume M < Lopt.
In other words, at each node, a deficient length adaptive filter is employed. Since the
theoretical results in the sufficient length case do not necessarily apply to the realistic
deficient length situation, so in this paper we study the performance of the deficient
length DILMS algorithm. More precisely, we derive a closed-form expression for the
MSD to explain the steady-state performance at each individual node. However, for
a non-distributive adaptive filter case, such an analysis has been done [2,3,8,16], but
this analysis in the distributive adaptive network domain is challenging due to the
fact that the nodes in every neighborhood interact with one another, and therefore, a
successful analysis must take into account both the temporal and spatial interconnect-
edness of the data. Different nodes will converge to different MSD levels, reflecting
the statistical diversity of the data and the different noise levels. Although the authors
in [20–22] compensated the unstructured uncertainty (i.e., nonlinear friction, external
disturbances, and/or unmodeled dynamics), they did not consider the unknown length
of the unknown parameter. In these works, the goal was to have the inertia load to
track any specified smooth motion trajectory x1d as close as possible, where x1d is a
one-dimensional (time-varying) scalar; in other words, the dimension of x1d is known.
However, in our paper, we assume that the dimensions of parameters like that are also
unknown. Simulation results support our theoretical analysis.
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Notation: For the ease of reference, the main symbols used in this paper are listed
below

col{.} Column vector;
E{.} Statistical expectation;
‖.‖2 Squared Euclidean norm operation;
|.|2 Absolute squared operation;
0M×1 M × 1 Zero vector;
01×M 1 × M Zero vector;
0M×L M × L Zero matrix;
IL L × L Identity matrix;
(.)∗ Conjugation for scalars and Hermitian transpose for matrices;

2 Deficient Length DILMS Algorithm

Consider a set of N sensors that are randomly distributed over a region. The purpose
was to estimate an Lopt × 1 unknown vector wo

Lopt
from multiple measurements col-

lected at N nodes in the network. We assume that both the coefficients and length Lopt
of the unknown parameter wo

Lopt
are unknown. Since the length Lopt is unknown, so

a conjectural length M for the unknown parameter is considered at each node, where
M < Lopt. Also, suppose that each node k has access to time realizations

{
dk (i) , uk,i

}

of zero-mean spatial data {dk, uk}, where each dk is a scalar measurement and each
uk is a 1 × M row regression vector.

Collecting the regression and measurement data into global matrices results

U � col {u1, u2, . . . uN } (N × M) (1)

d � col {d1, d2, . . . dN } (N × 1) (2)

The objective was to estimate the M × 1 vector w that solves

argmin
w

J (w) (3)

where
J (w) = E

{∥
∥d − Uw

∥
∥2
}

(4)

The optimal solution wo satisfies the normal equations [12]

rdu = Ruw
o (5)

where wo has length M , and

Ru = E
{
U∗U

}
, rdu = E

{
U∗d

}
. (6)

Note that in order to use (5) to compute wo, each node must have access to the
global statistical information {rdu, Ru}, which in turn requires more communications



Circuits Syst Signal Process (2015) 34:2893–2910 2897

between nodes and computational resources. Moreover, such an approach does not
enable the network to respond to changes in statistical properties of data. In [12], a
distributed incremental LMS (DILMS) strategy with a cyclic estimator structure is
proposed as

ψ
(i)
k = ψ

(i)
k−1 + μku∗

k,i

(
dk (i) − uk,iψ

(i)
k−1

)
, k ∈ N (7)

where ψ
(i)
k is the M × 1 local estimate at node k and time i . For each time i , each

node k utilizes the local data dk (i), uk,i and ψ
(i)
k−1 received from the (k − 1)th node

to obtain ψ
(i)
k . At the end of this cycle, ψ

(i)
N is employed as the initial condition for

the next time instant at node k = 1. In (7), μk denotes the local step size at node k,
which is a positive small real number.

3 Performance Analysis of Deficient Length DILMS

As mentioned, we assume that there is an optimal length for wo
Lopt

as Lopt, where the
presumed filter length M is not equal to it. We are going to analyze this condition in
the context of incremental adaptive network.

3.1 Data Model and Assumptions

To perform the performance analysis, it is necessary to assume a model for the data
as it is commonly done in the literature of adaptive algorithms. In the subsequent
analysis, the following assumptions will be considered.

1) We assume a linear measurement model as

dk (i) = uLoptk,iw
o
Lopt

+ vk (i) . (8)

where vk (i) is some temporal and spatial white noise sequence with zero mean and
variance σ 2

v,k and is independent of uLopt�, j and d� ( j) for all �, j . The linear model
(8) is also called stationary model in which the unknown parameter wo

Lopt
is fixed and

statistics of the various input and noise signals are time-invariant. In (8), uLoptk,i is a
vector with length equal to Lopt as

uLoptk,i = [
uk (i) , uk (i − 1) , . . . , uk

(
i − Lopt + 1

)]
(9)

and uk,i consists of M first coefficients of uLoptk,i as

uk,i = [uk (i) , uk (i − 1) , . . . , uk (i − M + 1)] (10)

2) uLoptk,i is independent of uLopt�,i for k �= �.
3) uLoptk,i is independent of uLoptk, j for i �= j .
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4) The components of uLoptk,i are drawn from a zero-mean white Gaussian process
with varianceσ 2

u,k , in otherwords the covariancematrix of uLoptk,i is Ru,k = σ 2
u,k I .

According to these assumptions, we are interested in the evaluation of the MSD for
the steady-state condition for every node k.

3.2 Performance Analysis

To proceed, we define the following local error signal at each node k as

ek (i) = dk (i) − uk,iψ
(i)
k−1 (11)

This signal measures the estimation error in approximating dk (i) by using information
available locally, i.e., uk,iψ

(i)
k−1. By this definition, (7) can be written as

ψ
(i)
k = ψ

(i)
k−1 + μku∗

k,i ek(i) k ∈ N (12)

To carry out the performance analysis, we partition the unknown parameter wo
Lopt

as

[
ŵM

w̃Lopt−M

]
(13)

where ŵM is the M first coefficients of wo
Lopt

; in other words, ŵM is the part of wo
Lopt

that is modeled by ψ
(i)
k in each node, and w̃Lopt−M is the part of wo

Lopt
that is excluded

in the estimation of wo
Lopt

in each node. This partitioning makes it easy to work with
vectors that have different lengths. By this partitioning, (11) could be written as

ek (i) = uLoptk,iw
o
Lopt

− uk,iψ
(i)
k−1 + vk (i)

= uLoptk,i

[
ŵM

w̃Lopt−M

]
− uLoptk,i

[
ψ

(i)
k−1

0(Lopt−M)×1

]

+ vk (i)

= −uLoptk,i

[
ψ

(i)
k−1 − ŵM

−w̃Lopt−M

]
+ vk (i) = −uLoptk,i

[
ψ̄

(i)
M,k−1

−w̃Lopt−M

]

+ vk (i)

= −uLoptk,i ψ̄
(i)
Lopt,k−1 + vk (i) (14)

The vector ψ̄
(i)
Lopt,k−1 measures the difference between the weight estimate at node

k−1 and the desired solutionwo
Lopt

. The vector ψ̄
(i)
M,k−1 is also a measure of difference

between weights, but it only uses the coefficients of wo
Lopt

that are modeled by ψ
(i)
k .

Substituting (14) into (12) results

ψ
(i)
k = ψ

(i)
k−1 − μku∗

k,iuLoptk,i ψ̄
(i)
Lopt,k−1 + μkvk (i) u∗

k,i (15)
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Padding the vectors with length M in (15) by Lopt − M zeros results vectors with
length Lopt that allows subtraction of wo

Lopt
from both sides of (15), so we have

[
ψ

(i)
k

0(Lopt−M)×1

]

− wo
Lopt

=
[

ψ
(i)
k−1

0(Lopt−M)×1

]

− wo
Lopt

− μk

[
u∗
k,i

0(Lopt−M)×1

]

uLoptk,i ψ̄
(i)
Lopt,k−1 + μkvk (i)

[
u∗
k,i

0(Lopt−M)×1

]
(16)

and according to the definition of ψ̄
(i)
Lopt,k−1, we have

ψ̄
(i)
Lopt,k = ψ̄

(i)
Lopt,k−1−μk

[
u∗
k,i

0(Lopt−M)×1

]
uLoptk,i ψ̄

(i)
Lopt,k−1+μkvk (i)

[
u∗
k,i

0(Lopt−M)×1

]

(17)
by defining

�k(i) = ILopt − μk

[
u∗
k,i

0(Lopt−M)×1

]
uLoptk,i (18)

The Eq. (17) can be written as

ψ̄
(i)
Lopt,k = �k(i)ψ̄

(i)
Lopt,k−1 + μkvk (i)

[
u∗
k,i

0(Lopt−M)×1

]
(19)

We are interested in the evaluation of the MSD in the steady-state condition for every
node k. This quantity is defined as

MSDk = E
{∥
∥ψ̄

(i)
Lopt,k−1

∥
∥2
}

(20)

In order to derive an expression for this quantity, we write
∥
∥ψ̄

(i)
Lopt,k

∥
∥2 as

∥
∥ψ̄

(i)
Lopt,k

∥
∥2 = ψ̄

∗(i)

Lopt,k−1�
∗
k (i) �k (i) ψ̄

(i)
Lopt,k−1

+μkvk (i) ψ̄
∗(i)

Lopt,k−1�
∗
k(i)

[
u∗
k,i

0(Lopt−M)×1

]

+μkvk (i)
[
uk,i 01×(Lopt−M)

]
�k (i) ψ̄

(i)
Lopt,k−1

+μ2
kv

2
k (i)

∥
∥uk,i

∥
∥2 (21)

To proceed, we should take expectations from both sides of (21). For this, we use the
assumptions (1)–(4), and from these assumptions, several results can be inferred as
follows

Result 1 Since the matrix �k (i) only consists of the regression vectors, it is
independent of measurement noise vk (i).
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Result 2 From ψ
(i)
k−1 = ψ

(i)
k−2 + μk−1u∗

k−1,i

(
dk−1 (i) − uk−1,iψ

(i)
k−2

)
, it is clear

that ψ
(i)
k−1 only depends on the measurements d� ( j) of node k − 1 and its pre-

vious nodes in current iteration, and also on the measurements of its previous
iterations. So, from assumption (1), the noise vk (i) will be independent of ψ

(i)
k−1

and ψ̄
(i)
Lopt,k−1.

Result 3 Since ψ
(i)
k−1 only depends on the regression vectors u�, j of node k − 1

and previous nodes in current iteration, and the regressions of previous iterations,
so from assumptions (2) and (3), it is clear that uk,i and so �k (i) are independent

from ψ
(i)
k−1 and ψ̄

(i)
Lopt,k−1.

Using the assumptions (1)–(4) and their results, and taking expectations of both sides
of (21), leads to

E
{∥
∥ψ̄

(i)
Lopt,k

∥
∥2
}
=E

{
ψ̄

∗(i)

Lopt,k−1�
∗
k (i) �k (i) ψ̄

(i)
Lopt,k−1

}
+μ2

k E
{
v2k (i)

}
E
{∥
∥uk,i

∥
∥2
}

(22)
To proceed, we need to evaluate the moments in the right-hand side of (22). From
result (3), we have

E

{
ψ̄

∗(i)

Lopt,k−1�
∗
k (i) �k (i) ψ̄

(i)
Lopt,k−1

}
= E

{
ψ̄

∗(i)

Lopt,k−1E
[
�∗

k (i) �k (i)
]
ψ̄

(i)
Lopt,k−1

}

(23)
So, first we calculate the following expectation

E
{
�∗

k (i) �k (i)
} = ILopt − μk E

{[
u∗
k,i

0(Lopt−M)×1

]
uLoptk,i

}

−μk E
{
u∗
Loptk,i

[
uk,i 01×(Lopt−M)

]}

+μ2
k E
{
u∗
Loptk,iuLoptk,i

∥
∥uk,i

∥
∥2
}

(24)

As shown in the Appendix, the following relation holds true for this expectation as

E
{
�∗

k (i) �k (i)
} =

[
βk IM 0M×(Lopt−M)

0(Lopt−M)×M ηk ILopt−M

]

(25)

where
βk = 1 − 2μkσ

2
u,k + μ2

kσ
4
u,k (M + 2) (26)

and
ηk = 1 + μ2

kσ
4
u,kM (27)

On the other hand, from ψ̄
(i)
Lopt,k−1 =

[
ψ̄

(i)
M,k−1

−w̃Lopt−M

]

we have

∥
∥ψ̄

(i)
Lopt,k−1

∥
∥2 = ∥

∥ψ̄
(i)
M,k−1

∥
∥2 + ∥

∥w̃Lopt−M
∥
∥2 (28)
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Using (25) and (28) in (23), we get

E

{
ψ̄

∗(i)

Lopt,k−1�
∗
k (i)�k (i) ψ̄

(i)
Lopt,k−1

}

= E

{

ψ̄
∗(i)

Lopt,k−1

[
βk IM 0M×(Lopt−M)

0(Lopt−M)×M ηk ILopt−M

]

ψ̄
(i)
Lopt,k−1

}

= E

{
[
ψ̄

∗(i)

M,k−1 −w̃∗
Lopt−M

]
[

βk IM 0M×(Lopt−M)
0(Lopt−M)×M ηk ILopt−M

]

×
[

ψ̄
(i)
M,k−1

−w̃Lopt−M

]}

= E

{
[
βkψ̄

∗(i)

M,k−1 −ηkw̃
∗
Lopt−M

]
[

ψ̄
(i)
M,k−1

−w̃Lopt−M

]}

= βk E
{∥
∥ψ̄

(i)
M,k−1

∥
∥2
}

+ ηk
∥
∥w̃Lopt−M

∥
∥2

= βk E
{∥
∥ψ̄

(i)
Lopt,k−1

∥
∥2
}

+ (ηk − βk)
∥
∥w̃Lopt−M

∥
∥2 (29)

Substituting (29) into (22) results

E
{∥
∥ψ̄

(i)
Lopt,k

∥
∥2
}

= βk E
{∥
∥ψ̄

(i)
Lopt,k−1

∥
∥2
}

+ (ηk − βk)
∥
∥w̃Lopt−M

∥
∥2 + τk (30)

where
τk = μ2

kσ
2
v,kσ

2
u,kM (31)

Now, we rewrite (30) in a summarized form as

E
{∥
∥ψ̄

(i)
Lopt,k

∥
∥2
}

= βk E
{∥
∥ψ̄

(i)
Lopt,k−1

∥
∥2
}

+ fk (32)

where
fk = (ηk − βk)

∥
∥w̃Lopt−M

∥
∥2 + τk (33)

Since we are interested in the steady-state analysis, as (i → ∞) in (32), so with

assumption of P Lopt,k = ψ̄
(∞)

Lopt,k , (32) can be written as

E
{∥
∥P Lopt,k

∥
∥2
}

= βk E
{∥
∥P Lopt,k−1

∥
∥2
}

+ fk (34)

Observe, however, that (34) is a coupled equation: it involves both E
{∥
∥P Lopt,k

∥
∥2
}

and E
{∥
∥P Lopt,k−1

∥
∥2
}
, i.e., information from two spatial locations. To resolve this

difficulty, we take the advantage of the ring topology [11,12,18]. Thus, by iterating
(34), we have
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E
{∥
∥P Lopt,1

∥
∥2
}

= β1E
{∥
∥P Lopt,N

∥
∥2
}

+ f1

E
{∥
∥P Lopt,2

∥
∥2
}

= β2E
{∥
∥P Lopt,1

∥
∥2
}

+ f2 (35)

...

E
{∥
∥P Lopt,k−2

∥
∥2
}

= βk−2E
{∥
∥P Lopt,k−3

∥
∥2
}

+ fk−2

E
{∥
∥P Lopt,k−1

∥
∥2
}

= βk−1E
{∥
∥P Lopt,k−2

∥
∥2
}

+ fk−1

...

E
{∥
∥P Lopt,N

∥
∥2
}

= βN E
{∥
∥P Lopt,N−1

∥
∥2
}

+ fN

Observe that according to (35), E
{∥
∥P Lopt,k−1

∥
∥2
}
can be expressed in terms of

E
{∥
∥P Lopt,k−3

∥
∥2
}
as

E
{∥
∥P Lopt,k−1

∥
∥2
}

= βk−1βk−2E
{∥
∥P Lopt,k−3

∥
∥2
}

+ βk−1 fk−2 + fk−1 (36)

By iterating in this manner, we have

E
{∥
∥P Lopt,k−1

∥
∥2
}

= βk−1βk−2 . . . β1βNβN−1 . . . βk E
{∥
∥P Lopt,k−1

∥
∥2
}

+βk−1βk−2 . . . β1βNβN−1 . . . βk+1 fk
+βk−1βk−2 . . . β1βNβN−1 . . . βk+2 fk+1

+ . . . + βk−1βk−2 . . . β1βN fN−1 + βk−1βk−2 . . . β1 fN
+βk−1βk−2 . . . β2 f1 + βk−1βk−2 . . . β4β3 f2
+ . . . + βk−1βk−2 fk−3 + βk−1 fk−2 + fk−1 (37)

Now, for each node k, we define a set of N quantities as

�k,� � βk−1βk−2 . . . β1βNβN−1 . . . βk+�βk+�−1, � = 1, . . . , N (38)

and if we define sk as

sk � �k,2 fk + �k,3 fk+1 + . . . + �k,N−1 fk−3 + �k,N fk−2 + fk−1 (39)

From (37)–(39), we have

E
{∥
∥P Lopt,k−1

∥
∥2
}

= �k,1E
{∥
∥P Lopt,k−1

∥
∥2
}

+ sk (40)

From (40), we derive an expression for the desired steady-state MSD as

E
{∥
∥P Lopt,k−1

∥
∥2
}

= (
1 − �k,1

)−1
sk (41)
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3.3 Discussions on Derived Theoretical Results

Due to the complicated form of the resulting relationship for the steady-stateMSD, it is
not easy to achieve useful information about the use of deficient length adaptive filter in
eachnode. In order to obtain a clear viewabout the effect of deficient length application,
we simplify the equation (41). For this purpose, we assume that μk = μ,∀k ∈ N
and Ru,k = σ 2

u I . Also, we assume that μ is small enough, so that the μ2 term can be
ignored in βk . With these assumptions, βk could be approximated as

βk = 1 − 2μσ 2
u (42)

as a result, �k,1 could be approximated as

� � β1β2 . . . βN =
(
1 − 2μσ 2

u

)N ≈
(
1 − 2μNσ 2

u

)
(43)

Similarly, using these assumption, sk becomes

sk ≈
N∑

k=1

fk

=
N∑

k=1

(
2μσ 2

u

(
1 − μσ 2

u

) ∥
∥w̃Lopt−M

∥
∥2 + Mμ2σ 2

u σ 2
v,k

)
(44)

Now, by substituting (43) and (44) into (41), we obtain

E
{∥
∥P Lopt,k−1

∥
∥2
}

= 1

2μNσ 2
u

N∑

k=1

(
2μσ 2

u

(
1 − μσ 2

u

) ∥
∥w̃Lopt−M

∥
∥2 + Mμ2σ 2

u σ 2
v,k

)

=
(
1 − μσ 2

u

) ∥
∥w̃Lopt−M

∥
∥2 + Mμ

2N

N∑

k=1

σ 2
v,k (45)

Now, several results are implied from (45) as

1) The first term on the right-hand side of (45) is indeed the additional error due to
the deficient length application. This term consists of all the omitting coefficients
of unknown parameter, namely w̃Lopt−M in the estimation process. Whenever the
considered length for the adaptive filter in each node, namely M , is less than Lopt,
this termwill be large. In otherwords, asmuch the selected length ismore deficient,
the error will increase.

2) Unlike the full length case
(
M = Lopt

)
, in which as μ approaches to zero, the

steady-stateMSD tends toward zero. It is observed that, in the deficient length case
with μ → 0, the steady-state MSD will tend toward a constant term

∥
∥w̃Lopt−M

∥
∥2.
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4 Simulations

In this section, we do some simulations and compare the results with theory and show
that the derived theoretical expression for MSD can predict the steady-state perfor-
mance of the deficient length DILMS algorithm. To this aim, we deploy a distributed
networkwith N = 20 sensors each running as an adaptive filterwithM taps to estimate
the Lopt × 1 unknown parameter wo

Lopt
= col {1, 1, . . . , 1} /

√
Lopt where Lopt = 10.

The measurement data {dk (i)} are generated according to model (8), and the regres-
sors are assumed to be independent zero-mean Gaussians with covariance matrix as
Ru,k = σ 2

u,k I . The observation noise variances σ 2
v,k and σ 2

u,k are shown in Fig. 1.
The steady-state curves are obtained by averaging the last 500 instantaneous samples
of 3,500 iterations. All of the simulation results are averaged over 100 independent
Monte Carlo runs and the theoretical curves are obtained from (41). The steady-state
MSD curves in node k for different tap-length M are shown in Figs. 2 and 3 for step
size μk = 0.02 and μk = 0.005, respectively.

Figures 2 and 3 show that there is a good match between theory and simulations.
We can see from Fig. 3 that, for M = 9, 8, 7 and 6, the steady-state MSD values for
node k = 1 are −9.665, −6.772, −5.004, and −3.791dB, respectively. This implies
that, as much the considered length for the adaptive filter in each node, namely M ,
is less than Lopt, the steady-state MSD will increase. In fact, this is the confirmation
for the first result, as we mentioned, as much the selected length is more deficient, the
error will increase. In order to do a comparison, the steady-stateMSD in node k for the
case of no deficiency of the filter length, i.e., M = Lopt, is also shown in these figures.
Comparing these figures shows that the realistic condition, i.e., deficient length, can
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Fig. 2 Steady-state MSD versus node for different tap-length, μk = 0.02
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Fig. 3 Steady-state MSD versus node for different tap-length, μk = 0.005

drastically deteriorate the performance of DILMS algorithm in term of MSD. These
simulations justify the derived theoretical results.

These results could be used to assign a value for the step size for all the nodes.
Nodes showing poor performance, or having high noise level, can be assigned with
small step sizes; in the limit, they could become simply relay nodes.

The steady-state MSD versus different values of μ for node k = 1 are plotted in
Figs. 4 and 5 for two cases M = 8 (M < Lopt) and M = Lopt, respectively. (In this
case, we used σ 2

u,k ∈ (0, .4], but the other setup parameters are the same as those in
the previous simulations). Again, as it is clear from these figures, simulation results
coincide very well to the graphs of the theoretical analysis. On the other hand, as
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mentioned in the second result, comparison of Figs. 4 and 5 shows that unlike the
full length case

(
M = Lopt

)
, in which as μ approach to zero, the steady-state MSD

tends toward zero, it is observed that in the deficient length case, as μ → 0, the
steady-state MSD will approach toward a constant term

∥
∥w̃Lopt−M

∥
∥2 (here, it is equal

to −6.9897dB).
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5 Conclusions

In this paper, we have presented a theoretical analysis of the DILMS algorithm, in the
case when there is a mismatch between the length of the adaptive filter at each node
and the length of the unknown parameter. Based on our analysis, we have derived a
closed-form expression for the MSD to explain the steady-state performance at each
individual node. In practical physical systems, a conjectural length for an unknown
parameter is usually considered, and indeed, our derived expression for the MSD pre-
dicts the performance of physical systems for this realistic condition. Our simulation
results show there is a good match between our derived expression and computer
simulations. The most important results of our analysis were that, in comparison
with the sufficient length case, the steady-state MSD includes an additional term
that arises from the deficient length application. This term includes all the coeffi-
cients of the unknown parameter that are omitted in the estimation process. As the
length of the adaptive filter assigned to each node becomes more and more deficient,
this term will become larger and larger. The results also show that, unlike the suf-
ficient length case, as the step size tends toward zero, the steady-state MSD tends
toward a nonzero constant value. It must be noted that different learning rules such
as RLS can also be applied in the context of a distributed network with incremental
topology.

Appendix

We show the derivation of (25) in this section. By substituting the vector components
into (24), we get

E
{
�∗

k (i) �k (i)
} = ILopt − μk E

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u∗
k (i)
...

u∗
k (i − M + 1)

0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
uk (i) . . . uk

(
i − Lopt + 1

)]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

− μk E

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

u∗
k (i)
...

u∗
k (i − Lopt + 1)

⎤

⎥
⎦ [uk (i) . . . uk (i − M + 1) , 0 . . . 0]

⎫
⎪⎬

⎪⎭

+ μ2
k E

{(
M−1∑

n=0

|uk (i − n)|2
)

×
⎡

⎢
⎣

u∗
k (i)
...

u∗
k (i − Lopt + 1)

⎤

⎥
⎦
[
uk (i) . . . uk

(
i − Lopt + 1

)]

⎫
⎪⎬

⎪⎭
(46)
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From assumption (4), we have

E

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u∗
k (i)
...

u∗
k (i − M + 1)

0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
uk (i) . . . uk

(
i − Lopt + 1

) ]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

= σ 2
u,k

[
IM 0M×(Lopt−M)

0(Lopt−M)×M 0(Lopt−M)×(Lopt−M)

]

(47)

and

E

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

u∗
k(i)
...

u∗
k(i − Lopt + 1)

⎤

⎥
⎦ [uk (i) . . . uk (i − M + 1) , 0 . . . 0]

⎫
⎪⎬

⎪⎭

= σ 2
u,k

[
IM 0M×(Lopt−M)

0(Lopt−M)×M 0(Lopt−M)×(Lopt−M)

]

(48)

and finally, for the last expectation of the right-hand side of (46), we have

E

⎧
⎪⎨

⎪⎩

(
M−1∑

n=0

|uk (i − n)|2
)
⎡

⎢
⎣

u∗
k(i)
...

u∗
k(i − Lopt + 1)

⎤

⎥
⎦× [

uk (i) . . . uk
(
i − Lopt + 1

)]

⎫
⎪⎬

⎪⎭

= E

{
M−1∑

n=0

(
|uk (i − n)|2

×
⎡

⎢
⎣

|uk (i)|2 · · · u∗
k(i)uk

(
i − Lopt + 1

)

...
. . .

...

u∗
k(i − Lopt + 1)uk (i) · · · ∣

∣uk
(
i − Lopt + 1

)∣∣2

⎤

⎥
⎦

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
(49)

In (49), the non-diagonal components are zero, since for a Gaussian random process
with zero mean, the odd ordered moments are zero. For the diagonal components, two
cases are possible

First, for the (m,m)th component of (49), where 1 ≤ m ≤ M , we have

E

{
M−1∑

n=0

|uk (i − n)|2 |uk (i − m + 1)|2
}

=
M−1∑

n=0
n �=m−1

E
{
|uk (i − n)|2

}
E
{
|uk (i − m + 1)|2

}
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+ E
{
|uk (i − m + 1)|4

}

=
M−1∑

n=0
n �=m−1

σ 4
u,k + 3σ 4

u,k = (M − 1) σ 4
u,k + 3σ 4

u,k = (M + 2) σ 4
u,k (50)

where we use the fact that for a Gaussian random process, kurtosis is zero.
Second, for the (m,m)th component of (49), where M + 1 ≤ m ≤ Lopt, we have

E

{
M−1∑

n=0

|uk (i − n)|2 |uk (i − m + 1)|2
}

=
M−1∑

n=0

E
{
|uk (i − n)|2

}

E
{
|uk (i − m + 1)|2

}
= Mσ 4

u,k (51)

Substituting (47)–(51) into (46) results

E
{
�∗

k (i)�k (i)
} = ILopt − 2μkσ

2
u,k

[
IM 0M×(Lopt−M)

0(Lopt−M)×M 0(Lopt−M)×(Lopt−M)

]

+μ2
kσ

4
u,k

[
(M + 2) IM 0M×(Lopt−M)
0(Lopt−M)×M MILopt−M

]

(52)

References

1. I.F.Akyildiz,W. Su,Y. Sankarasubramaniam,E.Cayirci,Wireless sensor networks: a survey.Computer
Netw. 38(4), 393–422 (2002)

2. R.C. Bilcu, P. Kuosmanen, K. Egiazarian, A new variable length LMSalgorithm: theoretical analysis
and implementations. in Proceedings of 9th international conference electronics, circuits, system, vol.
3, pp. 1031–1034 (2002)

3. R.C. Bilcu, P. Kuosmanen, K. Egiazarian, On length adaptation for the least mean square adaptive
filters. Signal Process. 86, 3089–3094 (2006)

4. F.S. Cattivelli, C.G. Lopes, A.H. Sayed, Diffusion recursive least-squares for distributed estimation
over adaptive networks. IEEE Trans. Signal Process. 56(5), 1865–1877 (2008)

5. F.S. Cattivelli, A.H. Sayed,Hierarchical diffusion algorithms for distributed estimation, inProceedings
of IEEE workshop on statistical signal processing (SSP) (Wales, UK, 2009), pp. 537–540

6. F. S. Cattivelli, A. H. Sayed, Multilevel diffusion adaptive networks, in Proceedings of international
conference acoustics, speech, signal processing, (ICASSP) (Taipei, Taiwan, 2009), pp. 2789–2792

7. D. Estrin, L. Girod, G. Pottie, M. Srivastava, Instrumenting the world with wireless sensor networks, in
Proceedings of IEEE international Conference on acoustics, speech and signal processing (ICASSP)
(Salt Lake City, UT, 2001), pp. 2033–2036

8. Y. Gu, K. Tang, H. Cui, W. Du, Convergence analysis of a deficient-length LMS filter and optimal-
length sequence to model exponential decay impulse response. IEEE Signal Process. Lett. 10(1), 4–7
(2003)

9. A. Khalili, M.A. Tinati, A. Rastegarnia, Steady-state analysis of incremental LMS adaptive networks
with noisy links. IEEE Trans. Signal Process. 59(5), 2416–2421 (2011)

10. A.Khalili,M.A.Tinati,A.Rastegarnia, J.A.Chambers, Steady-state analysis of diffusionLMSadaptive
networks with noisy links. IEEE Trans. Signal Process. 60(2), 974–979 (2012)

11. L. Li, J.A. Chambers, C.G. Lopes, A.H. Sayed, Distributed estimation over an adaptive incremental
network based on the affine projection algorithm. IEEE Trans. Signal Process. 58(1), 151–164 (2010)



2910 Circuits Syst Signal Process (2015) 34:2893–2910

12. C.G. Lopes, A.H. Sayed, Incremental adaptive strategies over distributed networks. IEEE Trans. Signal
Process. 55(8), 4064–4077 (2007)

13. C.G. Lopes, A.H. Sayed, Diffusion least-mean squares over adaptive networks: formulation and per-
formance analysis. IEEE Trans. Signal Process. 56(7), 3122–3136 (2008)

14. C. G. Lopes, A. H. Sayed, Randomized incremental protocols over adaptive networks, in Proceedings
of international conference on acoustics, speech, signal processing, (ICASSP) (Dallas, TX, 2010), pp.
3514–3517

15. C.G. Lopes, A.H. Sayed, Diffusion adaptive networks with changing topologies, in Proceedings of
IEEE ICASSP (Las Vegas, NV, 2008) ,pp. 3285–3288

16. K. Mayyas, Performance analysis of the deficient length LMS adaptivealgorithm. IEEE Trans. Signal
Process. 53(8), 2727–2734 (2005)

17. O. L. Rortveit, J. H. Husoy, A. H. Sayed, Diffusion LMS with communications constraints, in Pro-
ceedings of 44th asilomar conference on signals, systems and computers (Pacific Grove, CA, 2010 ),
pp. 1645–1649

18. A. H. Sayed, C. G. Lopes, Distributed recursive least-squares strategies over adaptive networks, in
Proceedings of 40th asilomar conference on signals, systems and computers (Pacific Grove, CA,
2006), pp. 233–237

19. N. Takahashi, I. Yamada, A.H. Sayed, Diffusion least-mean-squares with adaptive combiners: formu-
lation and performance analysis. IEEE Trans. Signal Process. 58(9), 4795–4810 (2010)

20. J. Yao, Z. Jiao, D. Ma, L. Yan, High-accuracy tracking control of hydraulic rotary actuators with
modeling uncertainties. IEEE/ASME Trans. Mechatron. 19(2), 633–641 (2014)

21. J. Yao, Z. Jiao, D.Ma, Adaptive robust control of DCmotors with extended state observer. IEEE Trans.
Ind. Electron. 61(7), 3630–3637 (2014)

22. J. Yao, Z. Jiao, D. Ma, Extended-state-observer-based output feedback nonlinear robust control of
hydraulic systems with backstepping. IEEE Trans. Ind. Electron. 61(11), 6285–6293 (2014)


	Steady-State Analysis of the Deficient Length Incremental LMS Adaptive Networks
	Abstract
	1 Introduction
	2 Deficient Length DILMS Algorithm
	3 Performance Analysis of Deficient Length DILMS
	3.1 Data Model and Assumptions
	3.2 Performance Analysis
	3.3 Discussions on Derived Theoretical Results

	4 Simulations
	5 Conclusions
	Appendix
	References




