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Abstract This paper addresses the design of robust H∞ filters for polytopic 2D dis-
crete singular systems described by a Roesser model. By establishing a novel version
of the bounded real lemma, a polynomially parameter-dependent approach is devel-
oped to solve this filter design problem, with a new linear matrix inequality condition
obtained for the existence of those H∞ filters. It is also shown that the proposed filter
design method is general, in the sense that the results are also useful for standard (non-
singular) systems. To show the applicability of the proposed filter designmethodology,
some examples are solved and compared with previous results.

Keywords 2D singular systems · H∞ filtering · Polytopic uncertainty

1 Introduction

As it is well known, many practical systems, such as those in image data process-
ing and transmission, thermal processes, gas absorption, and water stream heating,
are correctly modelled as two-dimensional (2D) systems [4,18]. The investigation
of 2D systems is then attracting considerable attention among the control and signal
processing fields. Many important results have already been reported. Among these
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results, the H∞ filtering problem for 2D systems described by Roesser and Fornasini-
Marchesini (FM) models has been studied in [1,6,7,10–12,16,24,26–31,38]; for 2D
parameter-varying systems, the related work can be found in [8,29], whereas the H∞
filtering problems for 2D state-delayed systems are investigated in [24,28], the sta-
bility and stabilization of 2D systems in [2,23], and the H∞ control for 2D nonlinear
systems with delays and the non-fragile H∞ and l2 − l1 problems in [33]. However,
as there is no systematic and general approach to analyze 2D singular Roesser models
(SRM), many problems still remain open in this specific subject, which justifies the
work presented here.

In fact, 2D singular systems have already received interest due to their applica-
tions in many practical areas [5,17]. A great number of fundamental results on 1D
singular systems has been extended to 2D singular systems: in [32,35], the general
response formula and minimum energy control problem for 2D general descriptor
models were studied in the shift-invariant and shift-varying coefficient cases, using
the Z -transformation approach; [20] has extended the geometric method to the 2D
singular case, whereas the input admissibility of 2D singular systems was investigated
in [19]. Finally, we cite [40], where an asymptotic stability theory based on the con-
cept of jump modes was proposed. It should be pointed out that in the 2D singular
case, the acceptability and jumpmodes play an important role in the problem of robust
stability of a 2D singular system [40]. The existence of the jump modes implies that
the systems are non-casual and the structural stability of the systems will be violated.
Hence, in many synthesis topics such as robust H∞ control [34], the closed loops have
to be designed as jump-mode-free.

This paper concentrates on 2D singular Roesser models (2D SRM) as they are
the simplest (and most popular) 2D singular system models: Although they resemble
1D singular systems in their forms, there is no Kronecker canonical form for 2D
system, which is one of the most powerful tools for the extensive basic studies of
1D singular systems. This makes it more difficult to study 2D singular systems. For
examples, the problems of the robust H∞ control, model reduction, and duality for
2D SRM have been shown to be quite complex [34,36,42]. As far as we know, there
is no relevant progress reported on the full-order H∞ filtering for 2D uncertain SRM,
which motivates the investigations in this paper.

In summary, this paper seeks new techniques to design robust H∞ filters for uncer-
tain 2D singular systems. Given a 2D system described by the Roesser model with
uncertain parameters residing in a convex bounded polytope, the focus is on designing
a robust filter such that the filtering error system is acceptable, robustly asymptoti-
cally stable, causal, and has a prescribed H∞ disturbance attenuation performance for
the entire uncertainty domain. By establishing a new version of bounded real lemma,
the polynomially parameter-dependent idea is introduced to solve the robust H∞ fil-
tering problem. A linear matrix inequality condition is obtained for the existence of
admissible filters, and based on this, the filter design is cast into a convex optimization
problem that can be readily solved via standard numerical software. The merit of the
proposed approach lies in the reduced conservatism, when compared with alternative
conventional robust filter design methods; moreover, it includes the quadratic and the
linearly parameter-dependent frameworks as special cases.



Circuits Syst Signal Process (2015) 34:2213–2235 2215

Notations :For real symmetricmatrices X andY , the notation X ≥ Y (respectively,
X > Y ) means that the matrix X − Y is positive semidefinite (respectively, positive
definite). ∗ stands for the symmetric term of a square symmetric matrix. I denotes the
identity matrix with appropriate dimension. The superscript T represents the transpose
of a matrix. diag(. . .) stands for a block-diagonal matrix. The Euclidean vector norm
is denoted by ‖ . ‖. The l2 norm of a 2D signal w(i, j) is given by

‖ w(i, j) ‖2=
√
√
√
√

∞
∑

i=0

∞
∑

j=0

wT (i, j)w(i, j)

where w(i, j) is said to be in the space l2[0,∞), [0,∞) or l2, for simplicity, if ‖
w(i, j) ‖2< ∞.

2 Preliminaries

Consider a 2D singular Roesser model (2D SRM) of the following form

Eα

[

xh(i + 1, j)
xv(i, j + 1)

]

= Aα

[

xh(i, j)
xv(i, j)

]

+ Bαw(i, j)

y(i, j) = Cα

[

xh(i, j)
xv(i, j)

]

+ Dαw(i, j)

z(i, j) = Hα

[

xh(i, j)
xv(i, j)

]

(2.1)

with the so-called standard quarter plane boundary conditions ([18])

xh(0, j) = x j
h , xv(i, 0) = xiv, i, j = 0, 1, 2, · · · , (2.2)

where xh(i, j) ∈ R
nh and xv(i, j) ∈ R

nv are the horizontal and vertical states,
respectively, and w(i, j) ∈ R

q is a disturbance (or noise) vector that belongs to
l2{[0,∞), [0,∞)}, y(i, j) ∈ R

m is the measured output, and z(i, j) ∈ R
p is the

signal to be estimated.
The system matrices are assumed to belong to a known polyhedral domain Γ

described by s vertices, that is,

Pα � [Eα, Aα, Bα,Cα, Dα, Hα] ∈ Γ (2.3)

where

Γ �
{

Pα/Pα =
s

∑

m=1

αm Pm;
s

∑

m=1

αm = 1, αm ≥ 0

}

(2.4)

with Pm � {Em, Am, Bm,Cm, Dm, Hm} denoting the mth vertex of the polyhedral
domain Γ . It is assumed that the parameter α is unknown (not measured online) and
does not depend explicitly on the variables i, j .
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Eα is possibly singular, satisfying the 2D regular pencil condition, i.e., for some
finite pairs (z, w)

det[Eα I (z, w) − Aα] =
n̄1∑

k=0

n̄2∑

l=0

akl z
kwl

where I (z, w) = diag{z Inh , w Inv }, where an̄1,0 �= 0 and a0,n̄2 �= 0. When an̄1,n̄2 �= 0,
system (2.1) is called acceptable [18,40].

It has been shown [40] that the unacceptable systems are usually ill-posed in a
certain sense, so they are discarded from this study.

The jump modes of 2D SRM (2.1) can be defined equivalently by the nonzero
positive power items (ai j ziw j , i > 0 or j > 0) in the Laurent expansion of the
matrices [Eα I (z, w) − Aα]−1, 1 ≤| z |< ∞, 1 ≤| w |< ∞ [3]. The freedom from
jump modes of 2D singular systems is equivalent to the systems that are causal.

Recently, the authors of [40] suggested that if the 2D acceptable SRM (2.1) is
causal, then, via linear transformations, it can be equivalently transferred into a 2D
SRM of separated standard from, which is of the form (2.1) with E = diag(Eh, Ev),
where Ehα ∈ R

nh×nh , Evα ∈ R
nv×nv . Therefore, for simplicity and convenience, in

the problem of Robust H∞ filtering for uncertain 2D SRM, it can be assumed that
Eα = diag(Ehα, Evα).

Assumption 2.1 Throughout this article, Eα = diag(Ehα, Evα), where Ehα ∈
R
nh×nh , Evα ∈ R

nv×nv , and nh + nv = n.

Definition 2.2 [3,37,40] An acceptable 2D SRM system (2.1) is said to be internally
stable if for every uniformly bounded boundary condition (2.2), limi, j−→∞ x(i, j) =
0, where x(i, j) =

[

xh(i, j)
xv(i, j)

]

.

Lemma 2.3 [37,40] The 2D SRM system (2.1) is acceptable and internally stable if
and only if

p(z, w) �= 0, 0 <| z |≤ 1, 0 <| w |≤ 1. (2.5)

Here, p(z, w) = det[Eα − Aα I (z, w)].
Lemma 2.4 [37,40] The acceptable 2D SRM system (2.1) is causal if and only if

deg det[sEα − Aα] = rankEα (2.6)

rankEα = rankEhα + rankEvα (2.7)

Now, we want to find a 2D discrete-time filter, with input y(i, j) and output z̄(i, j),
which is an estimation of z(i, j). Here, we consider the following 2D state-space
description for this filter

[

x̄ h(i + 1, j)
x̄v(i, j + 1)

]

= A f

[

x̄ h(i, j)
x̄v(i, j)

]

+ B f y(i, j)

z̄(i, j) = H f

[

x̄ h(i, j)
x̄v(i, j)

]

(2.8)
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with the boundary conditions x̄ h(0, k) = 0, x̄v(0, k) = 0 ∀k, where x̄ h(i, j) ∈ R
nh

and x̄v(i, j) ∈ R
nv are, respectively, the horizontal and vertical states of the filter, and

z̄(i, j) ∈ R
p is the estimation of signal z(i, j). Defining the error system

Ēα

[

ξ h(i + 1, j)
ξv(i, j + 1)

]

= Āα

[

ξ h(i, j)
ξv(i, j)

]

+ B̄αw(i, j)

e(i, j) = C̄α

[

ξ h(i, j)
ξv(i, j)

]

(2.9)

where

ξ h(i, j) = [xhT (i, j) x̄ hT (i, j)]T
ξv(i, j) = [xvT (i, j) x̄vT (i, j)]T , e(i, j) = z(i, j) − z̄(i, j)

and

Āα = Υ

[

Aα 0
B f Cα A f

]

Υ T = Υ ÃαΥ T , Ēα = Υ

[

Eα 0
0 I

]

Υ T = Υ ẼαΥ T ,

B̄α = Υ

[

Bα

B f Dα

]

= Υ B̃α, C̄α = [

Hα −C f
]

Υ T = C̃αΥ T , (2.10)

with Υ =

⎡

⎢
⎢
⎣

Inh 0 0 0
0 0 Inh 0
0 Inv 0 0
0 0 0 Inv

⎤

⎥
⎥
⎦
.

When the error system (2.9) is regular, its transfer function is given by

Ḡα(z, w) = C̄α[Ēα I (z, w) − Āα]−1 B̄α

and the H∞ norm of the system is, by definition,

‖Ḡα(z, w)‖∞ = sup
z,w∈[0,2π ]

σmax[Ḡα(e jz, e jw)],

where σ denotes the maximum singular value.

Remark 2.5 By using the 2D Parseval’s theorem [21], it is not difficult to show that,
under zero-boundary conditions and with internal stability of (2.9), the condition
‖Ḡα(z, w)‖∞ < γ is equivalent to

sup
0 �=w(i, j)∈	2

‖e(i, j)‖2
‖w(i, j)‖2 < γ

The parameter uncertainties considered in this paper are assumed to be of polytopic
type. The polytopic uncertainty has been widely used in the problems of robust control
and filtering for uncertain systems (see, for instance, [15] and the references therein);
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moreover, many practical systems have parameter uncertainties that can be either
exactly modeled or overbounded by the polytope Γ . Then, the 2D SRM H∞ filtering
problem to be addressed in this paper is expressed as follows: given the 2DSRMsystem
(2.1), design a suitable full-order filter (2.8) such that the following two requirements
are satisfied

1. The error system (2.9) with w(i, j) ≡ 0 is acceptable, internally stable, causal (in
([40]) called jump-mode-free) for all α ∈ Γ .

2. Under zero-boundary conditions, the H∞ performance ‖Ḡα(z, w)‖∞ < γ is guar-
anteed for all nonzero w(i, j) ∈ L2

We conclude this section by introducing the following two lemmas, which will be
used in the proof of our main results; they are an extension of the results in ([34]) to
uncertain systems, dependent on the parameter α ∈ Γ .

Lemma 2.6 2D SRM system (2.9) is acceptable, internally stable, and causal for all
α ∈ Γ if there exists symmetric matrices Pα = diag(Phα, Pvα) ∈ R

2nh×2nv such that

ĒT
α Pα Ēα ≥ 0 (2.11)

ĀT
α Pα Āα − ĒT

α Pα Ēα < 0 (2.12)

Moreover, if (2.12) holds, then Pα is non-singular.

Lemma 2.7 Given a scalar γ > 0, the 2D SRM system (2.9) is acceptable, internally
stable, and causal and satisfies ‖Ḡα(z, w)‖∞ < γ for all α ∈ Γ if there exists
symmetric matrices Pα = diag(Phα, Pvα) ∈ R

nh×nv such that the following LMI
holds

ĒT
α Pα Ēα ≥ 0 (2.13)

⎡

⎣

ĀT
α Pα Āα − ĒT

α Pα Ēα ĀT
α Pα B̄α C̄T

α

∗ −γ 2 I + B̄T
α Pα B̄α 0

∗ ∗ −I

⎤

⎦ < 0 (2.14)

Lemma 2.8 [9] (Finsler’s Lemma) Let ξ ∈ R
n, Q ∈ R

n×n and B ∈ R
m×n with

rank(B) < n and B⊥ such that BB⊥ = 0. Then, the following conditions are equiv-
alent

(i) ξ T Qξ < 0,∀ξ �= 0 : Bξ = 0
(ii) B⊥T

QB⊥ < 0
(iii) ∃μ ∈ � : Q − μBT B < 0
(iv) ∃χ ∈ �n×m : Q + χB + BTχT < 0

3 Robust H∞ Filtering Analysis

Now, we are in a position to present a new bounded real lemma for 2D SRM
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Theorem 3.1 The filtering error 2D SRM (2.9) is acceptable, internally stable, and
causal and satisfies ‖Ḡα(z, w)‖∞ < γ for all α ∈ Γ if there exist symmetric matri-
ces Pα = diag(Phα, Pvα) ∈ R

2nh×2nv and parameter-dependent matrices Kα ∈
R

(nh+nv)×(nh+nv), Mα ∈ R
(nh+nv)×(nh+nv), Qα ∈ R

q×(nh+nv) and Fα ∈ R
p×((nh+nv))

such that the following LMIs hold for all α ∈ Γ :

ĒT
α Pα Ēα ≥ 0 (3.1)

⎡

⎢
⎢
⎣

Θ11 Kα B̄α + ĀT
α Q

T
α −Kα + ĀT

α M
T
α C̄T

α + ĀT
α F

T
α

∗ Θ22 −Qα + B̄T
α MT

α B̄T
α FT

α

∗ ∗ −Mα − MT
α + Pα −FT

α

∗ ∗ ∗ −Ip

⎤

⎥
⎥
⎦

< 0 (3.2)

where

Θ11 = −ĒT
α Pα Ēα + Kα Āα + ĀT

α K
T
α

Θ22 = Qα B̄α + B̄T
α QT

α − γ 2 Iq

Proof 3.2 The LMIs (3.2) is obtained by considering

χ =

⎡

⎢
⎢
⎣

Kα

Qα

Mα

Fα

⎤

⎥
⎥
⎦

,

B = [

Ā(α) B̄(α) −Inh+nv 0(nh+nv)×p
]

Q =

⎡

⎢
⎢
⎣

−ĒT
α Pα Ēα 0(nh+nv)×q 0(nh+nv)×(nh+nv) C̄T

α

∗ −γ 2 Iq 0q×(nh+nv) 0q×p

∗ ∗ Pα 0(nh+nv)×P

∗ ∗ ∗ −IP

⎤

⎥
⎥
⎦

in condition (iv) of Lemma 2.8, with

B⊥ =

⎡

⎢
⎢
⎣

Inh+nv 0(nh+nv)×q 0(nh+nv)×p

0q×(nh+nv) Iq 0q×p

Āα B̄α 0(nh+nv)×p

0p×(nh+nv) 0p×q Ip

⎤

⎥
⎥
⎦

and then by calculation and Schur complement, using condition (i i) of Lemma 2.8,
we can obtain the equality between B⊥T QB⊥ < 0 and the LMIs in (2.14). Thus,
(2.14) is equivalent to (3.2) using Lemma 2.8.

Remark 3.3 When the parameters of the filter A f , B f , and H f are known, then the
matrices Ēα, Āα, B̄α , and C̄α belong to an uncertain polytopeΓ , (3.1) and (3.2) would
render a less conservative evaluation of the upper bound of the H∞ norm of the system
(2.9), thanks to the degrees of freedom given by the slack variables Kα, Qα, Mα , and
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Fα , and the fact that Pα is allowed to be vertex-dependent in (3.1) and (3.2). This
enables us to derive a less conservative robust full-order filtering design.

Remark 3.4 In the casewhen E = I , Theorem 3.1 reduces to the parameter-dependent
robust H∞ filtering results for regular 2D discrete Roesser model systems, which is
general than the results in [14] and [39](if Kα = 0, Qα = 0, Fα = 0, MT

α = Tα we
have LMIs 7 in [14] and if KT

α = Fτ , Qα = 0, Fα = 0, MT
α = Vτ we have Theorem

1 in [39]), the slack variables Kα, Qα , Fα = in Theorem 3.1 provide free dimensions
in the solution space for the robust H∞ filtering problem.

Remark 3.5 When the 2D SRM (2.1)–(2.2) reduces to a 1D singular system, it is easy
to show that Theorem 3.1 (with Qα = 0 and Fα = 0) coincides with Lemma 2 in
[41]; thus, the method used in this paper is more general than the method used in [41].
In the case when Ēα = I , Theorem 3.1 reduces to the parameter-dependent bounded
real lemma same as in [22], which has been shown to be less conservative than the
filtering results using a commonLyapunovmatrix for the entire uncertainty. Therefore,
Theorem 3.1 can be viewed as an extension of the parameter-dependent bounded real
lemma for discrete-time regular state-space systems to singular systems.

4 Robust H∞ Filter Design

In the previous section, the robust H∞ filter analysis problem was studied. Unfor-
tunately, in the result of Theorem 3.1, there exist products of unknown matrices
Pα, Kα, Mα, Fα and Qα with filter parameters A f , B f ,C f , so Theorem 3.1 cannot
be used directly for the filter design problem. In this section, robust H∞ filter design
problems for polytopic 2D SRM systems are investigated, giving a solution to this
problem.

Theorem 4.1 The filtering error 2D SRM (2.9) is acceptable, internally stable, and
causal with prescribed H∞ performance level γ > 0 if there exist parameter-
dependent symmetric positive definite matrices P11α = diag(P11hα, P11vα) and
P22α = diag(P22hα, P22vα), and parameter-dependent matrices

P12α = diag(P12hα, P12vα), K11α, K21α, M11α, M21α, Q1α, F1α and matrices
K̂ , Ā f , B̄ f , C̄ f and scalars λ1, λ2 such that the following LMIs hold for all α ∈ Γ

[

ET
α P11αEα ET

α P12α
∗ P22α

]

≥ 0 (4.1)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λ11 Λ12 Λ13 Λ14 Λ15 Λ16

∗ Λ22 Λ23 Λ24 Λ25 −C̄T
f

∗ ∗ Λ33 Λ34 Λ35 BT
α FT

1α∗ ∗ ∗ Λ44 Λ45 −FT
1α∗ ∗ ∗ ∗ Λ55 0

∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (4.2)
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where

Λ11 = −ET
α P11αEα + K11αAα + AT

α K
T
11α + λ1(C

T
α B̄T

f + B̄ f Cα)

Λ12 = −ET
α P12α + λ1 Ā f + AT

α K
T
21α + λ2C

T
α B̄T

f

Λ13 = AT
α Q

T
1α + K11αBα + λ1 B̄ f Dα

Λ14 = AT
α M

T
11α + CT

α B̄T
f − K11α

Λ15 = AT
α M

T
21α + CT

α B̄T
f − λ1 K̂

Λ16 = AT
α F

T
1α + HT

α

Λ22 = −P22α + λ2( Ā f + ĀT
f )

Λ23 = K21αBα + λ2 B̄ f Dα

Λ24 = ĀT
f − K21α

Λ25 = ĀT
f − λ2 K̂

Λ33 = Q1αBα + BT
α QT

1α − γ 2 I

Λ34 = BT
α MT

11α + DT
α B̄T

f − Q1α

Λ35 = BT
α MT

21α + DT
α B̄T

f

Λ44 = −M11α − MT
11α + P11α

Λ45 = −K̂ − MT
21α + P12α

Λ55 = −K̂ − K̂ T + P22α

Then, there exists a filter of the form of (2.8) such that the filtering error dynamics
are acceptable, asymptotically stable, and causal, and the prescribed H∞ performance
level γ is achieved. This H∞ filter can be computed from

[

A f B f

C f 0

]

=
[

K̂−1 0
0 I

]

×
[

Ā f B̄ f

C̄ f 0

]

Proof 4.2 As Υ T = Υ −1, pre- and post-multiplying (3.1) by Υ T and (3.2) by
diag(Υ T , I, Υ T , I ) gives

ẼT
α Υ T PαΥ Ẽα ≥ 0 (4.3)

⎡

⎢
⎢
⎣

Φ11 Φ12 −Υ T KαΥ + ÃT
α Υ T MT

α Υ ÃT
α Υ T FT

α + C̃T
α

∗ Φ22 −QαΥ + B̃T
α Υ T MT

α Υ B̃T
α Υ T FT

α

∗ ∗ −Υ T MT
α Υ − Υ T MαΥ + Υ T PαΥ −Υ T FT

α

∗ ∗ ∗ −I

⎤

⎥
⎥
⎦

< 0 (4.4)
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where

Φ11 = −ẼT
α Υ T PαΥ Ẽα + Υ T KαΥ Ãα + ÃT

α Υ T K T
α Υ

Φ12 = Υ T KαΥ B̃α + ÃT
α Υ T QT

α

Φ22 = QαΥ B̃α + B̃T
α Υ T QT

α − γ 2 I

Ẽα, Ãα, B̃α , and C̃α are given in (2.10). The rest of the matrices have the following
structures

Υ T PαΥ = Υ T diag{Phα, Pvα}Υ =
[

P11α P12α
PT
12α P22α

]

,

Υ T KαΥ =
[

K11α λ1 K̂
K21α λ2 K̂

]

, Υ T MαΥ =
[

M11α K̂
M21α K̂

]

QαΥ = [Q1α 0], FαΥ = [F1α 0]

Now, defining K̂ A f = Ā f , K̂ B f = B̄ f and C f = C̄ f gives (4.1) and (4.2), which
completes the proof. ��

5 Solution Using Parameter-Dependent Polynomials

To solve the parameter-dependent LMI conditions of Theorems 4.1, the polynomially
parameter-dependent method is used; this method includes results in the quadratic
framework and the linearly parameter-dependent framework as particular cases, for
polynomials of degrees 0 and 1, respectively.

Now, before presenting the Theorem 4.1 using homogeneous parameter-dependent
polynomials, some definitions and preliminaries from [14] are recalled. For the matri-
ces P11α , we take a homogeneous polynomially dependent Lyapunov function given
by

P11α(g) =
J (g)
∑

j=1

α
k1
1 α

k2
2 . . . α

kN
N P11κ j (g); k1k2 . . . kN = κ j (g) (5.1)

Similar definitions for the matrices P22α, P12α, K11α, K21α, M11α, M21α, Q1α and
F1α are used.

To facilitate the presentation, we denote β
j
i ( j +1) in [14] by ϑ ; using this notation.

we now present the Theorem 5.1.

Theorem 5.1 The filtering error 2D SRM (2.9) is acceptable, asymptotically stable,
and causal with prescribed H∞ performance level γ > 0 if there exist parameter-
dependent symmetric positive definite matrices P11κ j (g) = diag(P11hκ j (g), P11vκ j (g))

and P22κ j (g) = diag(P22hκ j (g), P22vκ j (g)), and parameter-dependent matrices
P12κ j (g) = diag(P12hκ j (g), P12vκ j (g)), K11κ j (g), K21κ j (g), M11κ j (g), M21κ j (g),

Q1κ j (g), F1κ j (g), κ j (g) ∈ κ(g), j = 1, · · · , J (g) and matrices K̂ , Ā f , B̄ f , C̄ f and
scalars λ1, λ2 such that the following LMIs hold for all κl(g + 1) ∈ κ(g + 1), l =
1, · · · , J (g + 1):
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∑

i∈Il (g+1)

[

ET
i P11κ il (g)

Ei ET
i P12κ il (g)∗ P22κ il (g)

]

≥ 0 (5.2)

∑

i∈Il (g+1)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λ11 Λ12 Λ13 Λ14 Λ15 Λ16

∗ Λ22 Λ23 Λ24 Λ25 −ϑC̄T
f

∗ ∗ Λ33 Λ34 Λ35 BT
α FT

1κ il (g)∗ ∗ ∗ Λ44 Λ45 −FT
1κ il (g)∗ ∗ ∗ ∗ Λ55 0

∗ ∗ ∗ ∗ ∗ −ϑ I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (5.3)

where

Λ11 = −ET
i P11κ il (g)

Ei + K11κ il (g)
Ai + AT

i K
T
11κ il (g)

+ λ1ϑ(CT
i B̄T

f + B̄ f Ci )

Λ12 = −ET
i P12κ il (g)

+ λ1ϑ Ā f + AT
i K

T
21κ il (g)

+ λ2ϑC
T
i B̄T

f

Λ13 = AT
i Q

T
1κ il (g)

+ K11κ il (g)
Bi + λ1ϑ B̄ f Di

Λ14 = AT
i M

T
11κ il (g)

+ ϑCT
i B̄T

f − K11κ il (g)

Λ15 = AT
i M

T
21κ il (g)

+ ϑCT
i B̄T

f − λ1ϑ K̂

Λ16 = AT
i F

T
1κ il (g)

+ HT
i

Λ22 = −P22κ il (g)
+ λ2ϑ( Ā f + ĀT

f )

Λ23 = K21κ il (g)
Bi + λ2ϑ B̄ f Di

Λ24 = ϑ ĀT
f − K21κ il (g)

Λ25 = ϑ ĀT
f − λ2ϑ K̂

Λ33 = Q1κ il (g)
Bi + BT

i QT
1κ il (g)

− γ 2ϑ I

Λ34 = BT
i MT

11κ il (g)
+ ϑDT

i B̄T
f − Q1κ il (g)

Λ35 = BT
i MT

21κ il (g)
+ ϑDT

i B̄T
f − Q1κ il (g)

Λ44 = −M11κ il (g)
− MT

11κ il (g)
+ P11κ il (g)

Λ45 = −ϑ K̂ − MT
21κ il (g)

+ P12κ il (g)

Λ55 = −ϑ K̂ − ϑ K̂ T + P22κ il (g)

then the homogeneous polynomially parameter-dependent matrices given by (5.1)
ensure that (4.1) and (4.2) are fulfilled for all α ∈ Γ . Moreover, if the LMIs (5.2) and
(5.3) are fulfilled for a given degree g, then the LMIs corresponding to any degree
ĝ > g are also satisfied.

Proof 5.2 The proof is parallel to that of Theorem3 in [14], using the result in Theorem
4.1, so it is omitted. ��
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Remark 5.3 The parameters λ1 and λ2 in Theorem 5.1 can be searched using, for
example, the MATLAB fminsearch program, to attain an optimized result. When they
are set to be fixed constants, (5.3) is linear in the variables. Thus, an optimal H∞ filter
is obtained by solving the following convex optimization problem, minimize δ subject
to (5.2) and (5.3) with δ = γ 2 using Yalmip ([13]) and SeDumi ([25]).

Remark 5.4 for degrees g = 0 and g = 1 of variable matrices dependent on the
parameter α given in Theorem 5.1, we obtain, respectively, the quadratic framework
and the linearly parameter-dependent framework, so Theorem 5.1 is general for all
degrees g.

6 Illustrative Examples

In this section, examples are given to illustrate the effectiveness of the proposed
method. The robust H∞ filter design for 2D singular systems using Theorem 5.1
is presented in Examples 1, 2 (Case 1), and 3. To show that the Theorem 5.1 is a
general filter design method including both singular and non-singular systems, com-
parisons between the existing paper [14] and Theorem 5.1 are illustrated in Example
2 (Case 2).

6.1 Example 1

Consider a 2D SRM with the following parameters, based on a system in [36]:

Eα =
⎡

⎣

1 0 0
0 1 0
0 0 0

⎤

⎦

Aα =
⎡

⎣

2 1 0
0 σ1 1
0 0 1 + σ2

⎤

⎦ , Bα =
⎡

⎣

0.1
0.2
0.3

⎤

⎦ ,Cα = [

1 0.2 1
]

,

Dα = 0.2, Hα = [

0.1 0.1 0.2
]

with −0.6 ≤ σ1 ≤ 0.6 and −0.6 ≤ σ2 ≤ 0.6.
since
det[Eα I (z, w) − Aα] = (2 − z)(w − σ1)(1 + σ2) and deg det(sEα − Aα) = 2 =

rankEα

so the given system is acceptable when σ2 �= −1.
From Lemma 2.4, the system is causal.
For this system, the H∞ disturbance attenuation levels are g = 0 (quadraticmethod)

and g = 1 (linearly parameter-dependent method) in Theorem 5.1 are 0.3241 and
0.2946, respectively. Now, we apply the filter design method corresponding to g = 2,
the obtained guaranteed performance γ = 0.2946 with λ1 = 0.0070, λ2 = −0.0132,
and the associated filter matrices are
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Fig. 1 Frequency response of filtering error system: First vertex

A f =
⎡

⎣

0.1715 0.3763 1.5876
−0.2648 0.7612 6.2572
−0.0022 −0.0039 0.3959

⎤

⎦ ,

B f =
⎡

⎣

−1.8468
−0.2674
−0.0022

⎤

⎦ ,

C f = [−0.0990 −0.0603 −0.1698
]

The obtained results show that the larger the value of g, the smaller the value of γ ,
which indicate the less conservatism of filtering results. For the designed filter with
g = 2, the actual H∞ norms calculated at the two vertices are shown in Figs. 1, 2, 3,
and 4, all of which are below the guaranteed bound 0.2946.

6.2 Example 2

Consider a 2D SRM with the following parameters, adapted from [14]:
Case 1: singular system

Eα =
[

1 0
0 0

]

Aα =
[

a1 0
1 a2

]

, Bα =
[

1 0
0 0

]

,Cα = [

a1 1
]

, Dα = [

0 1
]

, Hα = [

0 1
]

with 0.15 ≤ a1 ≤ 0.8 and 0.35 ≤ a2 ≤ 1.9.
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Fig. 2 Frequency response of filtering error system: Second vertex
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Fig. 3 Frequency response of filtering error system: Third vertex

since
det[Eα I (z, w) − Aα] = (z − a1)a2 and deg det(sEα − Aα) = 1 = rankEα

so the given system is acceptable when a2 �= 0.
From Lemma 2.4, the system is causal.
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Fig. 4 Frequency response of filtering error system: Fourth vertex

For this system, the H∞ disturbance attenuation level for g = 0 (quadratic method)
and g = 1 (linearly parameter-dependent method) in Theorem 5.1 is 8.7299 and
6.0443, respectively. Now, we apply the filter design method corresponding to g = 2,
the obtained guaranteed performance γ = 5.8514 with λ1 = −0.5869, λ2 = 0.0544,
and the associated filter matrices are

A f =
[

0.2568 0
0.4614 −0.0497

]

, B f =
[

0.3197
0.9147

]

,C f = [

4.3087 0
]

The obtained results show that the larger the value of g, the smaller the value of γ ,
which indicate the less conservatism of filtering results. For the designed filter with
g = 2, the actual H∞ norms calculated at the four vertices are shown in Figs. 5, 6, 7,
and 8, all of which are below the guaranteed bound 5.8514 (Table 1).

Case 2: non-singular system

Eα =
[

1 0
0 1

]

with 0.15 ≤ a1 ≤ 0.45 and 0.35 ≤ a2 ≤ 0.85.
Applying the filter design method corresponding to g = 2, the associated filter

matrices are

A f =
[

0.7112 −0.1682
0.1400 0.2534

]

, B f =
[−0.3408
−1.3154

]

,C f = [−0.0479 −0.4577
]
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Fig. 5 Frequency response of filtering error system: First vertex
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Fig. 6 Frequency response of filtering error system: Second vertex

For the designed filter with g = 2, the actual H∞ norms calculated at the four
vertices are shown in Figs. 9, 10, 11, and 12: it can be seen that all the norms are
effectively below the guaranteed bound 1.8055.
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Fig. 7 Frequency response of filtering error system: Third vertex
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Fig. 8 Frequency response of filtering error system: Fourth vertex

6.3 Example 3

In this example,we consider a thermal processes in chemical reactors, heat exchangers,
and pipe furnaces, which can be described by the partial differential equation [37]:
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Table 1 The minimum γ obtained with several arbitrary degree g

Theorem5.1
(g = 0)

Theorem5.1
(g = 1)

Theorem5.1
(g = 2)

[14]
(g = 0)

[14]
(g = 1)

[14]
(g = 2)

γmin 2.4342 1.8055 1.8055 2.4373 1.8627 1.8227

λ1 −0.0861 0.6815 0.6815

λ2 0.0066 −0.1624 −0.1624
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Fig. 9 Frequency response of filtering error system: First vertex

∂T (x, t)

∂x
= −∂T (x, t)

∂t
− T (x, t) (6.1)

where T (x, t) is usually the temperature at x(space) ∈ [0, x f ] and t (t ime) ∈ [0,∞].
Assuming that the disturbance input is given by w(i, j),
the partial differential equation can be modeled into the following 2D SRM: (see

[37] for more details)

[

1 0
1 0

] [

xh(i + 1, j)
xv(i, j + 1)

]

=
[

a1 0
0 1

] [

xh(i, j)
xv(i, j)

]

+
[

0.1
0

]

w(i, j) (6.2)

It is easy to check that the given system is converted to

[

1 0
0 0

] [

xh(i + 1, j)
xv(i, j + 1)

]

=
[

a1 0
−a1 1

] [

xh(i, j)
xv(i, j)

]

+
[

0.1
−0.1

]

w(i, j) (6.3)

We now assume that the measured output and the signal to be estimated are given by
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Fig. 10 Frequency response of filtering error system: Second vertex
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Fig. 11 Frequency response of filtering error system: Third vertex

y(i, j) =
[

0.1 0
0 0.1

] [

xh(i, j)
xv(i, j)

]

(6.4)

z(i, j) =
[

0.2 0.1
0.1 0

] [

xh(i, j)
xv(i, j)

]

(6.5)

In this example, we also suppose that −0.99 ≤ a1 ≤ 0.99
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Fig. 12 Frequency response of filtering error system: Fourth vertex
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Fig. 13 Frequency response of filtering error system: First vertex

since
det[Eα I (z, w) − Aα] = (a1 − z) and deg det(sEα − Aα) = 1 = rankEα

so the given system is acceptable, and from Lemma 2.4, the system is causal.
For this system, the value of the H∞ disturbance attenuation level for g = 0

(quadratic method) and g = 1 (linearly parameter-dependent method) in Theo-
rem 5.1 is 1.0001 and 0.4472, respectively. Now, we apply the filter design method
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Fig. 14 Frequency response of filtering error system: Second vertex

corresponding to g = 2, the obtained guaranteed performance γ = 0.4471 with
λ1 = 0.0596, λ2 = −0.3484, and the associated filter matrices are

A f =
[

0.2527 0.0002
−0.0847 0.3482

]

, B f =
[−1.7080 −10.4444
−0.9840 −0.9893

]

,C f =
[−0.1721 0.0000
−0.0861 0.0000

]

For the designed filter with g = 2, the actual H∞ norms calculated at the two
vertices are shown in Figs. 13 and 14: all the norms are clearly below the guaranteed
bound 0.4471.

7 Conclusions

New parameter-dependent LMI conditions for the design of full-order robust and
H∞ filters have been proposed, for uncertain 2D singular systems with time-invariant
parameters. LMI relaxations based on homogeneous polynomials of arbitrary degrees
are used to reduce the conservatism, based on an improved version of bounded real
lemma. The developed filter designmethod has been illustrated by numerical examples
to show the general robust H∞ filter design algorithm for both singular systems and
non-singular systems. The main results in this paper may be further extended to robust
H∞ filter design for uncertain 2D singular delayed systems, H∞ control for uncertain
2D singular systems, and H∞ control for uncertain 2D singular delayed systems.
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