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Abstract By extending the least squares-based iterative (LSI) method, this paper
presents a decomposition-based LSI (D-LSI) algorithm for identifying linear-in-
parameters systems and an interval-varying D-LSI algorithm for handling the
identification problems of missing-data systems. The basic idea is to apply the hier-
archical identification principle to decompose the original system into two fictitious
sub-systems and then to derive new iterative algorithms to estimate the parameters
of each sub-system. Compared with the LSI algorithm and the interval-varying LSI
algorithm, the decomposition-based iterative algorithms have less computational load.
The numerical simulation results demonstrate that the proposed algorithms work quite
well.
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1 Introduction

Parameter estimation and mathematical models are essential for system identifica-
tion [13,31,33], system optimization [16,24] and state and data filtering [14,19,32].
Exploring new parameter estimation methods is an eternal theme of system identi-
fication [5,6], and many identification methods have been developed for linear and
nonlinear systems [1,25,38,40], dual-rate sampled systems [9,11,36] and state-delay
systems [28]. Iterative methods can be used for estimating parameters and solv-
ing matrix equations [4]. The iterative identification algorithms make full use of
the measured data at each iteration and thus can produce more accurate parame-
ter estimates than the existing recursive identification algorithms [29]. For decades,
many iterative methods have been applied in the parameter estimation, such as the
Newton iterative method [7,26,41,42], the gradient-based iterative methods [39]
and the least squares-based iterative (LSI) method [17]. Jin et al. [23] studied the
LSI identification methods for multivariable integrating and unstable processes in
closed loop; Wang et al. [37] derived several gradient-based iterative estimation
algorithms for a class of nonlinear systems with colored noises using the filtering
technique.

The least squares identification method involves matrix inversion, and its compu-
tational complexity depends on the dimensions of the covariance matrices [18]. In
order to reduce the computational complexity, the decomposition technique is usu-
ally taken to transform a large-scale system into several sub-systems with small sizes,
which can be easier to identify. Chen et al. [2] developed a decomposition-based least
squares identification algorithm for input nonlinear systems by adopting the key term
separation technique; Zhang [43] proposed a decomposition-based LSI identification
algorithm for output error moving average systems based on the hierarchical identifi-
cation principle.

In the field of system identification, missing-data systems have received much
attention. Dual-rate sampled systems and multirate (non-uniformly) sampled systems
can be regarded as a class of the systems with missing data [10]. In recent years,
different identification methods for missing-data systems have been reported in the lit-
erature, e.g., the interval-varying auxiliarymodel-based recursive least squaresmethod
[8], the filtering-based multiple-model method [27] and the interval-varying auxil-
iary model-based multi-innovation stochastic gradient (V-AM-MISG) identification
method [8,12]. Recently, Jin et al. [22] extended theV-AM-MISGmethod tomultivari-
able output error systems with scarce measurements by means of the interval-varying
and multi-innovation methods in [8,12]; Raghavan et al. [30] studied the expectation
maximization-based state-space model identification problems with irregular output
sampling.

This paper applies the decomposition technique to study the parameter identification
problems of linear-in-parameters systems for improving computational efficiency. The
key is to decompose the information vector into two sub-information vectors and the
parameter vector into two sub-parameter vectors with smaller dimensions and fewer
variables and then to estimate the parameters of each sub-system, respectively. The
main contributions are as follows.
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– A decomposition-based LSI (D-LSI) algorithm is developed for linear-in-
parameters systems by employing the hierarchical identification principle.

– An interval-varying D-LSI algorithm is derived for estimating the parameters of
the systems with missing data.

– The proposed algorithms have higher computational efficiency than the LSI algo-
rithm and the interval-varying LSI algorithm.

This paper is organized as follows: Section 2 introduces the identification model of
the linear-in-parameters systems. Section 3 gives an LSI algorithm for comparisons. A
D-LSI algorithm for the linear-in-parameters systems is developed in Sect. 4. Section 5
describes the parameter estimationproblemwithmissingdata andproposes an interval-
varyingLSI algorithm. Section 6 derives an interval-varyingD-LSI algorithm to reduce
computational load. The effectiveness of the proposed algorithms is illustrated by two
simulation examples in Sect. 7. Finally, Sect. 8 gives some conclusions.

2 System Description and Identification Model

Let us introduce some notation. “A =: X” or “X := A” stands for “A is defined as
X”; ϑ̂(t) denotes the estimate of ϑ at time t ; the norm of a matrix (or a column vector)
X is defined by ‖X‖2 := tr[XXT]; 1n stands for an n-dimensional column vector
whose elements are all 1; the superscript T denotes the matrix transpose.

Consider the linear-in-parameters system which can be expressed as

A(z)y(t) = φT(t)

F(z)
θ + v(t), (1)

where y(t) ∈ R is themeasured output,φ(t) ∈ R
m is the information vector consisting

of the system input–output data, θ ∈ R
m is the parameter vector to be estimated,

v(t) ∈ R is the random white noise with zero mean and variance σ 2, A(z) and F(z)
with known orders na and n f are polynomials in the unit backward shift operator z−1

with the property z−1y(t) = y(t − 1), and defined by

A(z) := 1 + a1z
−1 + a2z

−2 + · · · + ana z
−na , ai ∈ R,

F(z) := 1 + f1z
−1 + f2z

−2 + · · · + fn f z
−n f , fi ∈ R.

The objective of this paper is to use the decomposition technique to derive iterative
methods for estimating the parameters θ , ai and fi in (1) from observation data for
reducing the computational load. Without loss of generality, assume that φ(t) = 0,
y(t) = 0 and v(t) = 0 for t � 0.

Define the parameter vectors and the information vectors,

ϑ :=
[
aT, f T, θT

]T ∈ R
n, n := na + n f + m,

a := [
a1, a2, . . . , ana

]T ∈ R
na ,

f := [
f1, f2, . . . , fn f

]T ∈ R
n f ,
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ϕ(t) :=
[
ϕT
y (t),ϕ

T
x (t),φ

T(t)
]T ∈ R

n,

ϕy(t) := [−y(t − 1),−y(t − 2), . . . ,−y(t − na)]
T ∈ R

na ,

ϕx (t) := [−x(t − 1),−x(t − 2), . . . ,−x(t − n f )
]T ∈ R

n f .

Define the intermediate variable

x(t) := φT(t)θ

F(z)

= [1 − F(z)]x(t) + φT(t)θ

= ϕT
x (t) f + φT(t)θ . (2)

Then, System (1) can be rewritten as

y(t) = [1 − A(z)]y(t) + x(t) + v(t)

= ϕT
y (t)a + ϕT

x (t) f + φT(t)θ + v(t) (3)

= ϕT(t)ϑ + v(t). (4)

Equation (4) is the identification model of System (1), and its parameter vector ϑ

contains all the parameters θ , ai and fi of the system.

3 The Least Squares-Based Iterative Algorithm

In this section, we give a least squares-based iterative algorithm for comparisons.
Consider the newest p data from j = t − p + 1 to j = t (p represents the data

length). According to the identification model in (4), define a quadratic function:

J (ϑ) :=
p−1∑
j=0

[
y(t − j) − ϕT(t − j)ϑ

]2
.

Assume that the information matrix ϕ(t) is persistently exciting for large p. Mini-
mizing the function J (ϑ), we can obtain the least squares estimate of the parameter
vector ϑ :

ϑ̂(t) =
⎡
⎣

p−1∑
j=0

ϕ(t − j)ϕT(t − j)

⎤
⎦

−1
p−1∑
j=0

ϕ(t − j)y(t − j). (5)

Notice that the estimate ϑ̂(t) in (5) is impossible to obtain directly because the infor-
mation vector ϕ(t − j) contains the unknown term x(t − i). Here, the approach is
based on the hierarchical identification principle: let k = 1, 2, 3, . . . be an iterative
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variable, ϑ̂k(t) :=
⎡
⎣

âk(t)
f̂ k(t)
θ̂k(t)

⎤
⎦ ∈ R

n be the iterative estimate of ϑ at iteration k, use the

estimate x̂k−1(t − i) of x(t − i) to construct the estimate ϕ̂x,k(t) of ϕx (t) at iteration
k:

ϕ̂x,k(t) := [−x̂k−1(t − 1),−x̂k−1(t − 2), . . . ,−x̂k−1(t − n f )]T ∈ R
n f ,

and define the estimate of ϕ(t):

ϕ̂k(t) :=
[
ϕT
y (t), ϕ̂

T
x,k(t),φ

T(t)
]T ∈ R

n .

Replacingϕx (t), θ and f in (2)with ϕ̂x,k(t), θ̂k(t) and f̂ k(t), respectively, the estimate
x̂k(t) of x(t) can be computed by

x̂k(t) = ϕ̂
T
x,k(t) f̂ k(t) + φT(t)θ̂k(t).

Replacing ϕ(t − j) in (5) with ϕ̂k(t − j), we can obtain the following least squares-
based iterative (LSI) algorithm for estimating ϑ :

ϑ̂k(t) = Ŝ
−1
k (t)

p−1∑
j=0

ϕ̂k(t − j)y(t − j), (6)

Ŝk(t) :=
p−1∑
j=0

ϕ̂k(t − j)ϕ̂T
k (t − j), (7)

ϕ̂k(t) =
[
ϕT
y (t), ϕ̂

T
x,k(t),φ

T(t)
]T

, (8)

ϕy(t) = [−y(t − 1),−y(t − 2), . . . ,−y(t − na)]
T , (9)

ϕ̂x,k(t) = [−x̂k−1(t − 1),−x̂k−1(t − 2), . . . ,−x̂k−1(t − n f )
]T

, (10)

x̂k(t) = ϕ̂
T
x,k(t) f̂ k(t) + φT(t)θ̂k(t), (11)

ϑ̂k(t) =
⎡
⎣

âk(t)
f̂ k(t)
θ̂k(t)

⎤
⎦ . (12)

The LSI parameter estimation algorithm is able to make full use of all the input–
output data at each iteration, and thus, the parameter estimation accuracy can be greatly
improved.

4 The Decomposition-Based LSI Algorithm

The LSI algorithm can improve the parameter estimation accuracy, but the disadvan-
tage is that it needs heavy computational load for large-scale systems. By means of
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the hierarchical identification principle, the following derives a D-LSI algorithm to
improve the computational efficiency.

The identification model in (3) includes the known information vectors ϕy(t) and
φ(t), and the unknown information vector ϕx (t). Define a new information vector

ϕ1(t) :=
[
ϕT
y (t),φ

T(t)
]T ∈ R

na+m, (13)

and the corresponding parameter vector

θ1 :=
[
aT, θT

]T ∈ R
na+m .

Based on the hierarchical identification principle [3], by defining two intermediate
variables

y1(t) := y(t) − ϕT
x (t) f , (14)

y2(t) := y(t) − ϕT
1 (t)θ1, (15)

we can decompose the identification model in (3) into the following two fictitious
sub-models:

y1(t) = ϕT
1 (t)θ1 + v(t), (16)

y2(t) = ϕT
x (t) f + v(t). (17)

The parameter vectors θ1 =
[
a
θ

]
and f to be identified are included in the two

sub-models, respectively.
According to Eqs. (16) and (17), minimizing the quadratic functions

J1(θ1) :=
p−1∑
j=0

[
y1(t − j) − ϕT

1 (t − j)θ1
]2

,

J2( f ) :=
p−1∑
j=0

[
y2(t − j) − ϕT

x (t − j) f
]2

,

we can obtain the following least squares estimates of the parameter vectors θ and f :

θ̂1(t) =
⎡
⎣

p−1∑
j=0

ϕ1(t − j)ϕT
1 (t − j)

⎤
⎦

−1
p−1∑
j=0

[ϕ1(t − j)y1(t − j)], (18)

f̂ (t) =
⎡
⎣

p−1∑
j=0

ϕx (t − j)ϕT
x (t − j)

⎤
⎦

−1
p−1∑
j=0

[ϕx (t − j)y2(t − j)]. (19)
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Here, we have used the assumption that the information vectors ϕ1(t) and ϕx (t)
are persistently exciting for large p. Substituting (14) and (15) into (18) and (19),
respectively, we have

θ̂1(t) =
⎡
⎣

p−1∑
j=0

ϕ1(t − j)ϕT
1 (t − j)

⎤
⎦

−1
p−1∑
j=0

ϕ1(t − j)
[
y(t − j) − ϕT

x (t − j) f
]
,

(20)

f̂ (t) =
⎡
⎣

p−1∑
j=0

ϕx (t − j)ϕT
x (t − j)

⎤
⎦

−1
p−1∑
j=0

ϕx (t − j)
[
y(t − j) − ϕT

1 (t − j)θ1
]
.

(21)

However, the information vector ϕx (t) contains the unknown term x(t − i), thus the
algorithm in (20) and (21) cannot be implemented. Similarly, we use the hierarchical

identification principle to solve this problem: let θ̂1,k(t) := [âTk (t), θ̂
T
k (t)]T ∈ R

na+m

be the iterative estimate of θ1 at iteration k, ϕ̂x,k(t)be the estimate ofϕx (t)by replacing
x(t − i) with its estimate x̂k−1(t − i) at iteration k − 1.

Replacing ϕx (t), f and θ1 in (20) and (21) with their corresponding estimates
ϕ̂x,k(t), f̂ k−1(t) and θ̂1,k−1(t), respectively, we can summarize the decomposition-
based LSI (D-LSI) algorithm of the linear-in-parameters systems as

θ̂1,k(t) = S−1
1 (t)

p−1∑
j=0

ϕ1(t − j)
[
y(t − j) − ϕ̂

T
x,k(t − j) f̂ k−1(t)

]
, (22)

S1(t) :=
p−1∑
j=0

ϕ1(t − j)ϕT
1 (t − j), (23)

f̂ k(t) = Ŝ
−1
2,k(t)

p−1∑
j=0

ϕ̂x,k(t − j)
[
y(t − j) − ϕT

1 (t − j)θ̂1,k−1(t)
]
, (24)

Ŝ2,k(t) :=
p−1∑
j=0

ϕ̂x,k(t − j)ϕ̂T
x,k(t − j), (25)

ϕ1(t) =
[
ϕT
y (t),φ

T(t)
]T

, (26)

ϕy(t) = [−y(t − 1),−y(t − 2), . . . ,−y(t − na)]
T , (27)

ϕ̂x,k(t) = [−x̂k−1(t − 1),−x̂k−1(t − 2), . . . ,−x̂k−1(t − n f )
]T

, (28)

x̂k(t) = ϕ̂
T
x (t) f̂ k(t) + φT(t)θ̂k(t), (29)

θ̂1,k(t) =
[
âk(t)
θ̂k(t)

]
, (30)

âk(t) := [
â1,k(t), â2,k(t), . . . , âna ,k(t)

]T
, (31)
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f̂ k(t) :=
[
f̂1,k(t), f̂2,k(t), . . . , f̂n f ,k(t)

]T
. (32)

In the D-LSI algorithm, the dimensions of the covariance matrices S−1
1 (t) and

Ŝ
−1
2,k(t) in (22) and (24) are (na +m) × (na +m) and n f × n f . In the LSI algorithm,

the dimension of the covariance matrix Ŝ
−1
k (t) in (6) is (na+m+n f )×(na+m+n f ).

Thus, the D-LSI algorithm requires less computational cost than the LSI algorithm.
The steps involved in the D-LSI algorithm to compute the parameter estimation

vectors θ̂1,k(t) and f̂ k(t) are listed in the following.

1. Set the data length p, let t = p, collect the observation data {y(i), φ(i): i =
0, 1, . . . , p − 1}, and set a small positive number ε.

2. Collect the observation data y(t) and φ(t) and form ϕy(t) using (27) and ϕ1(t)
using (26).

3. Let k = 1, set the initial values θ̂1,0(0) = 1na+m/p0, f̂ 0(0) = 1n f /p0, x̂0(t−i) =
1/p0 (i = 1, 2, . . . , n f ), p0 = 106.

4. Form ϕ̂x,k(t) using (28), compute S1(t) and Ŝ2,k(t) using (23) and (25).

5. Update the parameter estimation vectors θ̂1,k(t) and f̂ k(t) using (22) and (24),
respectively.

6. Read θ̂k(t) from θ̂1,k(t) using (30), and compute x̂k(t) using (29).
7. Compare θ̂1,k(t) with θ̂1,k−1(t) and f̂ k(t) with f̂ k−1(t): if

‖θ̂1,k(t) − θ̂1,k−1(t)‖ + ‖ f̂ k(t) − f̂ k−1(t)‖ � ε,

obtain k, θ̂1,k(t) and f̂ k(t), increase t by 1, and go to Step 2; otherwise, increase
k by 1, and go to Step 4.

5 The Interval-Varying LSI Algorithm

This section derives an interval-varying LSI algorithm to solve the identification prob-
lems of systems with missing data.

In many applications, there are many reasons for missing sampled data to arise. In
general, a missing-data system implies that most data are available and few data are
missing over a period of time. The following considers such a system with missing
data that the inputs are normally available at every instant t because the input signals
are usually generated by digital computers in practice, and only a small number of
data are missing, as shown in Fig. 1 [8,12], where “+” stands for missing data or bad
data (outliers or unbelievable data), e.g., the outputs y(3), y(8), y(9), y(23), . . . are
missing samples and y(15), . . . are unbelievable samples.

For convenience, we define an integer sequence {ts, s = 0, 1, 2, . . .} satisfying

0 = t0 < t1 < t2 < t3 < · · · < ts−1 < ts < · · ·

with t∗s := ts − ts−1 � 1, such that y(t) and ϕy(t) are available only when t = ts
(s = 0, 1, 2, . . .), or equivalently, the data set {y(ts),ϕy(ts) : s = 0, 1, 2, . . .} contains



Circuits Syst Signal Process (2016) 35:3863–3881 3871

0 5 10 15 20 25 30
0

0.5

1

1.5

    t

y(
t)

y(15)

y(0)

y(2)

y(4)
y(6)

y(10) y(14)
y(18) y(22)

y(26)

Fig. 1 A missing output data pattern

all available outputs. For instance, for the missing-data pattern in Fig. 1, when the
order na = 3, define the integer sequence {t0, t1, t2, . . ., t9, . . .}, for t0 = 0, t1 = 7,
t2 = 13, . . ., t9 = 28, . . ., i.e., {y(t0),ϕy(t0)}, {y(t1),ϕy(t1)}, {y(t2),ϕy(t2)}, . . .,
{y(t9),ϕy(t9)}, . . . are available.

Replacing t in (4) with ts gives

y(ts) = ϕT(ts)ϑ + v(ts) (33)

with

ϕ(ts) =
[
ϕT
y (ts),ϕ

T
x (ts),φ

T(ts)
]T

,

ϕy(ts) = [−y(ts − 1),−y(ts − 2), . . . ,−y(ts − na)]T,

ϕx (ts) = [−x(ts − 1),−x(ts − 2), . . . ,−x(ts − n f )]T. (34)

Consider p data from i = ts−p+1 to i = ts . Define the stacked output vector Y(ts)
and the stacked information matrix Ψ (ts) as

Y(ts) :=

⎡
⎢⎢⎢⎣

y(ts)
y(ts−1)

...

y(ts−p+1)

⎤
⎥⎥⎥⎦ ∈ R

p, Ψ (ts) :=

⎡
⎢⎢⎢⎣

ϕT(ts)
ϕT(ts−1)

...

ϕT(ts−p+1)

⎤
⎥⎥⎥⎦ ∈ R

p×n .

Assume that the information vector ϕ(ts) is persistently exciting for large p, that is,
[Ψ T(ts)Ψ (ts)] is non-singular. The difficulty is that the information vector ϕx (ts) in
Ψ (ts) contains the unknown variable x(ts − i). Replacing x(ts − i) in (34) with their
estimates x̂k−1(ts − i) at iteration k − 1, and minimizing the quadratic function
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J (ϑ) := ‖Y(ts) − Ψ (ts)ϑ‖2,

we can obtain the following interval-varying least squares-based iterative (V-LSI)
algorithm for estimating the parameter vector ϑ :

ϑ̂k(ts) =
[
Ψ̂

T
k (ts)Ψ̂ k(ts)

]−1
Ψ̂

T
k (ts)Y(ts), (35)

ϑ̂k(t) = ϑ̂k(ts), t ∈ Ts := {ts, ts + 1, . . . , ts+1 − 1}, (36)

Y(ts) = [
y(ts), y(ts−1), . . . , y(ts−p+1)

]T
, (37)

Ψ̂ k(ts) = [
ϕ̂k(ts), ϕ̂k(ts−1), . . . , ϕ̂k(ts−p+1)

]T
, (38)

ϕ̂k(ts) =
[
ϕT
y (ts), ϕ̂

T
x,k(ts),φ

T(ts)
]T

, (39)

ϕy(ts) = [−y(ts − 1),−y(ts − 2), . . . ,−y(ts − na)]
T , (40)

ϕ̂x,k(ts) = [−x̂k−1(ts − 1),−x̂k−1(ts − 2), . . . ,−x̂k−1(ts − n f )
]T

, (41)

ϑ̂k(ts) =
[
âTk (ts), f̂

T
k (ts), θ̂

T
k (ts)

]T
, (42)

x̂k( j) = ϕ̂
T
x,k( j) f̂ k(ts) + φT( j)θ̂k(ts), j ∈ [

t1, ts+1
]
,

x̂k(i) = 1/p0, i � t1 − 1. (43)

We simply hold the parameter estimate ϑ̂k(t) remains unchanged over the interval[
ts, ts+1 − 1

]
.

6 The Interval-Varying D-LSI Algorithm

In the following, we study an interval-varying D-LSI algorithm based on the decom-
position technique to reduce computational cost.

Replacing t in (14)–(17) with ts gives

y1(ts) = y(ts) − ϕT
x (ts) f

= ϕT
1 (ts)θ1 + v(ts),

y2(ts) = y(ts) − ϕT
1 (ts)θ1

= ϕT
x (ts) f + v(ts).

Define the stacked output vectors Y(ts), Y1(ts) and Y2(ts) and the stacked infor-
mation matrices Ψ 1(ts) and Ψ x (ts) as

Y(ts) :=

⎡
⎢⎢⎢⎣

y(ts)
y(ts−1)

...

y(ts−p+1)

⎤
⎥⎥⎥⎦ ∈ R

p, Y1(ts) :=

⎡
⎢⎢⎢⎣

y1(ts)
y1(ts−1)

...

y1(ts−p+1)

⎤
⎥⎥⎥⎦ ∈ R

p,



Circuits Syst Signal Process (2016) 35:3863–3881 3873

Y2(ts) :=

⎡
⎢⎢⎢⎣

y2(ts)
y2(ts−1)

...

y2(ts−p+1)

⎤
⎥⎥⎥⎦ ∈ R

p,Ψ 1(ts) :=

⎡
⎢⎢⎢⎣

ϕT
1 (ts)

ϕT
1 (ts−1)

...

ϕT
1 (ts−p+1)

⎤
⎥⎥⎥⎦ ∈ R

p×(na+m),

Ψ x (ts) :=

⎡
⎢⎢⎢⎣

ϕT
x (ts)

ϕT
x (ts−1)

...

ϕT
x (ts−p+1)

⎤
⎥⎥⎥⎦ ∈ R

p×n f .

Define two quadratic functions:

J1(θ1) := ‖Y1(ts) − Ψ 1(ts)θ1‖2,
J2( f ) := ‖Y2(ts) − Ψ x (ts) f ‖2.

Assume that the information vectors ϕ1(ts) and ϕx (ts) are persistently exciting for
large p, that is, [Ψ T

1 (ts)Ψ 1(ts)] and [Ψ T
x (ts)Ψ x (ts)] are non-singular. Letting the partial

derivatives of J1(θ1) and J2( f )with respect to θ1 and f be zero leads to the following
least squares estimates of the parameter vectors θ1 and f :

θ̂1(ts) =
[
Ψ T

1 (ts)Ψ 1(ts)
]−1

Ψ T
1 (ts)Y1(ts)

=
[
Ψ T

1 (ts)Ψ 1(ts)
]−1

Ψ T
1 (ts)[Y(ts) − Ψ x (ts) f ], (44)

f̂ (ts) =
[
Ψ T

x (ts)Ψ x (ts)
]−1

Ψ T
x (ts)Y2(ts)

=
[
Ψ T

x (ts)Ψ x (ts)
]−1

Ψ T
x (ts)[Y(ts) − Ψ 1(ts)θ1]. (45)

However,we can see that the right-hand sides ofEqs. (44) and (45) contain the unknown
parameters θ1 and f , and the informationvectorϕx (ts) inΨ x (ts) contains the unknown
term x(ts − i), so the estimates θ̂1(ts) and f̂ (ts) are impossible to compute directly.
Here, we use the hierarchical identification principle to solve this problem: let

θ̂1,k(ts) :=
[
âk(ts)
θ̂k(ts)

]
and f̂ k(ts) be the iterative estimates of θ1 =

[
a
θ

]
and f at

iteration k, respectively, and x̂k(ts − i) be the estimate of x(ts − i). Define

ϕ̂x,k(ts) := [−x̂k−1(ts − 1),−x̂k−1(ts − 2), . . . ,−x̂k−1(ts − n f )
]T ∈ R

n f ,

Ψ̂ x,k(ts) :=

⎡
⎢⎢⎢⎣

ϕ̂
T
x,k(ts)

ϕ̂
T
x,k(ts−1)

...

ϕ̂
T
x,k(ts−p+1)

⎤
⎥⎥⎥⎦ ∈ R

p×n f .
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Replacing θ , f and ϕx (ts) in (2) with θ̂k(ts), f̂ k(ts) and ϕ̂x,k( j), the estimate x̂k( j)
of x( j) can be computed by

x̂k( j) = ϕ̂
T
x,k( j) f̂ k(ts) + φT( j)θ̂k(ts).

Replacing Ψ x (ts), θ1 and f in (44) and (45) with their corresponding estimates
Ψ̂ x,k(ts), θ̂1,k−1(ts) and f̂ k−1(ts), respectively, we can summarize the interval-varying
D-LSI algorithm of computing θ̂1,k(ts) and f̂ k(ts) as

θ̂1,k(ts) =
[
Ψ T

1 (ts)Ψ 1(ts)
]−1

Ψ T
1 (ts)

[
Y(ts) − Ψ̂ x,k(ts) f̂ k−1(ts)

]
, (46)

θ̂1,k(t) = θ̂1,k(ts), t ∈ Ts := {ts, ts + 1, . . . , ts+1 − 1}, (47)

f̂ k(ts) =
[
Ψ̂

T
x,k(ts)Ψ̂ x,k(ts)

]−1
Ψ̂

T
x,k(ts)

[
Y(ts) − Ψ 1(ts)θ̂1,k−1(ts)

]
, (48)

f̂ k(t) = f̂ k(ts), (49)

Y(ts) = [
y(ts), y(ts−1), . . . , y(ts−p+1)

]T
, (50)

Ψ 1(ts) = [
ϕ1(ts),ϕ1(ts−1), . . . ,ϕ1(ts−p+1)

]T
, (51)

Ψ̂ x,k(ts) = [
ϕ̂x,k(ts), ϕ̂x,k(ts−1), . . . , ϕ̂x,k(ts−p+1)

]T
, (52)

ϕ1(ts) =
[

ϕy(ts)
φ(ts)

]
, (53)

ϕy(ts) = [−y(ts − 1),−y(ts − 2), . . . ,−y(ts − na)]
T , (54)

ϕ̂x,k(ts) = [−x̂k−1(ts − 1),−x̂k−1(ts − 2), . . . ,−x̂k−1(ts − n f )
]T

, (55)

x̂k( j) = ϕ̂
T
x,k( j) f̂ k(ts) + φT( j)θ̂k(ts), j ∈ [

t1, ts+1 − 1
]
, (56)

θ̂1,k(ts) =
[
âk(ts)
θ̂k(ts)

]
, (57)

âk(ts) = [
â1,k(ts), â2,k(ts), . . . , âna ,k(ts)

]T
, (58)

f̂ k(ts) =
[
f̂1,k(ts), f̂2,k(ts), . . . , f̂n f ,k(ts)

]T
. (59)

To initialize the algorithm, we take θ̂1,0(t0) and f̂ 0(t0) as real vectors with small
positive entries, e.g., θ̂1,0(t0) = 1na+m/p0, f̂ 0(t0) = 1n f /p0, x̂0(i) = 1/p0 (i �
t1 − 1), p0 = 106. The parameter estimates θ̂1,k(t) and f̂ k(t) in (47) and (49) remain
unchanged over the interval

[
ts, ts+1 − 1

]
.

The interval-varying D-LSI algorithm (which is abbreviated as the V-D-LSI algo-
rithm) uses the data over the finite data window with the length p, thus the V-D-LSI
algorithm can track time-varying parameters and be used for online identification. The
interval-varying identification algorithms are proposed for missing-data systems but
can be extended to systems with scarce measurements.
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7 Examples

Example 1 Consider the following linear-in-parameters system:

A(z)y(t) = φT(t)

F(z)
θ + v(t),

A(z) = 1 + a1z
−1 + a2z

−2 = 1 + 0.27z−1 + 0.75z−2,

F(z) = 1 + f1z
−1 + f2z

−2 = 1 − 0.31z−10.44z−2,

θ = [b1, b2]T = [−0.56, 0.91]T,

ϑ = [a1, a2, f1, f2, b1, b2]T = [0.27, 0.75,−0.31, 0.44,−0.56, 0.91]T.

In simulation, {φ(t)} is taken as an uncorrelated persistent excitation vector sequence
with zero mean and unit variance, {v(t)} as a white noise sequence with zero mean
and different variances σ 2 = 0.102 and σ 2 = 0.502, respectively. Take the data length
t = p = Le = 3000 data and apply the LSI algorithm and the D-LSI algorithm to
identify this example system, the parameter estimates and their errors δ versus iteration
k are given in Tables 1 and 2 and Figs. 2 and 3 where the parameter estimation error
is defined as δ := ‖ϑ̂k − ϑ‖/‖ϑ‖ × 100%.

From Tables 1 and 2 and Figs. 2 and 3, we can draw the following conclusions.

– The estimation errors given by the LSI algorithm and the D-LSI algorithm become
smaller (in general) as iteration k increases or the noise variance σ 2 decreases—see
Tables 1 and 2 and Figs. 2 and 3.

– The parameter estimates given by the LSI algorithm and the D-LSI algorithm are
very close to the true parameters for large k—see Tables 1 and 2.

Table 1 The LSI parameter estimates and errors versus iteration k

σ 2 k a1 a2 f1 f2 b1 b2 δ (%)

0.102 1 0.12130 0.86000 −0.00337 0.00290 −0.56235 0.82223 39.77604

2 0.14538 0.77527 −0.22870 0.29238 −0.56294 0.93341 14.77629

5 0.26612 0.74741 −0.30777 0.43972 −0.55836 0.90819 0.39812

10 0.27048 0.74969 −0.31134 0.44190 −0.55829 0.90758 0.26492

20 0.27048 0.74970 −0.31134 0.44191 −0.55829 0.90758 0.26512

0.502 1 0.13918 0.84802 −0.00655 0.00878 −0.55630 0.80354 39.10793

2 0.16413 0.77135 −0.26148 0.29224 −0.55690 0.93013 13.24651

5 0.26898 0.74869 −0.31399 0.44738 −0.55145 0.89849 1.16127

10 0.27235 0.74989 −0.31740 0.44807 −0.55140 0.89829 1.27600

20 0.27234 0.74990 −0.31737 0.44809 −0.55140 0.89828 1.27613

True values 0.27000 0.75000 −0.31000 0.44000 −0.56000 0.91000
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Table 2 The D-LSI parameter estimates and errors versus iteration k

σ 2 k a1 a2 f1 f2 b1 b2 δ (%)

0.102 1 0.12177 0.86005 −0.00401 0.00402 −0.56182 0.82139 39.69414

2 0.12224 0.85881 −0.11861 0.25627 −0.56184 0.82332 23.23453

5 0.22099 0.73968 −0.25638 0.41860 −0.55949 0.88763 5.53938

10 0.26770 0.74829 −0.30816 0.44128 −0.55843 0.90584 0.39957

20 0.27050 0.74976 −0.31143 0.44184 −0.55835 0.90758 0.26330

0.502 1 0.13974 0.84813 −0.00767 0.00955 −0.55586 0.80239 39.03257

2 0.14043 0.84569 −0.13753 0.27100 −0.55590 0.80614 21.44534

5 0.24006 0.74297 −0.28309 0.43294 −0.55289 0.88201 3.51513

10 0.27174 0.74971 −0.31695 0.44783 −0.55176 0.89762 1.27090

20 0.27254 0.75015 −0.31788 0.44791 −0.55173 0.89826 1.27761

True values 0.27000 0.75000 −0.31000 0.44000 −0.56000 0.91000
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Fig. 2 The LSI estimation errors versus k with σ 2 = 0.102 and σ 2 = 0.502
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Fig. 3 The D-LSI estimation errors versus k with σ 2 = 0.102 and σ 2 = 0.502
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Table 3 The V-LSI parameter estimates and errors versus iteration k

σ 2 k a1 a2 f1 f2 b1 b2 δ (%)

0.502 1 −1.10186 0.53319 −0.00827 0.00558 0.53791 1.16373 37.75946

2 −1.01136 0.42678 −0.42767 0.25248 0.54744 0.98116 18.37233

5 −1.11555 0.43635 −0.40614 0.43932 0.55198 0.93555 6.40856

10 −1.16423 0.45656 −0.33473 0.48704 0.55060 0.94772 2.39188

15 −1.16632 0.45156 −0.33942 0.51080 0.55093 0.94364 1.23667

20 −1.16497 0.44977 −0.34347 0.51439 0.55107 0.94211 1.01806

1.002 1 −1.11442 0.51426 −0.01346 0.00942 0.53073 1.15876 37.17634

2 −1.11032 0.45120 −0.34239 0.38281 0.54239 0.97659 8.90486

5 −1.15952 0.44729 −0.35694 0.51329 0.54587 0.94197 1.32722

10 −1.16450 0.44895 −0.34075 0.51349 0.54520 0.94783 1.48817

15 −1.16474 0.44887 −0.34008 0.51416 0.54518 0.94804 1.49924

20 −1.16474 0.44885 −0.34008 0.51424 0.54518 0.94803 1.49831

True values −1.17000 0.45000 −0.35000 0.52000 0.56000 0.93000

Table 4 The V-D-LSI parameter estimates and errors versus iteration k

σ 2 k a1 a2 f1 f2 b1 b2 δ (%)

0.502 1 −1.10204 0.53312 −0.00790 0.00396 0.53969 1.16329 37.82652

2 −1.10010 0.53112 −0.26760 0.21451 0.53985 1.16005 22.90660

5 −1.03524 0.36156 −0.42477 0.47357 0.55009 0.97497 10.68003

10 −1.13298 0.41964 −0.36772 0.51205 0.55198 0.94033 3.00632

15 −1.15968 0.44481 −0.34880 0.51371 0.55235 0.93979 1.02295

20 −1.16407 0.44906 −0.34565 0.51391 0.55241 0.93984 0.88562

1.002 1 −1.11466 0.51423 −0.01346 0.00730 0.53353 1.15746 37.23572

2 −1.11209 0.51143 −0.26048 0.26990 0.53380 1.15163 20.14157

5 −1.12652 0.42035 −0.35880 0.50256 0.54661 0.95627 3.57665

10 −1.16391 0.44763 −0.34240 0.51464 0.54738 0.94437 1.25490

15 −1.16501 0.44878 −0.34155 0.51445 0.54740 0.94468 1.26483

20 −1.16503 0.44880 −0.34153 0.51444 0.54740 0.94469 1.26540

True values −1.17000 0.45000 −0.35000 0.52000 0.56000 0.93000

Example 2 Consider the following linear-in-parameters system with missing data:

A(z)y(t) = φT(t)

F(z)
θ + v(t),

A(z) = 1 + a1z
−1 + a2z

−2 = 1 − 1.17z−1 + 0.45z−2,

F(z) = 1 + f1z
−1 + f2z

−2 = 1 − 0.35z−1 + 0.52z−2,

θ = [b1, b2]T = [0.56, 0.93]T,

ϑ = [a1, a2, f1, f2, b1, b2]T = [−1.17, 0.45,−0.35, 0.52, 0.56, 0.93]T.
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Fig. 4 The V-LSI estimation errors versus k with σ 2 = 0.502 and σ 2 = 1.002

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

        k

δ

σ2 = 1.002σ2 = 0.502

Fig. 5 The V-D-LSI estimation errors versus k with σ 2 = 0.502 and σ 2 = 1.002

The simulation conditions are similar to those of Example 1, here the noise variances
σ 2 = 0.502 and σ 2 = 1.002, respectively. Take s = p = Le = 3000 and t∗s = 3,
collect the input–output data {φ(t), y(ts)}. Apply theV-LSI algorithm and theV-D-LSI
algorithm to identify this example system, the parameter estimates and their estimation
errors δ := ‖ϑ̂k(ts)−ϑ‖/‖ϑ‖×100% versus k are given in Tables 3 and 4 and Figs. 4
and 5.

From Tables 3 and 4 and Figs. 4 and 5, it is clear that as the iteration k increases,
the parameter estimates given by the V-LSI algorithm and the V-D-LSI algorithm
converge to their true values, and the estimation errors become smaller (generally);
under the same data length and noise variance, the estimation accuracies of the V-LSI
algorithm and the V-D-LSI algorithm are close.

8 Conclusions

A D-LSI algorithm and a V-D-LSI algorithm are derived for identifying the linear-
in-parameters systems by means of the least squares search and the decomposition
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technique. The analysis shows that under the same noise level and iteration, the D-LSI
algorithm and theV-D-LSI algorithmgive almost same parameter estimation accuracy.
Compared with the LSI algorithm and the V-LSI algorithm, the decomposition-based
iterative algorithms require less computational cost. The simulation results indicate
that the proposed algorithms can generate highly accurate parameter estimates. The
identification idea can be extended to study the parameter estimation problems of other
linear systems and nonlinear systems with colored noises, missing-data systems and
scarce measurement systems [34,35], hybrid networks and uncertain chaotic delayed
systems [20,21], and can be applied to other fields [15].
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