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Abstract Three fractional-order transfer functions are analyzed for differences in
realizing (1+α) order lowpass filters approximating a traditional Butterworth magni-
tude response. These transfer functions are realized by replacing traditional capacitors
with fractional-order capacitors (Z = 1/sαC where 0 ≤ α ≤ 1) in biquadratic fil-
ter topologies. This analysis examines the differences in least squares error, stability,
−3 dB frequency, higher-order implementations, and parameter sensitivity to deter-
mine the most suitable (1+α) order transfer function for the approximated Butterworth
magnitude responses. Each fractional-order transfer function for (1+α) = 1.5 is real-
ized using a Tow–Thomas biquad a verified using SPICE simulations.

Keywords Fractional-order circuits · Fractional-order filters · Analog filter circuits ·
Fractional calculus

1 Introduction

Fractional-order filter circuits are an emerging field of electronics incorporating con-
cepts from fractional calculus into circuit theory for signal processing [5]. In the past
decade, there has been a surge of research regarding the theory [1,2,13,14,17,21] and
implementation [3,20,23,24] of these circuits. Early works highlight the precise con-
trol of attenuation they provide. Integer-order filters yield −20n dB/decade stopband
attenuations, where n is the integer order of the filter; fractional-order filters provide
greater control with −20(n + α) dB/decade stopband attenuations where 0 ≤ α ≤ 1
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Fig. 1 Comparison of FLPF transfer functions (1) and (2) when α) = 0.9 as solid and dashed lines,
respectively

is the fractional component of the order. They also provide an avenue to design band-
pass [2] and band-reject [13] filters with asymmetric stopband characteristics. These
features allow the design of filters with fractional-step attenuations between the integer
orders and is where this class of circuits derives their name.

Significant work has been devoted to designing fractional-order filters that approx-
imate the Butterworth responses with flat passband characteristics [1,3], but has
recently been expanded to also include Chebyshev responses [8,25]. Multiple
approaches have been taken toward the realization of these fractional-order filters
that can be divided into two families: (1) Using approximations of sα to realize
integer-order filters that implement the fractional response [6,15,24,26] and (2) using
fractional-order capacitors (Z = 1/sαC where 0 ≤ α ≤ 1 and C is a pseudocapaci-
tance with units F secα−1) in the realizations of traditional filter topologies [7,20–23].
Many of these works focus on the design and implementation of fractional-order
transfer functions of the form

T 1+α
1 (s) = k1

s1+α + k2sα + k3
(1)

Where the k2,3 coefficients are selected to yield a flat passband response. These coef-
ficients have been selected when k1 has been fixed at a value of 1 yielding a DC gain
equal to 1/k3. Using (1) provides an alternative to earlier fractional-order filters with
transfer function:

H(s) = 1

s1+α + 1
(2)

that exhibited peaking in the passband [16]. An example of the passband peaking
exhibited by (2) and a response using (1) designed to approximate a Butterworth
response is given in Fig. 1 as dashed and solid lines, respectively.
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The transfer function (1) has been implemented in [7] using a Tow–Thomas
biquadratic filter and a fractional-order capacitor with α = 0.5 realized using a
photolithographic process [9], approximated with field programmable analog array
hardware [6], switched-capacitor realizations [15], current mirrors [25,26], and with
sinh-domain and log-domain integrators [24]. While acknowledged in [7] that trans-
fer function and magnitude characteristics were impacted by the choice of capacitor
replaced with a fractional-order component, these impacts were not investigated. As
the field matures, it becomes important to explore further (1 + α) order transfer func-
tions to quantify the differences between them and for the design situations where
each will be most suitable to implement.

This provides the motivation for this work, where three fractional-order transfer
functions are analyzed to determine differences in realizing (1 + α) order lowpass
filters to approximate a traditional Butterworth magnitude response. These transfer
functions are realized by replacing traditional capacitors with fractional-order capac-
itors in biquadratic filter topologies. This analysis examines the differences in least
squares error, stability, −3 dB frequency, higher-order implementations, parameter
sensitivity, and circuit realizations for each transfer function.

2 Fractional-Order Low-Pass Filter (FLPF) Transfer Functions

While there are currently no fractional-order components commercially available to
implement fractional-order circuits, there has been much progress toward realizing
fractional-order capacitors [4,9,19]. These components have an order 0 < α < 1
placing them between the traditional components of a resistor (α = 0) and capacitor
(α = 1). It is from this property that the name fractional-order capacitor is derived,
though it is also referred to in many other fields as a constant phase element (CPE)
due to the constant phase angle that is dependent on the order α and is independent
of frequency. With the availability of these components on the horizon, it is important
to explore how their use in traditional circuit topologies will impact performance
[22,23] and uncover potential improvements over their integer-order counterparts that
designers can take advantage of in the future. Expanding these integer-order circuits
to the fractional domain requires replacing their integer-order capacitors with their
fractional-order counterparts. Applying this process to the biquadratic filter circuits
given in Fig. 2 yields general (α1 + α2) order transfer functions given by:

H1(s) =
1

R1R2C1C2

sα1+α2 + sα2 [R1R2+R1R3+R2R3]
R1R2R3C1

+ 1
R2R3C1C2

(3)

H2(s) =
1

RR2C1C2

sα1+α2 + sα2

GRC1
+ 1

R2C1C2

(4)

H3(s) =
R6

R1R4R5C1C2

sα1+α2 + sα2

R3C1
+ R6

R2R4R5C1C2

(5)
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(a) (b)

(c)
Fig. 2 Circuit topologies realizing biquadratic filter responses

where H1(s), H2(s), and H3(s) describe the responses of the circuits in Fig. 2a–
c, respectively, when C1,2 are replaced with fractional-order capacitors with orders
(0 ≤ α1,2 ≤ 1). It should be noted that to obtain (4) from Fig. 2b requires setting
R1 = R3 = ∞ (open circuits). Each of (3)–(5) realizes the transfer function (1)
when C1 is a traditional capacitor (α1 = 1) and C2 is a fractional-order capacitor
(0 ≤ α2 ≤ 1). Alternatively, each circuit can realize the transfer function:

T 1+α
2 (s) = k1

s1+α + k2s + k3
(6)

when C1 is a fractional-order capacitor (0 ≤ α1 ≤ 1) and C2 is a traditional capacitor
(α2 = 1). Both (1) and (6) are (1 + α) order transfer functions that differ in the order
of the denominator term with the k2 coefficient. The general case results when bothC1
and C2 are fractional-order capacitors (0 ≤ α1,2 ≤ 1) yielding the transfer function:

T 1+α
3 (s) = k1

sα1+α2 + k2sα2 + k3
= k1

s2β + k2sβ + k3
(7)

where 1 + α = 2β = α1 + α2. Note that this work has been limited to the case where
α1 = α2 to simplify the analysis as there are near infinite combinations that could be
explored otherwise.

Each of the fractional transfer functions (1), (6), and (7) offers stopband attenuations
of −20(1 + α) dB/decade but potentially different stability margins, bandwidths, and
transition characteristics while being simple to realize using existing topologies and
fractional-order components. In the following sections, the coefficients to approximate
Butterworth passband behavior for each (1+α) order transfer function are determined
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and further used to explore the differences between their stability, −3 dB frequencies,
higher-order implementations, sensitivities, and circuit realizations.

2.1 Coefficient Selection

In [6] the k2,3 coefficients for (1) were selected to approximate the flat passband
response of the Butterworth filters using a numerical search comparing the fractional
transfer function and first-order Butterworth passbands over the frequency range ω =
0.01–1 rad/s. The coefficients yielding the lowest error during the search, which was
limited to 0 < k2 < 2 and 0 < k3 < 1 when k1 = 1, from [6] are

kFPAA
2 = 1.0683α2 + 0.161α + 0.3324 (8)

kFPAA
3 = 0.2937α + 0.7122 (9)

In this work, a similar routine is implemented using the optimization tools avail-
able in MATLAB rather than a brute-force search. The purpose of this is to improve
the returned coefficients, increase the search speed, and provide a controlled search
process for evaluating all (1+α) order transfer functions. The search was implemented
using the MATLAB lsqcurvefit routine, which uses nonlinear least squares fitting that
attempts to solve the problem

min
x

‖ |H (x, ω) | − |B1(ω)| ‖2
2 = min

x

k∑

i=1

(|H (x, ωi ) − |B1(ωi )|)2

s.t. 0 ≤ k2,3 ≤ 2 (10)

where x is the vector of filter coefficients [k2, k3], |H(x)| is the magnitude response
using (1), (6), or (7) calculated using x , |B1(ω)| is the normalized first-order Butter-
worth magnitude response, |H(x, ωi )| and |B1(ωi )| are the magnitude responses of
(1), (6), or (7) and the first-order Butterworth approximation at frequency ωi , and k is
the total number of data points in the magnitude response. This is not the first appli-
cation of optimization routines in the field of fractional filters. Previously, they have
been employed in [10] to generate approximations of 1/(s+1)α for audio applications
and to determine coefficients to approximate fractional Chebyshev responses [8].

The k2,3 coefficients that yielded the lowest least squares error (LSE) for (1), (6),
and (7) with k1 = 1 when the order is increased from 1.01 to 1.99 in steps of 0.01 are
given in Fig. 3a as solid, dashed, and dotted lines, respectively. Values for k2 and k3
are given as blue and black lines, respectively. For further comparison, the coefficients
from [6] are given as hatched lines. The interpolated quadratic and linear equations that
describe k2,3 for (1), (6), and (7) as functions of α determined using the raw data are:

kT F1
2 = 1.008α2 + 0.2867α + 0.2366 (11)

kT F1
3 = 0.2171α + 0.7914 (12)

kT F2
2 = −0.4838α2 + 2.023α + 0.0104 (13)
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Fig. 3 a k2,3 coefficients to approximate a Butterworth magnitude response using (1) and (6) as solid and
dashed lines, respectively, compared to coefficients presented in [6] with b LSE from optimization process

kT F2
3 = −0.0992α2 + 0.0989α + 1.004 (14)

kT F3
2 = 0.2305α2 + 1.315α + 0.0032 (15)

kT F3
3 = 0.013α + 0.98 (16)

with norm of residuals of 0.0727, 0.0267, 0.0178, 0.0138, 0.1677, and 0.0713 for (11)–
(16), respectively. This norm of residuals is calculated from the fit residuals, defined
as the difference between the ordinate data point and the resulting fit for each abscissa
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data point; with a lower norm value indicating a better fit than a larger value. It should
also be noted that for (15) and (16) that the value α is the fractional component of the
order between the integer cases 1 and 2 and not the order of each fractional capacitor,
which are instead related by 1 + α = α1 + α2.

Using the MATLAB optimization routines improved the coefficients over the brute-
force numerical search used in [6] yielding lower LSE, given in Fig. 3b, calculated as:

LSE =
k∑

i=1

(|H (
k2,3, ωi

) − |B1(ωi )|
)2 (17)

The LSE for all α using the optimization coefficients in (1) is lower than the LSE using
the coefficients from [6], highlighting that the optimization routine can be used to find
much better coefficients for the approximated magnitude response than the brute-force
search routine. From the LSEs, (7) has the lowest error for (1 + α) < 1.85, with (1)
having the lowest for (1 + α) > 1.85; though each case approaches a common error
value as (1 + α) approaches 2. This is similarly reflected in Fig. 3 with all the k2 and
k3 coefficients approaching common values regardless of transfer function as (1 + α)

approaches 2.
Comparing the solid and dashed lines in Fig. 3b, the LSE using the optimization

coefficients in (1) and (6) is similar for (1 + α) < 1.4. While for (1 + α) > 1.4, (1)
provides lower LSE than (6). Therefore, using (11) and (12) in (1) provides a better
approximated Butterworth filter response than (13) and (14) in (6) when designing
for filters with orders greater than 1.4 using only a single fractional capacitor in
the implementation. Using two fractional-order capacitors in the implementation and
coefficients (15) and (16) in (7) result in the lowest LSE for all cases while (1 + α) <

1.83, above which the optimization coefficients in (1) yields the lowest LSE.
The magnitude response of (1), (6), and (7) using the k2,3 optimization coefficients

for orders 1.2, 1.5, and 1.8 are given in Fig. 4 as solid lines, dashed lines, and circles,
respectively. Confirming that all transfer functions with the optimization coefficients
realize low pass filter responses with fractional stepping in the stopband attenuation.
For all further references to (1), (6), and (7) throughout this work, unless stated oth-
erwise, it can be assumed that the optimization coefficients (11)–(16) are being used
in their respective transfer functions.

2.2 Stability

Another useful criteria to evaluate differences between the transfer functions is the
margin of stability, described here as the margin between the region of instability
and the closest pole angle. To analyze this stability for the fractional filters using
traditional analysis methods requires conversion of the s-domain transfer functions
to the W -plane defined in [18]. This transforms the transfer function from fractional
order to integer order which is much easier to analyze. This process can be broken
into the following steps:

1. Convert the fractional transfer function to the W -plane using the transformations
s = Wm and α = k/m [18],
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Fig. 4 Magnitude response of (1), (6), and (7) as solid lines, dashed lines, and circles, respectively, using
k2,3 optimization coefficients when the order is 1.2, 1.5, and 1.8

2. Select k and m for the desired α value,
3. Solve the transformed transfer function for all poles in the W -plane,
4. Observe the absolute pole angles, |θW |, if any are less than π

2m rad/s then the system
is unstable, otherwise if all |θW | > π

2m then the system is stable.

Applying this process to the denominators of (1), (6), and (7) yields the characteristic
equations:

Wm+k + k2W
k + k3 = 0 (18)

Wm+k + k2W
m + k3 = 0 (19)

W 2k + k2W
k + k3 = 0 (20)

Though it should be noted that we have set β = k/m for (7) which yields (20). The
minimum root angles of (18) and (19) for α = 0.01–0.99 and minimum root angles of
(20) for β = 0.505–0.995 calculated with k = 10 to 990 in steps of 10 whenm = 1000
are given in Fig. 5 as solid, dashed, and dotted lines, respectively. The minimum root
angles, |θW |min, for all values of α are greater than the minimum required angle,
|θW | > π

2m = 0.09◦, confirming that each transfer function using (11)–(16) are stable
and physically realizable.

While each transfer function has a similar minimum root angle at an order of 2, (7)
shows the highest margin from the region of stability for (1 + α) < 1.74. Above 1.74
(6) shows a slightly higher margin with all three converging on a similar value as the
order approaches 2. Minimum root angles for (1) and (6) are similar for 1 + α < 1.2,
but for 1+α > 1.2 the minimum root angle for (6) shows a visibly higher margin until
converging at approximately (1 + α) = 1.99. For further comparison, the minimum
root angle for (1) using (8)–(9) is given in Fig. 5 as a hatched line. Interestingly,
the optimization coefficients for (1) yield a worse margin of stability than (8)–(9)
indicating that the improved LSE comes at the cost of the stability margin.
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2.3 −3dB Frequencies

To further evaluate differences between (1), (6), and (7) the frequency at which each
magnitude response reaches −3 dB is compared. The ideal Butterworth response
reaches −3 dB below its DC value at a frequency of 1 rad/s; then the approximation
which most closely meets this criteria would prove the best choice for implementation.
The −3 dB frequencies (numerically calculated with errors less than 0.1 %) for each
order from 1.01 to 1.99 in steps of 0.01 for (1), (6), and (7) are given in Fig. 6 as solid,
dashed, and dotted lines, respectively.

The fractional transfer functions only match 1 rad/s at orders of approximately 1.04
and 1.81 using (1), at no orders using (6), and at approximately 1.04 using (7). The
transfer function given by (7) shows the least variation of −3 dB frequencies over the
full range of orders.
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Both (1) and (6) show similar magnitudes of deviation from 1 rad/s. The transfer
function given by (1) has frequencies greater than 1 rad/s for 1.04 < 1 + α < 1.81
and (6) lower for all orders. Each reaching extremes of 1.127 rad/s and 0.856 rad/s
at (1 + α = 1.41) and 1.58 for (1) and (6), respectively. For further comparison, the
−3 dB frequencies of (1) using (8)–(9) are given in Fig. 6 as a hatched line, which
shows closer agreement to 1 rad/s over orders 1.1 < (1 + α) < 1.73 than when
the optimization coefficients are used, indicating that the optimization coefficients
do not universally improve the filter response and that while the LSE is lower the
bandwidth has not been improved, hinting at an unexplored avenue regarding how the
optimization search routine for k2,3 coefficients can be executed to achieve different
design objectives, but leave that research for future exploration.

2.4 Higher-Order −3dB Frequencies

To realize stable higher-order FLPFs, it was previously suggested in [14] to employ
(1) divided by a higher-order normalized Butterworth polynomial creating a (n + α)
order filter given by:

Tn+α(s) = T 1+α
1 (s)

Bn−1(s)
(21)

where B(·) represents the Butterworth polynomial. While filters using this method
have been realized in [6,14,15], the impact on the −3 dB frequency compared to the
Butterworth responses it approximates has not been explored. Further, using (6) and
(7) in the numerator of (21) instead of (1) provides another opportunity to evaluate the
differences between each transfer function.

Magnitude responses of (4+α) order FLPFs using (21) and either (1), (6) or (7) are
given in Fig. 7 as solid, dashed, and dotted lines, respectively, for orders of 1.2, 1.5, and
1.8. From this figure, the fractional attenuations between the fourth- and fifth-order
Butterworth responses indicated as B4 and B5, respectively, are evident. Observing
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Fig. 7 Magnitude response of (4+α) order filters using (1) and (6) as a solid line and circles, respectively,
with k2,3 optimization coefficients when α = 0.2, 0.5, and 0.8
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the responses near ω = 1 rad/s the FLPFs do not share the same −3 dB frequency of
the Butterworth responses. To quantify these differences, the frequencies where each
FLPF response reaches −3 dB are calculated (with an error less than 0.1%) for steps of
0.01 in the fractional component of the order from 0.01 to 0.99. These calculations used
(1), (6), and (7) and first-, second-, or third-order normalized Butterworth polynomials
to realize (2+α), (3+α), and (4+α) order FLPFs. The calculated −3 dB frequencies
are given in Fig. 8a–c for the (2 + α), (3 + α), and (4 + α) order FLPFs, respectively.
Solid lines in Fig. 8 indicate frequencies for (1), dashed for (6), dotted for (7), and
hatched for (1) using k2,3 from [6].

The general trends from Fig. 8 indicate the magnitude responses of (21), regardless
of the fractional transfer function in the numerator, reduces the frequency at which the
magnitude responses reach −3 dB. This impact decreases as the order of the FLPF is
increased using a higher-order Butterworth polynomial. That is, the (4+α) −3 dB fre-
quencies are the closest to the ideal value while the (2+α) show the highest deviation
from the ideal. Further, using (7) results in a smaller range of −3 dB frequencies than
using (1) or (6). However, even with the widest range of −3 dB frequencies for each
order, (1) is closest to the ideal Butterworth responses (ω = 1 rad/s) over the largest
range of orders for all cases, making it the superior choice to realize higher-order
FLPFs using (21).

2.5 Stopband Attenuations

Each of the fractional-order transfer functions has different roll-off characteristics,
that is how the magnitude response changes from the flat passband attenuation to the
ideal stopband attenuation of −20(1 + α) dB/decade. This provides another avenue
to explore differences, with sharper roll-off characteristics being the most desirable.
To compare these characteristics, the slope of the magnitude of each transfer function
between frequencies ω = 1 and 10 rad/s as well as ω = 10 and 100 rad/s for (1+α) =
1.01 to 1.99 in steps of 0.01 are given in Fig. 9. The slopes between frequencies ω = 1
and 10 rad/s are given as black lines, while those between ω = 10 and 100 rad/s are
given as blue lines. With values for each of the transfer functions (1), (6), and (7) are
given as solid, dashed, and dotted lines, respectively. The solid red line is the ideal
characteristic of −20(1+α) dB/decade, transitioning from a value of −20 dB/decade
when (1+α) = 1 to −40 dB/decade when (1+α) = 2; corresponding to the traditional
integer-order attenuations available.

From Fig. 9, the attenuation for ω = 1 − 10 of (6) is closest to the ideal when
(1 + α) < 1.45 but for (1 + α) > 1.45 (1) is closer until all transfer functions
converge to a common value at (1 + α) = 2, indicating that for lower orders, (6) has
the sharpest roll-off, though comparing the attenuations for ω = 10 and 100 both (1)
and (7) are closer to the ideal than (6), which shows the greatest deviation. Overall,
(1) provides the best overall attenuation characteristics.

2.6 Sensitivity to Parameter Variation

With each (1 + α) transfer function having different orders for the s term with the k2
coefficient, there is potential for them to have different sensitivities to k2,3) variations.
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Fig. 8 −3 dB frequency for a
(2 + α), b (3 + α), and c (4 + α)

order lowpass filter
implementations using (1) and
(6) as solid and dashed lines
respectively
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Fig. 9 Stopband attenuation for (1 + α) order lowpass filter implementations using (1), (6), and (7) over
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figure online)

To explore these sensitivities, the −3 dB frequency deviations and attenuation devi-
ations over the frequency bands ω = 1 − 10 rad/s and ω = 10 − 100 rad/s for each
transfer function were calculated for three cases; i) k2 varied by 1 %, ii) k3 varied by
1 %, and iii) k2 and k3 varied by 1 %.

2.6.1 −3dB Frequency Sensitivity

The −3 dB frequency deviations for the (1+α) order transfer functions, calculated as
the absolute deviation (in percent) from their ideal, are given in Fig. 10a–c for cases
(i), (ii), and (iii), respectively. In each figure, the values for (1), (6), and (7) are given
as solid, dashed, and dotted lines, respectively. From Fig. 10a there is a general trend
of increasing deviation with increasing order for each of the three transfer functions
when k2 has a 1% variation. There is no single transfer function that has the lowest
sensitivity for all orders; both (6) and (7) show similar errors for (1+α) < 1.2, (1) for
1.2 < (1+α) < 1.44, (6) for 1.44 < (1+α) < 2, and each converging at (1+α) = 2.
The reverse is seen in Fig. 10b for the sensitivity to k3 for all transfer functions. The
deviation for all three transfer functions decreases with increasing order. Comparing
each deviation, for (1 + α) > 1.15 (6) shows the lowest sensitivity until all three
converge at an order of 2; while for (1 + α) < 1.15 (1) shows the lowest sensitivity.
From the deviations in Fig. 10c, (6) has the lowest sensitivity to the 1 % variation in
k2 and k3 for orders (1 + α) > 1.04 until all converge at an order of 2. Though for the
region (1 + α) < 1.04 (7) shows the lowest sensitivity. Comparing all three cases, (6)
has the lowest sensitivity over the widest range of orders to the 1% variations in the
coefficients k2,3. Overall, (6) has the lowest sensitivity over the widest range of orders
for each case.
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Fig. 10 Deviation of −3 dB frequency for (1 + α) order lowpass filter implementations using (1), (6), and
(7) when parameters a k2, b k3, and c k2,3 are varied by 1 %
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Fig. 11 Deviations of stopband attenuation for (1 +α) order lowpass filter implementations using (1), (6),
and (7) over frequency ranges ω ε [1, 10] (black) and ω ε [10, 100] (blue) rad/s when parameters a k2, b k3,
and c k2,3 are varied by 1 % (Color figure online)
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Table 1 Component values to realize 1.5-order fractional-order transfer functions (TF) using Tow–Thomas
biquad

Parameter TF component values

(1) (6) (7)

k2 0.632 0.901 0.718

k3 0.90 1.03 0.99

R1 (Ω) 900 1029 987

R2 (Ω) 1000 1000 1000

R3 (Ω) 1583 1110 1392

R4 (Ω) 1000 1000 1000

R5 (Ω) 1000 1000 1000

R6 (Ω) 900 1029 987

C1 (F secα−1, α) 0.16µ, 1 12.62µ, 0.5, 1.42µ, 0.75

C2 (F secα−1, α) 12.62µ, 0.5 0.16µ, 1 1.42µ, 0.75
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Fig. 12 a RC ladder circuit to approximate fractional-order capacitor and b impedance magnitude of
approximated fractional-order capacitors (dashed) compared to the ideal (solid) with pseudocapacitances
of 12.62µF secα−1 with α = 0.5 (black) and 1.42µF secα−1 with α = 0.75 after scaling to a center
frequency of 1 kHz

2.6.2 Stopband Attenuation

The deviation (in percent) of the stopband attenuations for the (1 + α) order transfer
functions compared to their ideal case is given in Fig. 11a–c for the cases (i), (ii),
and (iii), respectively. In each figure, the errors of (1), (6), and (7) are given as solid,
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Table 2 Component values to realize fourth-order RC ladder approximation of fractional-order capacitors

Ladder parameter Approximated fractional-order capacitor

12.62 µF secα−1, α = 0.5 1.42 µF secα−1, α = 0.75

Ra (Ω) 111.1 26.7

Rb (Ω) 378.7 119.2

Rc (Ω) 251.7 36,041.1

Rd (Ω) 7369.5 1046.9

Re (Ω) 888.9 278.6

Cb (nF) 295.9 224.2

Cc (nF) 83.8 314.7

Cd (nF) 694.7 568.3

Ce (nF) 537.2 479

dashed, and dotted lines, respectively, while errors over the frequency band ω = 1−10
rad/s are given as black lines and errors over ω = 10 − 100 rad/s are given as blue
lines.

From Fig. 11, the deviation in stopband attenuation for the 1 % variations of k2,
k3, and k2,3 are very low. All showing less than 1 % deviation over both frequency
bands. The sensitivity is generally less for ω = 10 − 100 than ω = 1 − 10, with
sensitivities so low (<0.5 %) in the band ω = 10 − 100 that differences between them
for each transfer function would be negligible in practical application. For each case
over ω = 1 − 10, (1) tends to show the lowest sensitivity for (1 + α) < 1.4 with (6)
showing the lowest sensitivity above 1.4.

3 Circuit Simulations

The (1 + α) order transfer functions can be physically realized using the circuit in
Fig. 2c, known as the Tow–Thomas biquadratic filter. This topology has been previ-
ously employed in [7] to realize the transfer function given by (1) and is employed
here to further verify the operation of each fractional-order transfer function. Using
the design equations presented in [7], the component values to realize (1), (6), and (7)
for (1 + α) = 1.5 are given in Table 1. Each component value has been magnitude
scaled by 1000 and frequency scaled to 1 kHz to realize realistic values. Comparing the
values no transfer function has an advantage in terms of the range of values required,
all are within the same order of magnitude, though (1) and (6) have the advantage
requiring a single fractional-order capacitor over the two required by (7).

3.1 Approximated Fractional-Order Capacitors

To simulate these circuits, approximations of the fractional-order capacitors were
implemented and realized using the RC ladder network given in Fig. 12a. To deter-
mine the component values for this approximation, the method presented in [11] was
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Fig. 13 SPICE simulations of (1+α) = 1.5 order fractional Tow–Thomas filters implementing the transfer
functions a (1), b (6), and c (6) (dashed blue lines) compared to the ideal responses (solid black lines) (Color
figure online)

employed, based on collecting terms of a Continued Fraction Expansion (CFE) and
realizing a fourth-order approximation when 8 CFE terms are collected. Applying this
process to realize approximations of 12.62µF secα−1 and 1.42µF secα−1 fractional-
order capacitors with orders 0.5 and 0.75, respectively, yields the resistor and capacitor
values given in Table 2. These values have been selected such that the frequency
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band around which the RC ladder is a good approximation is centered at 1 kHz. The
impedance magnitude of the ideal (solid) and approximated (dashed) fractional-order
capacitors are presented in Fig. 12b from which it is clear that the approximations are
very good over almost 4 decades, from approximately 10 Hz–100 kHz.

Using the component values in Tables 1 and 2, the Tow Thomas biquad was simu-
lated in LTSPICE IV using LT1354 op amps, realizing the 1.5-order fractional low-pass
filter responses. The SPICE-simulated magnitude responses (blue dashed lines) com-
pared to the ideal responses (black solid lines) are shown in Fig. 13a–c for the transfer
functions (1), (6), and (7). The SPICE-simulated magnitude responses show very
good agreement with the MATLAB-simulated ideal responses, though there are sig-
nificant deviations above 100 kHz which can be attributed to the approximations of the
fractional-order capacitors which show larger error from their ideal behavior above this
frequency. The greatest deviations are seen in Fig. 13c from 10-100 kHz. This results
from using two approximated fractional-order capacitors that compounds the impact
of their individual deviations. These simulations verify that each of the fractional-order
transfer functions given by (1), (6) , and (7) can be realized at the circuit level and
realizes the expected responses using approximated fractional-order capacitors.

4 Conclusion

The (1 + α) order transfer functions given by (1), (6), and (7) are used to implement
a magnitude response that approximates the passband of a traditional Butterworth
response with fractional-step stopband attenuation. Each transfer function, using coef-
ficients determined through a MATLAB-implemented optimization routine, realizes
FLPF magnitude responses with differing LSEs, stability margins, −3 dB frequencies,
transition characteristics from passband to stopband, and sensitivities. This research
could be further expanded to determine differences using different fractional transfer
functions to implement fractional-order Chebyshev, Inverse Chebyshev, and Cauer
magnitude responses, or differences in phase and group delay; all of which have not
yet been thoroughly investigated.
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