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Abstract In this paper we use a least-squares fitting routine to approximate the stop-
band ripple characteristics of fractional-order inverse Chebyshev lowpass filters which
have fractional-order zeros and poles. MATLAB simulations of (1+α)-order lowpass
filters with fractional steps from α = 0.1 to α = 0.9 are given as examples. SPICE
simulations of 1.2-, 1.5-, and 1.8-order lowpass filters and experimental results of
a 1.5-order filter using approximated fractional-order capacitors in a Multiple-Input
Biquad circuit validate the implementation of these circuits.

Keywords Fractional-order circuits · Fractional-order filters · Analog filter circuits ·
Fractional calculus

1 Introduction

The field of fractional-order circuits refers to electrical circuits incorporating concepts
from fractional calculus into their design and realization [5]. This import introduces a
further element of flexibility during their design. When applied to electronic filters for
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signal processing, the field of fractional-order filter circuits emerged [12,13]. This field
has focused on theory [1,11,17], implementation [3,16,18], and applications [19] of
filters with magnitude characteristics not easily realizable using integer-order circuits.
While traditional filters typically yield −20n dB/decade stopband attenuations (where
n is the filter integer order), fractional-order filters provide more precise control with
−20(n + α)dB/decade attenuations, where 0 ≤ α ≤ 1 is the fractional-component
of the order. These concepts also provide alternative design methodologies for the
realization of asymmetric band-pass [2] and band-reject [10] filters with high-quality
factors.

Filter circuits are typically designed using their transfer functions rather than their
time domain representations, which also remains true when designing them using
fractional-order concepts. Whereas integer-order filters use the integer-order Laplacian
operator, s, fractional-order filters use the Laplacian operator raised to powerα yielding
sα , which is referred to as the fractional Laplacian operator.

Lowpass (1 +α)-order fractional transfer functions have previously been explored
to realize approximated Butterworth [7] and Chebyshev [6] passband magnitude char-
acteristics. These responses were both realized using the fractional transfer function

H1+α
1 (s) = k1

s1+α + k2s + k3
(1)

where the coefficients k1,2,3 were selected to optimize the responses over a select fre-
quency band. However, while the Butterworth and Chebyshev approximations can be
realized with all-pole transfer functions, the inverse Chebyshev and elliptic approx-
imations require both poles and zeros. Therefore, it is required to explore further
(1+α)-order transfer functions with both poles and zeros. In this work, a (1+α)-order
transfer function is investigated to approximate the stopband ripple characteristics of
inverse Chebyshev lowpass filters. The optimum coefficients required are determined
using a nonlinear least-squares optimization routine. MATLAB simulations of the
(1 + α)-order lowpass filters with fractional steps from α = 0.1 to α = 0.9 designed
using this process are given as examples. Further, validation with SPICE simulations
of 1.2−, 1.5-, and 1.8-order lowpass filters and experimental results of a 1.5-order
filter realized using an approximated fractional-order capacitor in a multiple-input
biquad (MIB) circuit are given.

2 Approximated Inverse Chebyshev Response

Inverse Chebyshev lowpass filters are generally realized using lowpass notch circuits
described by the transfer function

H2(s) = s2 + k2ω2
0

s2 + s ω0
Q + ω2

0

(2)

where k2 is the DC gain, ω0 is the notch frequency, and Q is the quality factor. An
example of a second-order inverse Chebyshev filter designed with a minimum loss of
50 dB is given by:



Circuits Syst Signal Process (2016) 35:1973–1982 1975

10
−2

10
−1

10
0

10
1

10
2

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

Fig. 1 Simulated magnitude responses of (1 +α) lowpass fractional-order filter circuits for α = 0.1 to 0.9
in steps of 0.1 with coefficients selected to approximate inverse Chebyshev stopband response

C2(s) = 0.003162
s2 + 1.9999

s2 + 0.1123s + 0.0063
(3)

The magnitude response of (3) is shown in Fig. 1 as a solid line with a DC
gain of 1 (0.003162 × 1.9999/0.0063 � 1 = 0 dB) and high-frequency gain of
0.003162 � 50 dB. This response requires both poles and zeros differentiating it from
the Butterworth and Chebyshev responses which only require poles in their realiza-
tion. Similarly, a fractional-order lowpass notch filter requires both fractional poles
and zeros with a (1+α)-order transfer function which satisfies this requirement given
by

H1+α
3 (s) = a4

a1s1+α + 1

a2s1+α + a3sα + 1
(4)

This transfer function will have a notch-shaped magnitude response with low- and
high-frequency gains of a4 and a4a1/a2, respectively, and an attenuation from pass-
band to stopband dependent on α, as shown in Fig. 1.

Realizing an approximated inverse Chebyshev response using (4) requires selection
of coefficients [a1, a2, a3, a4] that approximate the ripple behavior in the stopband of
the magnitude response. The use of optimization routines in the design of fractional
filters [6,9], provides a method to determine these coefficients. One implementation
described in [6] used a nonlinear least-squares fitting that searches for the coefficients
to minimize the squared error between the magnitude response of (1) and a second-
order Chebyshev response over the frequency range ω ε

[
10−5, 100

]
rad/s. This process

is applied here, modified to use the second-order inverse Chebyshev response and
fractional notch transfer function given by (3) and (4), respectively, over the frequency
band ω ε

[
10−3, 103

]
rad/s. This optimization problem is described by
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min
x

‖ |H (x, ω) | − |C2(ω)| ‖2
2 = min

x

k∑

i=1

(|H (x, ωi ) | − |Cn(ωi )|)2 (5)

s.t. x > 0.1

where x is the vector of filter coefficients, |H(x)| is the magnitude response using
(4) with x, |C2( jω)| is the second-order inverse Chebyshev magnitude response
given by (3), and k is the total number of data points in the magnitude responses.
The constraint is added to prevent the return of negative coefficients which are not
physically realizable, as well as values that would be unrealistically small for a
physical realization. The routine was implemented in MATLAB using the lsqcurve-
fit function with termination tolerances of the function value and the solution set
to 10−6.

The coefficients returned by this search are given in Table 1 for α = 0.1 to 0.9 in
steps of 0.1. The 50-dB ripple for the second-order inverse Chebyshev response was
selected over smaller magnitudes to highlight the difference in ripple size using the
fractional-order response over the integer-order response, but could be applied to any
second-order inverse Chebyshev response.

The simulated magnitude responses using Table 1 coefficients in (4) are given
in Fig. 1 as dashed lines. The slope of these responses in the frequency band
from ω = 0.02 to 10 rad/s decreases with increasing α, while the frequency
that each response reaches −3 dB also decreases with increasing α; occurring at
0.022, 0.029, 0.038, 0.049, 0.06, 0.067, 0.073, 0.079, and 0.081 rad/s for α = 0.1
to 0.9 in steps of 0.1, respectively. The minimum stopband magnitude is also
impacted by the order, decreasing with decreasing order. The peak values are
−41.4,−43.2,−45.2,−47.4,−49.8,−52.5,−55.6,−59.6,−66.0 dB for α = 0.1
to 0.9 in steps of 0.1, respectively, when measured at ω = 1.415 rad/s (the frequency
at which |C2(ω)| reaches its minimum). These responses highlight that the introduc-
tion of the fractional order increases the flexibility in shaping the magnitude response,
increasing the potential control over the attenuation and ripple characteristics. In the
following section, stability is analyzed to ensure these fractional transfer functions are
physically realizable.

Table 1 Coefficient values for
(1 + α) fractional-order transfer
functions to approximate iverse
Chebyshev stopband response

Order α a1 a2 a3 a4 |θW |min

1 + α 0.1 0.2392 91.20 0.1 1.1294 18.00◦
0.2 0.2793 94.69 0.1 1.033 16.46◦
0.3 0.3227 100.4 0.1 0.9676 15.11◦
0.4 0.3687 107.7 0.1 0.9211 13.94◦
0.5 0.4149 117.2 0.2251 0.8977 13.04◦
0.6 0.4540 134.8 1.6167 0.9485 12.99◦
0.7 0.4855 148.9 3.762 0.9799 13.05◦
0.8 0.5054 158.2 6.933 0.9973 13.28◦
0.9 0.5102 161.4 11.47 1.004 13.81◦
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2.1 Stability

To analyze the stability of fractional filters requires conversion of the s-domain transfer
functions to the W -plane defined in [14]. This transforms the transfer function from
fractional order to integer order to be analyzed using traditional analysis methods.
This process can be broken down into the following steps:

1. Convert the fractional transfer function to the W -plane using the transformations
s = Wm and α = k/m [14],

2. Select k and m for the desired α value,
3. Solve the transformed transfer function for all poles in the W -plane and if any of

the absolute pole angles, |θW |, are less than π
2m rad/s then the system is unstable,

otherwise if all |θW | > π
2m then the system is stable.

Applying this process to the denominator of (4) yields the characteristic equation in
the W-plane given by:

a2W
m+k + a3W

k + 1 = 0 (6)

The roots of (6) for α = 0.1 to 0.9 were calculated with k = 1 to 9, respectively, when
m = 10. The minimum root angles, |θW |min, for each case are given in Table 1 and are
all greater than the minimum required angle, |θW | > π

2m = 9◦, confirming that each
transfer function using the coefficients in Table 1 is stable and physically realizable.

3 Circuit Realization

The (1+α)-order transfer function (4) can be physically realized using the MIB circuit,
given in Fig. 2, when the capacitor C2 is replaced with a fractional-order capacitor. A
fractional-order capacitor is an element with impedance ZC = 1/sαC where C is the
pseudo-capacitance with units F sα−1 and 0 ≤ α ≤ 1 is the order. This component
derives its name from the order placing it between the traditional circuit elements of a
resistor (α = 0) and capacitor (α = 1). The transfer function of the MIB circuit using
the fractional-order capacitor for C2 is given by:

Fig. 2 Multiple-input biquad topology with RC ladder structure to realize a fourth-order integer approxi-
mation of a fractional-order capacitor given in subset
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Table 2 Component values to realize (7) for the coefficients in Table 1 when α = 0.2, 0.5, 0.8

α C1 (F) C2 (F sα−1) R1 (�) R2 (�) R3 (�) R (�) GR (�)

0.2 49µ 1.41µ 1.04 M 6.15 k 2.08 M 6.15 k 3.07 k

0.5 165µ 1.41µ 142 k 1 k 284 k 1 k 500

0.8 3.23µ 1.41µ 351 k 2.24 k 702 k 2.24 k 1.12k

H(s) = Vo(s)

Vin(s)
= b1s1+α + b2sα + b3

s1+α + b4sα + b5
(7)

where b1 = R/R3, b2 = (1/R3C1G − 1/R1C1), b3 = 1/C1C2R2R, b4 =
1/GC1R, b5 = 1/C1C2R2.

The values to realize the approximated fractional inverse Chebyshev responses are
determined solving the system of equations formed by comparing the coefficients of
(4) and (7). Solving for orders (1 + α) = 1.2, 1.5, and 1.8 using the coefficients
from Table 1 when the DC gain (a4) is neglected, while setting R2 = R, R1 = GR3,
and G = 0.5 yields the scaled values given in Table 2. These values were scaled to
realize realistic component values by applying a magnitude scaling Km = 1000 and
frequency scaling K f = 2000π .

3.1 Approximated Fractional Capacitor

While significant progress has been achieved toward realizing fractional-order capac-
itors [4,8,15], there are currently no commercial devices available. Instead, integer-
order approximations must be used to simulate and validate proposed fractional-order
circuits. Multiple methods exist to design and realize these approximations which can
be realized using either passive or active topologies. Based on collecting terms of a
continued fraction expansion (CFE), we can realize an approximated fractional-order
capacitor using an RC ladder network. This RC ladder network, when eight CFE
terms are collected to yield a fourth-order approximation, is given in the subset of
Fig. 2.

To realize approximations of 1.41µF sα−1 fractional-order capacitors with orders
0.2, 0.5 and 0.8, respectively, the values in Table 3 are required. These values have
been selected such that the frequency band around which the RC ladder is a good
approximation is centered at 1 kHz. The impedance magnitude of the ideal (solid)
and approximated (dashed) 1.41µF sα−1 and fractional-order capacitor with order
α = 0.5 shifted to a center frequency of 1 kHz is presented in Fig 3. From this figure
the approximation is very good over almost 4 decades, from approximately 200 Hz to
70 kHz.

Using the component values in Tables 2 and 3, the approximated fractional-order
inverse Chebyshev lowpass filter was simulated in SPICE using LF411 op amps. The
simulations realized (1 + α) = 1.2, 1.5, and 1.8 responses which are given in Fig. 4
as dashed lines. For comparison, the ideal responses of (4) are also given as solid
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Table 3 Component values to
realize fourth-order
approximations of 1.41µF sα−1

fractional-order capacitors with
α = 0.2, 0.5, and 0.8

Values

Component α = 0.2 α = 0.5 α = 0.8

Ra (�) 11.9 991 53.1 k

Rb (�) 60 2.25 k 35.1 k

Rc (�) 152.8 3.38 k 29.7 k

Rd (�) 635.2 k 7.93 k 41.5 k

Re (�) 34.4 k 65.8 k 125 k

Cb (F) 465 n 9.39 n 0.435 n

Cc (F) 904 n 33.2 n 3.05 n

Cd (F) 982 n 60.2 n 9.06 n

Ce (F) 422 n 77.9 n 22.8 n
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Fig. 3 Impedance magnitude of approximated fractional-order capacitor (dashed) compared to the ideal
(solid) with pseudo-capacitance of 1.41µF sα−1 with α = 0.5 after scaling to a center frequency of 1 kHz
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Fig. 4 PSPICE simulations using Fig. 2 compared to ideal simulations of (7) as dashed and solid lines,
respectively, to realize approximated inverse Chebyshev lowpass filters of orders (1 + α) = 1.2 and 1.5,
and 1.8
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Fig. 5 Frequency response of Fig. 2 designed to realize an approximated inverse Chebyshev lowpass filter
of order (1 + α) = 1.5 a frequency response and b zoom-in at the peak

lines. The SPICE results show good agreement with the ideal responses confirming
the stopband ripples with a fractional-order step in the transition from passband to
stopband. It should be noted that the SPICE simulations do deviate from the MATLAB
simulated transfer function at low frequencies, because of the limited bandwidth of
the fourth-order approximation of the fractional-order capacitor.
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3.2 Experimental Results

The MIB circuit was physically realized to validate the proposed fractional-order
lowpass filters. A 1.5-order (α = 0.5) filter was implemented using AD844 op amps,
which have a wider bandwidth than the LF411 op amps used for simulations. To take
advantage of the larger bandwidth, design components were scaled to a frequency of
100 kHz as follows: R = R2 = 400 �, R1 = 227 k�, R3 = 113 k�,C1 = 1µF
and approximated fractional-order capacitor C2 = 1.4µF sα−1 with α = 0.5 when
G = 2. The components to realize the approximated fractional-order capacitor were
also scaled as: Ra = 100 �, Rb = 225 �, Rc = 330 �, Rd = 800 �, Re = 6.6
k�,Cb = 1 nF, Cc = 3.3 nF, Cd = 6 nF, Ce = 7.8 nF. The response of this circuit to
a sinusoidal input swept from 10 Hz to 100 kHz in 200 ms with amplitude 1 V is given
in Fig. 5a. The attenuation in the stopband was measured as −9 dB/decade which is
very close to the theoretical attenuation of −10 dB/decade. Further, a zoom-in on the
point where the filter magnitude peaks is shown in Fig. 5b confirming stability. The
peak gain value of 2.36 dB was measured at 3.86 kHz.

4 Conclusion

A fractional-order transfer function with fractional zeros and poles was proposed
that approximates the magnitude ripple characteristics in the stopband of a inverse
Chebyshev lowpass filter and maintains a fractional-order step in the transition from
passband to stopband. The coefficients required for the ripple characteristics were
determined using a least-squares fitting optimization routine. These fractional-order
filters were realized using approximated fractional-order capacitors in a MIB circuit
and were verified both simulation and with experimental results. This process has the
potential to be expanded and applied to higher-order filters.
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