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Abstract This paper focuses on the problems of fault estimation and accommodation
for a class of T–S fuzzy systems with local nonlinear models and having an external
disturbance and sensor and actuator faults, simultaneously. A fuzzy robust fault esti-
mation observer is designed to estimate the system state and sensor and actuator faults.
Compared with existing results, the observer not only is robust to the disturbance but
also has a wider application range and more freedom for design. To compensate for
the effect of faults and to stabilize the closed-loop system, an observer-based fault-
tolerant controller is proposed. The separate design of the observer and controller
avoids coupling between them. Finally, a simulation is conducted to demonstrate the
effectiveness of the proposed method.

Keywords T–S fuzzy systems · Local nonlinear models · Fault estimation ·
Fault-tolerant control

1 Introduction

With the development of industrial technology, the requirements of system reliability
have increased. To improve the reliability of a system, fault detection and isolation
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and fault-tolerant control have been studied widely, and many outstanding results
have been achieved, such as those reported in [5,8,10,13,17,38,43,44,51] and the
references therein. It should be noted that more accurate information on the fault, such
as the size and shape of the fault, can be obtained by fault estimation, which is more
challenging than fault detection and isolation. Recently, outstanding results relating
to fault estimation have been achieved [16,18,30,45,49,52,53].

It is well known that many practical systems are nonlinear, and challenges remain
in the fault estimation and fault accommodation of a nonlinear system. Takagi–Sugeno
(T–S) fuzzy models are a useful tool for the description of a nonlinear system and have
thus attracted considerable attention in recent decades [9,22–24,28,35,36,39–42,46–
48].

Employing T–S fuzzy systems, excellent results relating to fault estimation and
fault accommodation have been achieved [1–4,6,7,14,15,19,20,26,33,34,37]. The
existing methods require restrictive assumptions, such as those of rank constraints
of Ci Bi [19], stable system matrices [14], the same measurement output matrices
[1–4,6,7,15,20,26] and a single faulty actuator or sensor [33,37].

Note that both sensor faults and actuator faults may exist in practical engineering.
The problems of fault estimation and fault accommodation for T–S fuzzy systems
with simultaneous sensor and actuator faults are receiving increasing research atten-
tion. Employing an ingenious transformation, a new descriptor fuzzy sliding-mode
observer has been designed to estimate the system state and sensor and actuator faults
simultaneously, and an observer-based fault-tolerant control scheme has been devel-
oped to stabilize a closed-loop system [27]. Additionally, two observers have been
designed to estimate sensor and actuator faults, separately [32]. For fuzzy systemswith
the same or proportional control matrices Bi , a fuzzy proportional integral observer
has been designed to estimate sensor and actuator faults [21].

It should be noted that modern industrial systems are becoming much more com-
plex, which is increasing the number of fuzzy rules. Thus, the stability analysis,
controller design and fault estimation for such T–S fuzzy systems have become
much more difficult [29,37]. To resolve this problem, T–S fuzzy systems with non-
linear local models have been proposed, and excellent results have been achieved
[11,12,29,31,37].

To the best of the authors’ knowledge, the problems of fault estimation and fault
accommodation for fuzzy systems, which have local nonlinear models and sensor and
actuator faults, simultaneously, have not been fully investigated and developing their
solutions remains an important challenge. This background provides the motivation
for the present study.

For T–S fuzzy systemswith local nonlinearmodels, this paper proposes a fuzzy fault
estimation observer that can be used in the estimation of the system state and sensor
and actuator faults simultaneously. Furthermore, an observer-based fault-tolerant con-
troller is designed to compensate for the effect of faults and to stabilize the closed-loop
system. The main contributions of this paper are summarized as follows. (1) For T–S
fuzzy systems with local nonlinear models having sensor and actuator faults, simulta-
neously, the problems of fault estimation and fault accommodation are addressed for
the first time. (2) Compared with previous results, the proposed observer not only is
robust against the disturbance but also has a wider application range andmore freedom
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for design. (3) The observer and controller are designed separately, which avoids their
coupling and reduces the computation complexity.

This paper is organized as follows. The system description and definitions are
presented in Sect. 2. In Sects. 3 and 4, the fuzzy fault estimation observer and the
observer-based fault-tolerant controller are designed, respectively. Simulation is pro-
vided in Sect. 5. Finally, Conclusions are given in Sect. 6.

Throughout this paper, I and O denote an identity matrix and a zero matrix of
appropriate dimensions, respectively. The symbol ∗ in a matrix denotes the transposed
element in the symmetric position. ‖a‖ denotes the Euclidean norm of a vector a; i.e.,
‖a‖ = (aT a)1/2. For an arbitrary matrix A, AT , A− and A−1 denote the transposed
matrix, left-inverse matrix and inverse matrix of A, respectively.

2 System Description and Definitions

In this paper, we consider continuous-time T–S fuzzy systems with local nonlinear
models and additive sensor and actuator faults. The i th rule of T–S fuzzy systems can
be written as follows.

Plant Rule i :
IF ξ1(t) is πi1 and · · · ξk(t) is πik ,
THEN

ẋ(t) = Ai x(t) + Ni gi (x(t)) + Bi (u(t) + fa(t)) + Eid(t) (1)

y(t) = Ci x(t) + F fs(t) (2)

yL(t) = CLi x(t) (3)

where x(t) ∈ Rn , u(t) ∈ Rp1 , y(t) ∈ Rq , yL(t) ∈ Rq1 , fa(t) ∈ Rp1 and fs(t) ∈ Rm

are the state vector, input vector, measurement output vector, controlled output vector,
additive actuator fault vector and sensor fault vector, respectively. d(t) ∈ Rp2 repre-
sents the exogenous disturbance vector which is assumed to belong to L2[0,∞).
gi (x(t)) ∈ Rp3 represents the nonlinear part of the i th local model. ξ j (t) and
πi j (i = 1, 2, . . . , r; j = 1, 2, . . . , k) are the premise variables and fuzzy sets,
where k and r are the number of premise variables and IF–THEN rules, respectively.
Ai , Ni , Bi , Ei ,Ci , F,CLi are constant real matrices.

The fuzzy systems can be written as follows:

ẋ(t) =
r∑

i=1

μi [Ai x(t) + Ni gi (x(t)) + Bi (u(t) + fa(t)) + Eid(t)] (4)

y(t) =
r∑

i=1

μi [Ci x(t) + F fs(t)] (5)

yL(t) =
r∑

i=1

μiCLi x(t) (6)

where ξ(t) = [ξ1(t), ξ2(t), . . . , ξk(t)]. For each i = 1, 2, . . . , r ,μi is the abbreviation

of μi (ξ(t)), where μi (ξ(t)) = σi (ξ(t))/
∑r

i=1 σi (ξ(t)), σi (ξ(t)) =
k∏
j=1

πi j (ξ j (t)),
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and πi j (ξ j (t)) is the grade of membership of ξ j (t) in πi j . It is obvious thatμi (ξ(t)) ≥
0, and

r∑
i=1

μi (ξ(t)) = 1.

In this paper, the following assumptions are needed.

Assumption 1 In fuzzy systems (4)–(6), (Ai , Bi ) are controllable, (Ai ,Ci ) are
observable, and q ≥ p1 + m.

Assumption 2 It is supposed that F is of full column rank, and Ci are of full row
rank.

Assumption 3 The nonlinear functions gi (x(t)) are Lipschitz with respect to the state
x(t); that is, there exist constants ci such that

‖gi (x(t1)) − gi (x(t2))‖ ≤ ci‖x(t1) − x(t2)‖ (7)

where x(t1), x(t2) ∈ Rn and ci are Lipschitz constants of gi (x(t)).

In Assumption 2, if F ∈ Rq×m is not of full column rank i.e., rank(F) = m1 < m,
then a matrix decomposition method previously proposed in [8] can be used. Specifi-
cally, F can be rewritten as F = F1F2, where F1 ∈ Rq×m1 and rank(F1) = m1. We
can thus treat F2 fs(t) as a sensor fault vector and design an observer to estimate it.

Remark 1 In fuzzy systems (4)–(6), we use the nonlinear functions gi (x(t)) to rep-
resent the nonlinear parts of local models. The nonlinear consequences represent
important nonlinear properties of the original nonlinear system.Additionally, the num-
ber of fuzzy rules can be reduced using the local nonlinear models, which implies that
the computational burden is reduced [12,29,37].

Remark 2 It should be noted that the measurement noise is not considered in (5).
Without loss of generality, let the measurement noise d1(t) ∈ Rq1 , and the distribu-
tion matrix of d1(t) be F̄ ∈ Rq×q1 . We assume that q > q1. It is not difficult to find
a coordinate transformation matrix T such that T F̄ = 0. According to this transfor-
mation, we can choose T y(t) as the new measurement output. Thus, the effect of the
measurement noise can be removed.

The objective of this paper is to design a robust observer for fuzzy systems (4)–(6) to
estimate x(t), fa(t), fs(t), simultaneously, and design an observer-based fault-tolerant
controller to compensate for the faults and guarantee system stability.

The following definition and lemmas are useful in obtaining our main results.

Definition 1 For an arbitrary matrix A ∈ Rn×m , if A− ∈ Rm×n satisfies A−A = Im ,
we say that A− is a left-inverse matrix of A.

Lemma 1 [50]. For an arbitrary matrix A ∈ Rn×m, rank(A) = m, then we have

1. A− = (AT A)−1AT is a left-inverse matrix of A.
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2. If A−∗ is a left-inverse matrix of A, the general form of left-inverse matrix of A
can be obtained as

A− = A−∗ + X − X AA−∗ (8)

where X ∈ Rm×n is an arbitrary matrix with appropriate dimension.

Lemma 2 [50]. For the solvable matrix equation AX = B, X = GB is a solution of
the equation, if and only if the matrix G satisfies AGA = A. Specifically, if A is of
full column rank, X = A−B is a solution of the equation AX = B.

Lemma 3 [29]. For matrices (or vectors) A and B with appropriate dimensions, the
following condition holds,

AT B + BT A ≤ εAT A + ε−1BT B (9)

where ε is an arbitrary positive scalar.

Lemma 4 [9]. If the following conditions hold

Sii < 0, 1 ≤ i ≤ r (10)
2

r − 1
Sii + Si j + S ji < 0, 1 ≤ i �= j ≤ r (11)

we have

r∑

i=1

r∑

j=1

μiμ j Si j < 0. (12)

3 Fault Estimation

Let x̄(t) = [xT (t), f Ts (t)]T , then the T–S fuzzy systems (4)–(5) can be rewritten as

G ˙̄x(t) =
r∑

i=1

μi [A1i x̄(t) + N1i gi (x) + B1i (u(t) + fa(t))

+ F1 fs(t) + E1i d(t)] (13)

y(t) =
r∑

i=1

μi [C1i x̄(t)]

=
r∑

i=1

μi [C0i x̄(t) + F fs(t)] (14)

where G =
[
In O
O Oq×m

]
, A1i =

[
Ai O
O −F

]
, N1i =

[
Ni

Oq×p3

]
, B1i =

[
Bi

Oq×p1

]
,
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F1 =
[
On×m

F

]
, E1i =

[
Ei

Oq×p2

]
, C1i = [Ci F], C0i = [Ci Oq×m], and gi (x)

represent gi (x(t)).
Since F is of full column rank, according to Lemmas 1, 2 and (14), we have

fs(t) = F−(y(t) −
r∑

i=1

μi [C0i x̄(t)]) (15)

where F− is a left-inverse matrix of F . Substituting (15) in (13), we have

G ˙̄x(t) =
r∑

i=1

μi [A1i x̄(t) + N1i gi (x) + B1i (u(t) + fa(t))

+ F1(F
−(y(t) − C0i x̄(t)) + E1i d(t)]

=
r∑

i=1

μi [(A1i − F1F
−C0i )x̄(t) + N1i gi (x)

+ B1i (u(t) + fa(t)) + F1F
−y(t) + E1i d(t)] (16)

Obviously, the i th local model of the T–S fuzzy systems (16) can be written as

G ˙̄x(t) = (A1i − F1F
−C0i )x̄(t) + N1i gi (x)

+ B1i (u(t) + fa(t)) + F1F
−y(t) + E1i d(t) (17)

Adding K1iC1i ˙̄x(t) to both sides of (17), we have

G1i ˙̄x(t) = (A1i − F1F
−C0i )x̄(t) + N1i gi (x) + B1i (u(t) + fa(t))

+ F1F
−y(t) + E1i d(t) + K1iC1i ˙̄x(t) (18)

where G1i = G + K1iC1i , and K1i = [KT
11i K T

12i ]T ∈ R(n+q)×q is the gain matrices
to be determined.

It is not difficult to obtain G1i =
[
I + K11iCi K11i F
K12iCi K12i F

]
. Our purpose is

to choose suitable matrices K11i , K12i such that G1i is of full column rank,
which means that there exists a left-inverse matrix of G1i . Let K11i = On×q ,
K12i = diag{λi1, λi2, . . . , λiq}, where λi j denotes arbitrary nonzero constants,

j = 1, 2, . . . , q; then G1i =
[

I O
K12iCi K12i F

]
. Note that F is of full column rank.

It is then not difficult to find that G1i is of full column rank. According to Lemma 1,
there exist left-inverse matrices of G1i . One of the left-inverse matrices of G1i can be
written as

G−∗
1i =

[
I O

−F−Ci F−K−1
12i

]
(19)
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According to Lemma 2 and (18), we have

˙̄x(t) = A2i x̄(t) + N2i gi (x) + B2i (u(t) + fa(t)) + F2i y(t)

+ E2i d(t) + G−∗
1i K1iC1i ˙̄x(t) (20)

where A2i = G−∗
1i (A1i − F1F−C0i ), N2i = G−∗

1i N1i , B2i = G−∗
1i B1i , F2i =

G−∗
1i F1F−, E2i = G−∗

1i E1i .

Note that G−∗
1i K1i =

[
O
F−

]
is independent of i . Let H = G−∗

1i K1i . From (14), we

have

r∑

i=1

μi G
−∗
1i K1iC1i ˙̄x(t) = H

r∑

i=1

μiC1i ˙̄x(t) = H ẏ(t) (21)

The overall fuzzy systems can be rewritten as

˙̄x(t) =
r∑

i=1

μi [A2i x̄(t) + N2i gi (x) + B2i (u(t) + fa(t)) + F2i y(t)

+ E2i d(t) + H ẏ(t)] (22)

y(t) =
r∑

i=1

μi [C1i x̄(t)] =
r∑

i=1

μi [C0i x̄(t) + F fs(t)] (23)

Remark 3 To estimate the sensor fault, the descriptor observer method is applied
widely, and excellent results have been obtained [6,14]. Employing this method,
pioneering results, including fault estimation for fuzzy systems with unmeasurable
premise variables [1,2,4,15] and the design of robust fault detection observers [1,4],
have been achieved. In the cited papers, the system output matrices of the fuzzy sys-
tems must be the same. Our method can be used in the case that the fuzzy systems
have different output matrices. Additionally, in this paper, for every local model, an
augmented descriptor local model is constructed by treating the senor fault as a virtual
state.We can obtain new fuzzy systems by choosing a gainmatrix for each localmodel,
and the gain matrices may be different from each other. Compared with previously
obtained results [1,2,4,6,14,15], for which the gain matrices must be the same, in this
paper, there is more freedom of design.

Remark 4 In this paper, we choose the left-inverse matrix rather than the Moore–
Penrose generalized inverse matrix. It is worth pointing out that the Moore–Penrose
generalized inverse matrices of F and G1i are unique, while the left-inverse matrices
of F and G1i are not unique. The general forms of the left-inverse matrices of F and
G1i are F− = (FT F)−1FT +X−XF(FT F)−1FT andG−

1i = G−∗
1i +Y−YG1i G

−∗
1i ,

respectively, where X , Y are arbitrary real matrices with appropriate dimensions. We
can therefore get different left-inverse matrices by choosing different X and Y , which
provides more freedom of design.
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On the basis of the above discussion, we construct a fuzzy fault estimation observer
for fuzzy systems (22) and (23):

ż(t) =
r∑

i=1

μi [A2i z(t) + N2i gi (x̂) + B2i (u(t) + f̂a(t))

+ (F2i + A2i H)y(t) + K2i (y(t) − ŷ(t))] (24)

˙̂fa(t) =
r∑

i=1

μi [K3i (y(t) − ŷ(t))] (25)

ˆ̄x(t) = z(t) + Hy(t) (26)

ŷ(t) =
r∑

i=1

μi [C1i ˆ̄x(t)] (27)

where z(t) is the observer state. ˆ̄x(t) and f̂a(t) are the estimations of x̄(t) and fa(t),
respectively, and gi (x̂) represents gi (x̂(t)). K2i and K3i are the observer gain matrices
to be designed.

Theorem 1 Given the H∞ performance level γ1, the fuzzy fault estimation observer
(24)–(27) can asymptotically estimate the system state and faults with the H∞ perfor-
mance level γ1, that is

lim
t→∞ e(t) = 0, i f ω(t) = 0; (28)
∫ t

0
eT (s)e(s)ds ≤ γ 2

1

∫ t

0
ωT (s)ω(s)ds, i f ω(t) �= 0, (29)

if there exist a symmetric positive-definite matrix P, matrices Q j , and positive scalars
δ1, δ2, …, δr , for i, j = 1, 2, . . . , r , such that the following linear matrix inequalities
hold true.

Ωi i < 0, 1 ≤ i ≤ r (30)
2

r − 1
Ωi i + Ωi j + Ω j i < 0, 1 ≤ i �= j ≤ r (31)

where

Ωi j =
⎡

⎣
Ξi j + δi c2i I + I PE3i PN3i

∗ − ρ1 I O
∗ ∗ − δi I

⎤

⎦ , (32)

e(t) = [(x̄(t) − ˆ̄x(t))T , ( fa(t) − f̂a(t))T ]T , ω(t) = [dT (t), ḟ Ta (t)]T , ci are the
Lipschitz constants of gi (x), ρ1 = γ 2

1 , and Ξi j , N3i , E3i will be specified later. The

gain matrices of the observer can be obtained by K4i =
[
K2i
K3i

]
= P−1Q j .
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Proof Let ˜̄x(t) = x̄(t) − ˆ̄x(t), f̃a(t) = fa(t) − f̂a(t), g̃i = gi (x) − gi (x̂). From
(22)–(24), (26)–(27), we have

˙̄̃x(t) = ˙̄x(t) − ˙̄̂x(t)
= ˙̄x(t) − ż(t) − H ẏ(t)

=
r∑

i=1

μi [A2i x̄(t) − A2i z(t) + N2i g̃i + B2i f̃a(t)

+ E2i d(t) − A2i Hy(t) − K2i (y(t) − ŷ(t))]

=
r∑

i=1

μi [A2i x̄(t) − A2i ( ˆ̄x(t) − Hy(t)) + N2i g̃i + B2i f̃a(t)

+ E2i d(t) − A2i Hy(t) − K2i (y(t) − ŷ(t))]

=
r∑

i=1

r∑

j=1

μiμ j [(A2i − K2iC1 j ) ˜̄x(t) + N2i g̃i

+ B2i f̃a(t) + E2i d(t)] (33)

From (23), (25), (27), we have

˙̃fa(t) =
r∑

i=1

r∑

j=1

μiμ j [−K3iC1 j ˜̄x(t) + ḟa(t)] (34)

The error dynamic is represented as

ė =
r∑

i=1

r∑

j=1

μiμ j [(A3i − K4iC3 j )e(t) + N3i g̃i + E3iω(t)] (35)

where e(t) =
[ ˜̄x(t)
f̃a(t)

]
, A3i =

[
A2i B2i
O O

]
, K4i =

[
K2i
K3i

]
, C3 j = [C1 j O], N3i =

[
N2i
O

]
, E3i =

[
E2i O
O I

]
, ω(t) =

[
d(t)
ḟa(t)

]
.

Choose the Lyapunov function V (t) = eT (t)Pe(t), where P is a symmetric
positive-definite matrix. The differential of V (t) along the error dynamic (35) is

V̇ (t) =
r∑

i=1

r∑

j=1

μiμ j [eT (t)((A3i − K4iC3 j )
T P + P(A3i − K4iC3 j ))e(t)

+ 2eT (t)PN3i g̃i + 2eT (t)PE3iω(t)] (36)

According to Lemma 3, for i = 1, 2, . . . , r , we have

2eT (t)PN3i g̃i ≤ 1

δi
eT (t)PN3i N

T
3i Pe(t) + δi g̃

T
i g̃i (37)
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where δ1, δ2, . . . , δr are positive scalars.
Since gi (x) are Lipschitz with respect to the state x(t), and e(t) = [ ˜̄xT (t), f Ta (t)]T ,

we have

g̃Ti g̃i = ‖gi (x) − gi (x̂)‖2
≤ c2i ‖x(t) − x̂(t)‖2
≤ c2i ‖x̄(t) − ˆ̄x(t)‖2
≤ c2i e

T (t)e(t) (38)

where ci are the Lipschitz constants of gi (x).
From (36)–(38), we have

V̇ (t) ≤
r∑

i=1

r∑

j=1

μiμ j [eT (t)((A3i − K4iC3 j )
T P + P(A3i − K4iC3 j )

+ 1

δi
PN3i N

T
3i P + δi c

2
i I )e(t) + 2eT (t)PE3iω(t)] (39)

Let

J1(t) = V̇ (t) + eT (t)e(t) − γ 2
1 ωT (t)ω(t) (40)

It is not difficult to find that (28) and (29) are satisfied if J1(t) < 0. Specifically,
if ω(t) = 0, (40) can be written as J1(t) = V̇ (t) + eT (t)e(t); i.e., J1(t) < 0 implies
V̇ (t) < −eT (t)e(t) ≤ 0. From Lyapunov theory, we obtain lim

t→∞ e(t) = 0. Mean-

while, if ω(t) �= 0, under the zero initial condition, (40) can be rewritten as

∫ t

0
J1(s)ds = V (t) +

∫ t

0
eT (s)e(s)ds − γ 2

1

∫ t

0
ωT (s)ω(s)ds (41)

Since V (t) > 0, thus J1(t) < 0 means
∫ t
0 e

T (s)e(s)ds ≤ γ 2
1

∫ t
0 ωT (s)ω(s)ds.

From (39) and (40), we can obtain

J1(t) = V̇ (t) + eT (t)e(t) − γ 2
1 ωT (t)ω(t)

≤
r∑

i=1

r∑

j=1

μiμ j [eT (t)((A3i − K4iC3 j )
T P + P(A3i − K4iC3 j )

+ 1

δi
PN3i N

T
3i P + δi c

2
i I )e(t) + 2eT (t)PE3iω(t)

+ eT (t)e(t) − γ 2
1 ωT (t)ω(t)]

= ζ T (t)Λζ(t) (42)
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where

Λ =
r∑

i=1

r∑

j=1

μiμ j

[
Ξi j + 1

δi
PN3i N T

3i P + δi c2i I + I PE3i

∗ − γ 2
1 I

]
,

ζ(t) = [eT (t), ωT (t)]T , Ξi j = (A3i − K4iC3 j )
T P + P(A3i − K4iC3 j ).

Obviously, Λ < 0 implies J1(t) < 0. According to the Schur complement, Λ < 0,
if and only if

r∑

i=1

r∑

j=1

μiμ jΩi j < 0 (43)

where Ωi j are the same as that in (32).
From Lemma 4, if (30) and (31) are satisfied, then (43) holds, which means that

J1(t) < 0; i.e., the fault estimation observer (24)–(27) can asymptotically estimate
the state and the faults with the H∞ performance level γ1.

The proof is completed. 
�
Remark 5 Compared with previous results [9,27], it is worth pointing out that the
derivative of the measurement output is not used in the observer (24)–(27). Thus, our
method has a wider range of application.

Remark 6 From the observer (24)–(27), it is not difficult to find that the estimations
of the system state and sensor fault can be obtained as

x̂(t) = [In On×m] ˆ̄x(t) (44)

f̂s(t) = [Om×n Im] ˆ̄x(t) (45)

where x̂(t) and f̂s(t) are the estimations of x(t) and fs(t), respectively. Furthermore,
according to (25), the estimation of the actuator fault can be obtained.

Remark 7 Note that the minimum H∞ attenuation value of the observer (24)–(27)
(i.e., γ1) can be obtained from linear matrix inequalities:

min γ1

s.t. (30), (31)

Remark 8 In the last few years, various types of fault estimation observers have been
proposed, and excellent results have been achieved. However, most of the studies
focused on systems subject only to an actuator fault or sensor fault, and some restric-
tive assumptions were necessary; e.g., the rank constraints of Ci Bi , stable system
matrices, the same measurement output matrices, and a single faulty actuator or sen-
sor. Our observer can not only estimate the system state and actuator and sensor faults
simultaneously but also be applied to systems without these assumptions. An example
will be given in Section 5 to illustrate this point.
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Fig. 1 Structure diagram of the closed-loop system

4 Fault Accommodation

This section presents the design of an observer-based fault-tolerant controller, which
can compensate the effect of the faults and stabilize the fuzzy systems. Figure 1 is the
structural diagram of the closed-loop system.

In addition to (7), the following assumption about gi (x) is needed.

Assumption 4 The nonlinear functions gi (x) satisfy gi (0) = 0.

Note that gi (x) are Lipschitz functions; i.e., Assumption 4 implies the inequation

‖gi (x)‖ ≤ ci‖x(t)‖ (46)

where ci are the Lipschitz constants.
Employing the technique of parallel distribution compensation, the observer-based

fault-tolerant controller can be constructed as

u(t) =
r∑

i=1

μi [−K̄i x̂(t) − f̂a(t)] (47)

where K̄i are the controller gain matrices to be designed.
Substituting (47) in (4), we have

ẋ(t) =
r∑

i=1

r∑

j=1

μiμ j [Ai x(t) + Ni gi (x) + Bi (−K̄ j x̂(t) − f̂a(t) + fa(t)) + Eid(t)]

=
r∑

i=1

r∑

j=1

μiμ j [Ai x(t) − Bi K̄ j x̂(t) + Ni gi (x) + Bi f̃a(t) + Eid(t)]

=
r∑

i=1

r∑

j=1

μiμ j [(Ai − Bi K̄ j )x(t) + Ni gi (x) + Bi K̄ j x̃(t)

+ Bi f̃a(t) + Eid(t)] (48)
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where x̃(t) = x(t) − x̂(t), f̃a(t) = fa(t) − f̂a(t)
The closed-loop system can be described as

ẋ(t) =
r∑

i=1

r∑

j=1

μiμ j [(Ai − Bi K̄ j )x(t) + Ni gi (x) + B̄i jϕ(t)] (49)

yL(t) =
r∑

i=1

μiCLi x(t) (50)

where B̄i j = [Bi K̄ j Bi Ei ], ϕ(t) = [x̃ T (t) f̃ Ta (t) dT (t)]T .

Theorem 2 Given the H∞ performance level γ2, the closed-loop system (49)–(50) is
robust stable with the H∞ performance level γ2, that is

lim
t→∞ x(t) = 0, i f ϕ(t) = 0 (51)
∫ t

0
yTL (s)yL(s)ds ≤ γ 2

2

∫ t

0
ϕT (s)ϕ(s)ds, i f ϕ(t) �= 0, (52)

if there exist a symmetric positive-definite matrix P̄, matrices Q j , and positive scalars
ε1, ε2, …, εr , for i, j = 1, 2, . . . , r , such that the following linear matrix inequalities
hold true:

Φi i < 0, 1 ≤ i ≤ r (53)
2

r − 1
Φi i + Φi j + Φ j i < 0, 1 ≤ i �= j ≤ r (54)

where

Φi j =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψi j Bi Q j Bi Ei P̄CT
Li εi Ni ci P̄

∗ −2ρ2 P̄ + ρ2 In O O O O O
∗ ∗ −ρ2 Ip1 O O O O
∗ ∗ ∗ −ρ2 Ip2 O O O
∗ ∗ ∗ ∗ −Iq1 O O
∗ ∗ ∗ ∗ ∗ εi I p3 O
∗ ∗ ∗ ∗ ∗ ∗ εi In

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(55)

Ψi j = Ai P̄ + P̄ AT
i − Bi Q j − QT

j B
T
i , ρ2 = γ 2

2 . The gain matrices of the controller

can be obtained by K̄ j = Q j P̄−1.

Proof Choose the Lyapunov function V (t) = xT (t)Px(t), where P = P̄−1 is a
symmetric positive-definite matrix. The differential of V (t) along (49) can be obtained
as
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V̇ (t) =
r∑

i=1

r∑

j=1

μiμ j [xT (t)((Ai − Bi K̄ j )
T P + P(Ai − Bi K̄ j ))x(t)

+ 2xT (t)PNi gi (x) + 2xT (t)P B̄i jϕ(t)] (56)

According to Lemma 3 and (46), for i = 1, 2, . . . , r , we have

2xT (t)PNi gi (x) ≤ εi x
T (t)PNi N

T
i Px(t) + 1

εi
gi (x)

T gi (x)

≤ xT (t)

(
εi PNi N

T
i P + 1

εi
c2i I

)
x(t) (57)

where ε1, ε2, . . . , εr are positive scalars.
Let

J2(t) = V̇ (t) + yTL (t)yL(t) − γ 2
2 ϕT (t)ϕ(t) (58)

It follows from the Proof of Theorem 1 that (51)–(52) are satisfied if J2(t) < 0.
From (50) and (56)–(58), we have

J2(t) = V̇ (t) +
r∑

i=1

r∑

j=1

μiμ j [xT (t)CT
LiCL j x(t)] − γ 2

2 ϕT (t)ϕ(t)

=
r∑

i=1

r∑

j=1

μiμ j [xT (t)((Ai − Bi K̄ j )
T P + P(Ai − Bi K̄ j ) + CT

LiCL j )x(t)

+ 2xT (t)PNi gi (x) + 2xT (t)P B̄i jϕ(t) − γ 2
2 ϕT (t)ϕ(t)]

≤
r∑

i=1

r∑

j=1

μiμ j [xT (t)((Ai − Bi K̄ j )
T P + P(Ai − Bi K̄ j ) + CT

LiCL j

+ εi PNi N
T
i P + 1

εi
c2i I )x(t) + 2xT (t)P B̄i jϕ(t) − γ 2

2 ϕT (t)ϕ(t)]

=
r∑

i=1

r∑

j=1

μiμ j

[
x(t)
ϕ(t)

]T [
Υi j P B̄i j
∗ −γ 2

2 I

] [
x(t)
ϕ(t)

]
(59)

where

Υi j = (Ai − Bi K̄ j )
T P + P(Ai − Bi K̄ j ) + CT

LiCL j + εi PNi N
T
i P + 1

εi
c2i I

Thus, J2(t) < 0, if

r∑

i=1

r∑

j=1

μiμ j

[
Υi j P B̄i j
∗ −γ 2

2 I

]
< 0 (60)
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According to the Schur complement, (60) can be written as

r∑

i=1

r∑

j=1

μiμ j

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ῡi j P Bi K̄ j PBi PEi CT
Li εi PNi ci I

∗ −γ 2
2 I O O O O O

∗ ∗ −γ 2
2 I O O O O

∗ ∗ ∗ −γ 2
2 I O O O

∗ ∗ ∗ ∗ −I O O
∗ ∗ ∗ ∗ ∗ −εi I O
∗ ∗ ∗ ∗ ∗ ∗ −εi I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (61)

where Ῡi j = (Ai − Bi K̄ j )
T P + P(Ai − Bi K̄ j ).

Let X = diag{P−1, P−1, Ip1 , Ip2 , Iq1 , Ip3 , In}. Pre- and post-multiplying by X
and its transpose in (61), then we have

r∑

i=1

r∑

j=1

μiμ j

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψi j Bi Q j Bi Ei P̄CT
Li εi Ni ci P̄

∗ −γ 2
2 P̄ P̄ O O O O O

∗ ∗ −γ 2
2 I O O O O

∗ ∗ ∗ −γ 2
2 I O O O

∗ ∗ ∗ ∗ −I O O
∗ ∗ ∗ ∗ ∗ −εi I O
∗ ∗ ∗ ∗ ∗ ∗ −εi I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (62)

where Ψi j = Ai P̄ + P̄ AT
i − Bi Q j − QT

j B
T
i , P̄ = P−1, Q j = K̄ j P−1.

According to Lemma 3, it is easy to obtain that

P̄ + P̄ ≤ P̄ P̄ + I (63)

Obviously, (63) is equivalent to

− γ 2
2 P̄ P̄ ≤ −2γ 2

2 P̄ + γ 2
2 I (64)

Thus, (62) holds, if

r∑

i=1

r∑

j=1

μiμ jΦi j ≤ 0 (65)

where Φi j are the same forms as that in (55).
According to Lemma 4, if (53)–(54) are satisfied, then (65) holds, which implies

that J2(t) < 0; i.e., the closed-loop system (49)–(50) is robust stable with the H∞
performance level γ2.

The proof is completed. 
�
Remark 9 In this section, a robust fault-tolerant controller is designed for fuzzy
systems with local nonlinear models and having sensor and actuator faults, simultane-
ously. It is worth pointing out that the observer and controller are designed separately.
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Compared with previous excellent results of fault estimation and fault accommoda-
tion, such as those reported in [2,3,7], the separate design can avoid coupling between
the design of the observer and the design of the controller and reduce computation
complexity.

Remark 10 From theobserver and controller designprocesses,wefind that, ifd(t) = 0
and the actuator fault is constant, the error dynamic (35) is asymptotically stable; i.e.,
we can obtain accurate estimations of the system state and faults. Additionally, the
closed-loop system (49)–(50) is asymptotically stable.

Remark 11 The main purpose of this paper is to develop a general framework of fault
estimation and fault accommodation for a class of T–S fuzzy systems with local non-
linear models. In this paper, the parameterized linear matrix inequality techniques are
used to reduce conservatism. It is worth pointing out that a fuzzy Lyapunov functional
can be chosen to be less conservative. However, the computational complexity will
increase, and interested readers can refer to the literature [2,4,6].

5 Simulation Results

In this section, an example is presented to illustrate the effectiveness of the proposed
approach.

Consider fuzzy systemswith local nonlinear models and having sensor and actuator
faults, simultaneously, which are described in forms of (4)–(6), where

A1 =
⎡

⎣
−1 0 0
0 −2 0
1 0 1

⎤

⎦ , A2 =
⎡

⎣
1 −2 2
2 −1 0
1 3 −3

⎤

⎦ , B1 =
⎡

⎣
−2 −2
2 −2

−2 0

⎤

⎦ , B2 =
⎡

⎣
0 −2

−2 0
−2 0

⎤

⎦

N1 =
⎡

⎣
0
0
1

⎤

⎦ , N2 =
⎡

⎣
0
1
0

⎤

⎦ , E1 =
⎡

⎣
0
0.2
0.2

⎤

⎦ , E2 =
⎡

⎣
0.1
0.1
0

⎤

⎦ , C1 =
⎡

⎣
1 2 −1

−1 0 0
1 1 2

⎤

⎦

C2 =
⎡

⎣
1 1 −5

−1 1 0
1 0 1

⎤

⎦ , F =
⎡

⎣
1
2

−1

⎤

⎦ , CL1 = [
1 0 1

]
, CL2 = [

1 1 0
]
,

g1(x) = sin(x1(t)), g2(x) = cos(x1(t)) − 1
2 , and d(t) ∈ [−2, 2] is a random

disturbance, fa(t) =
[
fa1(t)
fa2(t)

]
and fs(t) are actuator and sensor faults, respectively.
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Fig. 2 The state x1(t) and its estimation
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Fig. 3 The state x2(t) and its estimation

It is assumed that

fa1(t) =
⎧
⎨

⎩

0 t < 10

2
(
1 − e−3(t−10)

)
t ≥ 10

fa2(t) =
⎧
⎨

⎩

0 t < 10

0.5

1 + 2−t+20 t ≥ 10

fs(t) =
{
0 t < 10

2 sin(2(t − 10)) t ≥ 10

The membership functions are chosen as μ1(y1(t)) = e−y21 (t) and μ2(y1(t)) =
1 − e−y21 (t).
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Fig. 4 The state x3(t) and its estimation
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Fig. 5 The actuator fault fa1(t) and its estimation
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Fig. 6 The actuator fault fa2(t) and its estimation
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Fig. 7 The sensor fault fs (t) and its estimation
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Fig. 8 The controlled output yL (t)
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Fig. 9 The estimation error of system state when d(t) = 0
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Fig. 10 The estimation error of faults when d(t) = 0
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Fig. 11 The controlled output yL (t) when d(t) = 0

We choose K111 = K112 = O3×3, K121 = diag{1, 2, 3}, K122 = diag{3, 3, 5}
and F− = [0.1667, 0.3333, − 0.1667]. According to the design procedure in this
paper, let the H∞ performance levels of the observer and the controller are γ1 = 1.414,
γ2 = 2.646, respectively. From the LMIs (30)–(31) and (53)–(54), we can obtain the
gain matrices of the observer and the controller as follows :

K21 =

⎡

⎢⎢⎣

29.4506 13.6322 4.5079
−4.6073 −9.3340 −9.1684
15.2131 14.5619 10.1461
14.0316 11.3855 7.1741

⎤

⎥⎥⎦ , K22 =

⎡

⎢⎢⎣

15.7310 9.6833 45.0395
−3.6626 1.6692 −15.3778
6.0072 2.7857 34.3002
6.3029 3.7716 29.1411

⎤

⎥⎥⎦

K31 =
[−25.924 −28.008 −17.129

−30.071 2.9043 11.270

]
, K32 =

[−8.4368 −12.313 −68.520
−15.654 −17.347 −11.626

]

K̄1 =
[−1.2725 0.5348 −3.5126

−2.2522 −1.0509 −0.1390

]
, K̄2 =

[−1.3197 −1.9193 −0.0632
−4.4444 −1.5458 −1.4911

]
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Fig. 12 The estimation error of x1(t)
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Fig. 13 The estimation error of x2(t)

The simulation results of this example are provided in Figs. 2, 3 ,4, 5, 6, 7 and
8. Figures 2, 3 ,4, 5, 6 and 7 clearly show that the proposed observer can estimate
the system state and sensor and actuator faults, simultaneously. Additionally, Fig. 8
illustrates that the proposed controller can compensate for the faults and stabilize the
closed-loop system. Furthermore, according to Remark 7, it is not difficult to obtain a
minimum H∞ attenuation value of the observer of 0.2163.

Furthermore, for the case that there is no external disturbance, the simulation results
are provided in Figs. 9, 10 and 11.
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Fig. 14 The estimation error of x3(t)
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Fig. 15 The estimation error of sensor fault fs (t)

We carry out a simulation to compare the performance of our method with that of
a previously proposed method [2]. Since the actuator fault was not considered in the
latter, we assume that fa(t) = 0. Additionally, we assume that the second local model
has the same measurement output matrix as the first one. The comparison results are
provided in Figs. 12, 13, 14, 15 and 16. Our method clearly provides similar or better
results. Compared with the previously proposed method [2], our method can be used
for fuzzy systems with an actuator fault and different measurement output matrices;
i.e., our method has a wider application range.
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Fig. 16 The controlled output yL (t)

6 Conclusions

This paper investigated the problems of fault estimation and fault accommodation
for T–S fuzzy systems with local nonlinear models and having sensor and actuator
faults, simultaneously. In the design of the observer, to avoid the sensor fault being
amplified by observer gain matrices, the sensor fault is treated as a virtual state, and
we then design a fuzzy fault estimation observer for the new fuzzy systems. Using
the estimation information, an observer-based fault-tolerant controller is designed to
guarantee the robust stability of the closed-loop system. Finally, simulation results
show the effectiveness of the proposed method. It is worth pointing out that the issues
of fuzzy systems with unmeasurable premise variables [1–4,26] and type-2 T–S fuzzy
systems [22–25] are interesting and practical and will be considered in our future
works.
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