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Abstract To overcome the performance degradation of adaptive filtering algorithms
in the presence of impulsive noise, a novel normalized sign algorithm (NSA) based on a
convex combination strategy, calledNSA-NSA, is proposed in this paper. Theproposed
algorithm is capable of solving the conflicting requirement of fast convergence rate and
low steady-state error for an individual NSAfilter. To further improve the robustness to
impulsive noises, amixing parameter updating formula based on a sign cost function is
derived. Moreover, a tracking weight transfer scheme of coefficients from a fast NSA
filter to a slowNSAfilter is proposed to speedup the convergence rate. The convergence
behavior and performance of the new algorithm are verified by theoretical analysis
and simulation studies.
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1 Introduction

In general, the performance of an adaptive filtering algorithm degrades when signals
are contaminated by impulsive or heavy-tailed noise. To overcome this limitation,
many algorithms were proposed, such as the sign algorithm (SA) [26], the signed
regressor algorithm (SRA) [7], and the sign-sign algorithm (SSA) [9]. Although the
SA has been successfully applied to system identification under impulsive noise, its
convergence rate is slow [26]. As a variant of SA, the convergence behavior of the
SRA is heavily dependent on the inputs, and there may exist some inputs for which the
SRA is unstable while the least mean square (LMS) algorithm is stable [7]. Among the
family of SA algorithms, the SSA has the lowest computational complexity and the
most similar characteristic to SA [9]. In addition, the degradations of two algorithms
depend significantly on the initial weights. Similar to the normalized least mean square
(NLMS), the normalized versions of these sign algorithms can be easily derived,
including the normalized SA (NSA) [10], the normalized SRA (NSRA) [11], and the
normalizedSSA (NSSA) [12]. TheNSAcan improve the robustness of the filter against
impulsive noises. However, its convergence performance is still not good in general.
Several variants have been proposed aiming at improving the convergence [5,6,8,13,
14,16,27,30,32]. Particularly, in [14], a dual SA (DSA)with a variable step size (VSS)
was proposed, but it has a local divergence problem especially when a large disparity
occurs between two successive step sizes. In [8], attempt was made to obtain better
stability and convergence performance by inserting another step size. Note that the
above-mentioned efforts have all beenmade for a single adaptive filtering architecture.

On the other hand, to cope with impulsive noise, the family of mixed-norm
algorithms were developed to combine the benefits of stochastic gradient adaptive
filter algorithms [3,4,17,24,31]. Chambers et al. [4] introduced a robust mixed-norm
(RMN) algorithm, where the cost function is a combination of the error norms that
underlie the LMS and SA. Later, Papoulis et al. [17,23] proposed a novel VSS RMN
(NRMN) algorithm, which circumvents the drawback of slow convergence for RMN
to some extent, by using time-varying learning rate.

The convex combination approach is another way to effectively balance the con-
vergence rate and steady-state error. An adaptive approach using combination LMS
(CLMS) was proposed in [1], utilizing two LMS filters with different step sizes to
obtain fast convergence and small misadjustment. Nevertheless, when the signals are
corrupted by impulsive noise, the algorithms in [1] and [15] usually fail to converge. To
improve performance, an NLMS-NSA algorithm was developed where a combination
scheme was used to switch between the NLMS and NSA algorithms [2]. Regrettably,
in the initial stage of adaptation, the NLMS algorithm may cause large misadjustment
especially when the noise becomes severe.Moreover, the adaptation rule of themixing
parameter of NLMS-NSA is unsuitable for impulsive noise, such that the algorithm
fails to perform at a desirable level.

In this work, to address the above-mentioned problems, a NSA-NSA algorithm is
proposed by using the convex combination approach. This novel algorithm achieves
robust performance in impulsive noise environments by leveraging two independent
NSA filters with a large and a small step sizes, respectively. To further enhance the
robustness against impulsive noise, the mixing parameter is adjusted using a sign cost
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function. In addition, a tracking weight transfer of coefficients is proposed in order to
obtain fast convergence speed during a transition period. Our main contributions are
listed as follows: (1) propose a NSA-NSA that is well suited for system identification
problems under impulsive noise; (2) modify an existing update scheme of the mixing
parameter, and analyze its behavior; (3) propose a novel weight transfer scheme that
is computationally simple yet can significantly improve the convergence rate.

The rest of this paper is organized as follows. In Sect. 2, we propose the NSA-NSA
and develop a novel weight transfer scheme. In Sect. 3, simulation results in different
impulsive noise environments are presented. Lastly, Sect. 4 concludes the paper.

2 Adaptive Combination of NSA Algorithms

2.1 The Proposed Algorithm

The diagram of adaptive combination scheme of twoNSAfilters is illustrated in Fig. 1,
where x(n) and y(n) are the filter input and output signals, respectively; d(n) is the
desired signal; y1(n) and y2(n) are symbols of the two-component filters defined by
weight vectors w1 and w2, respectively; v(n) is the impulsive noise; and w0 is the
weight vector of the unknown system. The overall error of the combined filter is given
by e(n) = d(n) − y(n). To improve performance, both filters are combined with a
scalar mixing parameter λ(n):

y(n) = λ(n)y1(n) + [1 − λ(n)]y2(n) (1)

e(n) = λ(n)e1(n) + [1 − λ(n)]e2(n) (2)

where λ(n) ∈ [0, 1] is defined by a sigmoidal activation function with auxiliary para-
meter a(n)

λ(n) = 1/(1 + e−a(n)). (3)

A gradient descent adaptation of a(n) is given as

a(n + 1) = a(n) − νa

2

∂e2(n)

∂a(n)

= a(n) + νae(n)[y1(n) − y2(n)]λ(n)[1 − λ(n)]. (4)

Fig. 1 Diagram of the proposed
algorithm

( )d n

( )y n1( )y n

2 ( )y n

( )λ

λ−

n

1 ( )n

1( )e n

2 ( )e n

( )e n
1( )nw

2 ( )nw

( )nx

0w
( )v n

unknown system



Circuits Syst Signal Process (2016) 35:3244–3265 3247

Note that νa is the step size of the auxiliary parameter a(n). This adaptation rule is
derived by the cost function J (n) = e(n)2 [1]. To improve the robustness against
impulsive noise, the new cost function is defined as Js(n) = |e(n)| based on the
classical sign-error LMS algorithm [26]. Therefore, the updated scheme of a(n) is
derived by minimizing the cost function Js(n) as follows:

a(n + 1) = a(n) − μa

2

∂ Js(n)

∂a(n)
(5)

where μa is the step size.
Using the chain rule, the gradient adaptation of Js(n) can be calculated as follows:

a(n + 1) = a(n) − μa

2

∂ Js(n)

∂λ(n)

∂λ(n)

∂a(n)

= a(n) + ρasign{e(n)}[y1(n) − y2(n)]λ(n)[1 − λ(n)] (6)

where ρa is a positive constant, and the sign function sign(·) can be expressed as

sign(x) = x

||x ||2 =
⎧
⎨

⎩

1, if x > 0
0, if x = 0
−1, if x < 0

. (7)

At each iteration cycle, the weight update of NSA-NSA takes the form [10]

wi (n + 1) = wi (n) + μi
x(n)sign{ei (n)}
εi + ||x(n)||22

(i = 1, 2) (8)

where wi (n) is the weight vectors with length M, μi is the constant step size, εi > 0
is a regularization constant close to zero, and || · ||2 represents the Euclidian norm. As
a result, the combined filter is obtained by using the following convex combination
scheme

w(n) = λ(n)w1(n) + [1 − λ(n)]w2(n). (9)

2.2 Proposed Weight Transfer Scheme

Inspired by the instantaneous transfer scheme from [22], a tracking weight transfer
scheme is proposed, as shown in Table 1. By using a sliding window approach, the
proposed scheme involves few parameters and retains the robustness against impulsive
noise with low cost. Like the instantaneous transfer scheme in [22], the parameter
of proposed weight transfer scheme is not sensitive to the choice. This scheme can
speed up the convergence property of the overall filter, especially during the period
of convergence transition. Define N0 as the window length. If n − 1 mod N0 is equal
to zero, then implement the following operations. It is well known that the standard
convex combination scheme needs to check whether a(n + 1) = a+, so the only
additional operation is the nmod N0 operation. The judgment condition a(n + 1) ≥



3248 Circuits Syst Signal Process (2016) 35:3244–3265

Table 1 Proposed algorithm

a+ represents the condition when the fast filter (filter with large step size) switches
to the slow filter (filter with small step size) at the transient stage. The operations
λ(n + 1) = 0 and λ(n + 1) = 1 are the limitations for a(n + 1) < −a+ and
a(n + 1) ≥ a+, respectively. The operation w2(n + 1) = w1(n + 1) denotes the
transfer of coefficients, which is only applied in the transient stage. By applying the
weight transfer, the adaptation of w2(n + 1) is similar to that of the fast filter, which
speeds up the convergence rate of μ2 NSA filter. Moreover, the cost of the proposed
weight transfer scheme is smaller than that of the original combination, because only
one filter is adapted.

Figures 2 and 3 display the comparison of excess means-square error (EMSE)
obtained from NSA-NSA with the tracking weight transfer scheme and no-transfer
scheme [the mixing parameter is adjusted according to (6)]. The same step size is
chosen for this comparison. As can be seen, the overall performance of the filter bank is
improved by the transfer scheme. It shows from these figures that the proposed weight
transfer scheme exhibits faster convergence than no-transfer scheme. The proposed
algorithm is summarized in Table 1.



Circuits Syst Signal Process (2016) 35:3244–3265 3249

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

n

EM
SE

(d
B

)
Fast filter
Slow filter(weight transfer)
Slow filter(no transfer)
Comb.,no transfer
Comb.,weight transfer

Fig. 2 Comparison of EMSE of NSA-NSA for Gaussian input in example 1
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Table 2 Summary of the computational complexity

Algorithms Component filter
adaptation

Basic combination Explicit weight calculation Weight transfer

Basic CLMS [1] 4M + 2 6 2M 2M

NLMS-NSA [2] 6M + 1 6 2M M + 3

NSA-NSA 6M 5 (using 6) 2M No

2.3 Computational Complexity

Thecomputational complexity of thebasicCLMS[1],NLMS-NSA[2], andNSA-NSA
algorithms is listed in Table 2. Since the basic CLMS combines twoLMS algorithms, it
requires 4M+2multiplications for the adaptation of the component filters. TheNLMS-
NSA algorithm provides additional insensitivity to the input signal level by combining
the NLMS and NSA, and it requires 6M + 1 multiplications for the adaptation of the
component filters. In contrast to the CLMS, the proposed algorithm uses NSA as the
fast filter to replace the NLMS filter, which reduces the computational burden and the
negative effect of impulsive noise. From (1) and (4), the basic CLMS and NLMS-NSA
algorithms need six multiplications to compute the filter output and to update a(n).
However, the proposed algorithm requires five multiplications to update a(n) [see (1)
and (6), respectively]. According to (9), all the algorithms demand 2M multiplications
to calculate the explicit weight vector. Moreover, due to using the slide window of
tracking weight transfer scheme, the NSA-NSA can further reduce the computation
operations. Consequently, these would lead to significant computational efficiency.

2.4 The Analysis of the Mixing Parameter

In this section, the convergence behavior of the mixing parameter is analyzed, and the
range of ρa will be discussed. When the error term e(n) is expanded with a Taylor
series [18–20], we have

e(n + 1) = e(n) + ∂e(n)

∂a(n)
�a(n) + 1

2

∂2e(n)

∂2a(n)
�a2(n) + h.o.t (10)

where h.o.t. represents the higher-order terms of the remainder of the Taylor series
expansion. According to e(n) = d(n)− y(n) and (3), ∂e(n)

∂a(n)
can be obtained as follows:

∂e(n)

∂a(n)
= λ(n)[1 − λ(n)][y2(n) − y1(n)]. (11)

The mixing parameter correction �a(n) can be calculated from (6)

�a(n) = ρasign(e(n))[(y1(n) − y2(n))] λ(n) [1 − λ(n)]. (12)
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Combining (10), (11), and (12), we can express (10) as

e(n + 1) = e(n)

[

1 − ρa(y1(n) − y2(n))2

|e(n)| λ(n)2(1 − λ(n))2
]

. (13)

The NSA-NSA can converge if

|e(n + 1)| ≤ |e(n)|
∣
∣
∣
∣1 − ρa(y1(n) − y2(n))2

|e(n)| λ(n)2(1 − λ(n))2
∣
∣
∣
∣ . (14)

Hence, ∣
∣
∣
∣1 − ρa(y1(n) − y2(n))2

|e(n)| λ(n)2(1 − λ(n))2
∣
∣
∣
∣ < 1. (15)

Solving the inequality with respect to ρa gives

0 < ρa <
2|e(n)|

(y1(n) − y2(n))2λ(n)2(1 − λ(n))]2 . (16)

2.5 Steady-State Performance of the Proposed Algorithm

To measure the steady-state performance, the EMSEs of the filters are expressed as
[1]

Jex,i (∞) = lim
n→∞ E{e2a,i (n)}, i = 1, 2 (17)

Jex(∞) = lim
n→∞ E{e2a(n)} (18)

Jex,12(∞) = lim
n→∞ E{ea,1(n)ea,2(n)} (19)

where E{·} denotes the expectation, Jex,i (∞) represents the individual EMSE of the
i th filter, Jex(∞) is the cross-EMSE of the combined filters, Jex,12(∞) is the steady-
state correlation between the a priori errors of the elements of the combination, ea,i (n),
and ea(n) are a priori error, respectively, defined by

ea,i (n) = [w0 − wi (n)]T x(n) = ςT
i (n)x(n) (20)

ea(n) = [w0(n) − w(n)]T x(n) = ςT (n)x(n) (21)

where ςi (n) is the weight error vector of the individual filter, and ς(n) is the weight
error vector of the overall filter.

Additionally, for the modified combination (2), Jex,u(∞) is defined as

Jex,u(∞) = lim
n→∞ E{λ2u(n)e2a,1(n) + [1 − λu(n)]2e2a,2(n)

+2λu(n)[1 − λu(n)]ea,1(n)ea,2(n)} (22)
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where

λu(n) =
⎧
⎨

⎩

1 a(n) ≥ a+ − ε

λ(n) a+ − ε > a(n) > −a+ + ε

0 a(n) ≤ −a+ + ε

(23)

and ε is a small positive constant.
Taking expectations of both sides of (6) and using y1(n)−y2(n) = ea,2(n)−ea,1(n)

yields:

E{a(n+ 1)} = E{a(n)}+μa E{sign(e(n))[ea,2(n)− ea,1(n)]λ(n)[1−λ(n)]}. (24)

According to the Price theorem [21,25], we have

E{sign[e(n)]θ(n)} ≈
√

2

π

1

χe,n
E{e(n)θ(n)} (25)

where χe,n is the standard deviation of the error e(n), i.e., χ2
e,n = E{e2(n)}, and θ(n)

can be defined as θ(n) = [ea,2(n) − ea,1(n)]λ(n)[1− λ(n)]. Therefore, (24) becomes

E{a(n + 1)} ≈ E{a(n)} + φa E{e(n)[ea,2(n) − ea,1(n)]λ(n)[1 − λ(n)])} (26)

where φa = μa

√
2
π

1
χe,n

. Then, (26) can be rewritten as:

E{a(n + 1)} ≈ [E{a(n)} + φa E{[e2a,2(n) − ea,1(n)ea,2(n)]λ(n)[1 − λ(n)]2}
+φa E{[ea,1(n)ea,2(n) − e2a,1(n)]λ2(n)[1 − λ(n)]}]a+

−a+ . (27)

Assume λ(n) is independent of a prior error ea,i (n) in the steady state, under this
assumption, E{a(n + 1)} is governed by

E{a(n + 1)} ≈ [E{a(n)} + φa E{λ(n)[1 − λ(n)]2}�J2

−φa E{λ2(n)[1 − λ(n)]}�J1]a+
−a+ (28)

where �Ji = Jex,i (∞) − Jex,12(∞), i = 1, 2. Suppose the NSA-NSA converges,
the optimalmean combinationweights under convex constraint are given by [1], which
is discussed in the three situations as follows:

(1) If Jex,1(∞) ≤ Jex,12(∞) ≤ Jex,2(∞), we have �J1 ≤ 0 and �J2 ≥ 0. Since
a(n) and λ(n) are limited in the effective range, an assumption can be expressed as

E{a(n + 1)} ≥ [E{a(n)} + C]a+
−a+ as n → ∞ (29)

where C = λ+(1 − λ+)2(�J2 − �J1) is a positive constant. In this case, we can
conclude that

{
Jex(∞) ≈ Jex,1(∞)

Jex,u(∞) = Jex,1(∞)
. (30)
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Therefore, (30) shows that the NSA-NSA algorithm performs as well as the com-
ponent filters.

(2) If Jex,1(∞) ≥ Jex,12(∞) ≥ Jex,2(∞), we have �J1 ≥ 0 and �J2 ≤ 0. Then,
(28) can be rewritten as

E{a(n + 1)} ≤ [E{a(n)} − C]a+
−a+ as n → ∞ (31)

for a positive constantC = λ+(1 − λ+)2(�J1 − �J2) and

{
Jex(∞) ≈ Jex,2(∞)

Jex,u(∞) = Jex,2(∞)
. (32)

From (32), the overall filter performs approximately equal to the better component
filter.

3) If Jex,12(∞) < Jex,i (∞), i = 1, 2, we have �J1 > 0 and �J2 > 0.
Assume λ(n) → 0 when n → ∞, we obtain

[1 − λ̄(∞)]�J2 = λ̄(∞)�J1 (33)

where λ̄(∞) is given by

λ̄(∞) =
[

�J2
�J1 + �J2

]λ+

1−λ+
. (34)

Consequently, it can be concluded from (34) that: if Jex,1(∞) < Jex,2(∞), then
λ+ ≥ λ̄(∞) > 0.5; if Jex,1(∞) > Jex,2(∞), so 0.5 ≥ λ̄(∞) > 1 − λ+.

Consider the following formulas

Jex(∞) = λ̄2(∞)Jex,1(∞) + [1 − λ̄(∞)]2 Jex,2(∞)

+2λ̄(∞)[1 − λ̄(∞)]Jex,12(∞) (35)

Jex,u(∞) = λ̄2(∞)Jex,1(∞) + [1 − λ̄(∞)]2 Jex,2(∞)

+2λ̄(∞)[1 − λ̄(∞)]Jex,12(∞) (36)

and rearranging (35), we have

Jex(∞) = λ̄(∞){Jex,1(∞) + [1 − λ̄(∞)]Jex,12(∞)}
+[1 − λ̄(∞)]{[1 − λ̄(∞)]Jex,2(∞) + λ̄(∞)Jex,12(∞)}

= λ̄(∞){Jex,12(∞) + λ̄(∞)[Jex,1(∞) − Jex,12(∞)]}
+[1 − λ̄(∞)]{Jex,12(∞) + [1 − λ̄(∞)][Jex,2(∞) − Jex,12(∞)]}.

(37)
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Then, we can rewrite (37) using (34) as

Jex(∞) = λ̄(∞)[Jex,12(∞) + λ̄(∞)�J1]
+ [1 − λ̄(∞)]{Jex,12(∞) + [1 − λ̄(∞)]�J2}. (38)

Since λ̄(∞) = �J2/(�J1 + �J2) and 1 − λ̄(∞) = �J1/(�J1 + �J2), yielding

Jex(∞) = λ̄(∞)

[

Jex,12(∞) + �J1�J2
�J1 + �J2

]

+[1 − λ̄(∞)]
[

Jex,12(∞) + �J1�J2
�J1 + �J2

]

. (39)

Hence, we obtain

Jex(∞) = Jex,u(∞) = Jex,12(∞) + �J1�J2
�J1 + �J2

. (40)

According to λ̄(∞) ∈ (1 − λ+, λ+), the following bounds hold:

Jex(∞) = Jex,u(∞) = Jex,12(∞) + λ̄(∞)�J1 < Jex,1(∞) (41)

Jex(∞) = Jex,u(∞) = Jex,12(∞) + λ̄(∞)�J2 < Jex,2(∞), (42)

that is, {
Jex(∞) < min{Jex,1(∞), Jex,2(∞)}
Jex,u(∞) < min{Jex,1(∞), Jex,2(∞)} . (43)

From the above three situations, it is clear that the proposed NSA-NSA filter per-
forms equally or outperforms the best component filter.

3 Simulation Results

To evaluate the performance of the proposed algorithm, three examples of system
(channel) identification were carried out. The results presented here were obtained
from 200 independent Monte Carlo trials. The software of MATLAB 8.1 version
(2013a) was used to simulate the proposed algorithm under the computer environment
of AMD (R) A-10 CPU 2.10 GHz and 8 Gb memory. To measure the performance of
the algorithms, EMSE using logarithmic scale (dB) was used, defined as:

EMSE = 10 log10{|e2a(n)|}. (44)

The unknown system was a 10-tap FIR filter given by random. White Gaussian
noise (WGN) with zero mean and unit variance was used as input. The system was
corrupted by additive WGN and an impulsive noise sequence. The impulsive noise
v(n) was generated from the Bernoulli–Gaussian (BG) distribution [4,17,23,29]

v(n) = A(n)I (n) (45)
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where A(n) is a binary-independent and identically distributed (i.i.d.) Bernoulli
process with p{A(n) = 1} = c and p{A(n) = 0} = 1 − c, and c is the proba-
bility of occurrence for the impulsive interference I (n). The mean value of v(n) is
zero, and its variance is given by

var{v(n)} = cσ 2
I (46)

where σ 2
I = var{I (n)}, and the parameter c is set as c = 0.01 [4,17,23].

3.1 Example 1

For the first example, the parameter σ 2
I in (46) was fixed at σ 2

I = 104/12, and the 10
dB SNR WGN [4,17,23]. The unknown system changes abruptly at n =10,000.

Figures 4 and 5 show the performances of the proposed algorithm with different
sets of N0 and ρa . The filter values of the NSA were μ1 = 0.05, μ2 = 0.005 (which
satisfies the stability condition), ε1 = ε2 = 0.0001, and a+ = 4. Consider the stability
of evolution of the mixing parameter and the convergence rate, the best choice is
N0 = 2. In addition, we can observe from Fig. 5 that the best choice is ρa = 10.

Figures 6 and 7 display the evolution of the mixing parameters λ(n) and a(n) in
NSA-NSA. Run 1 used the no-transfer scheme [1], Run 2 and Run 3 represent the
mixing parameters based on the tracking weight transfer scheme, according to (4)
and (6), respectively. Results demonstrate that the proposed transfer scheme achieves
faster convergence rate and improves the filter robustness in the presence of impulsive
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Fig. 6 Evolution of the mixing parameter λ (n) of NSA-NSA

noise. Moreover, Figs. 6 and 7 show that adjusting the mixing parameter a(n) using
(6) (Run3) results in better stability than other methods.

To further show the performance advantage of the proposed method, Fig. 8 depicts
the learning curves of the NLMS-NSA and the NSA-NSA algorithms. This figure
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Fig. 7 Evolution of the mixing parameter a(n) of NSA-NSA
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Fig. 8 Comparison of EMSE of NLMS-NSA algorithm and NSA-NSA for Gaussian input when 1%
impulsive noises are added

verifies that the performance of the proposed algorithm is at least as good as the better
component in the combination. Both algorithms have the same misadjustment, since
the step size of the slow filters is the same. However, the fast filter of the NLMS-
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Gaussian input when 1% impulsive noises are added

NSA is the NLMS, which results in large misadjustment in high background noise
environments. Consequently, the NLMS-NSA suffers from higher misadjustment in
the initial convergence stage. Figure 9 plots a comparison of NRMN [23], NSA [10],
VSS-NSA [27], VSS-APSA [29], and the proposed algorithm. Clearly, the NSA has a
trade-off between fast convergence rate and low EMSE, while the proposed algorithm
shows a good balance between the steady-state error and convergence rate.

3.2 Example 2

Next, we consider the case of σ 2
I = 104/20 and SNR = 5 dB, which corresponds to

case with the slightly impulsive case and highly Gaussian noises. The abrupt change
appeared in the system at the n =10,000.

In this example, the step size of NSA-NSA filter was selected as μ1 = 0.05, μ2 =
0.008, and ε1 = ε2 = 0.0001. This selection of the parameters ensures good
performance of the algorithm in terms of the convergence rate and steady-state mis-
adjustment. Figure 10 displays the choice of N0 in example 2. We can see that the
proposed method is not sensitive to this selection, with the optimal value at N0 = 2.
Figure 11 shows the EMSE of NSA-NSA for different ρa . The mixing parameter
ρa = 10 for the proposed algorithm was selected to guarantee the stability.

Figures 12 and 13 show the time evolution of the mixing coefficients, where Run
1 represents the no weight transfer scheme [1], and Run 2 and Run 3 represent the
mixing parameters based on the tracking weight transfer scheme given by (4) and (6),
respectively. Clearly, it can be observed from these figures that the best selection is
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Fig. 11 Choice of parameter ρa in example 2. [the mixing parameter a(n)]

Run 3. The robust performance in the presence of impulsive noise is also improved
by using (9).

Figure 14 plots a comparison of NLMS-NSA and the proposed algorithms. Again,
we see that the EMSE of NSA-NSA is consistent with the theoretical analysis. Both
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Fig. 12 Evolution of the mixing parameter λ(n) of NSA-NSA
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Fig. 13 Evolution of the mixing parameter a(n) of NSA-NSA

algorithms achieve quite similar steady-state error, but the proposed algorithm has the
smaller misadjustment in the initial stage of convergence. This is due to the fact that
the NLMS algorithm is not well suited for impulsive noise environment. Figure 15
shows a comparison of the learning curves from NRMN [23], NSA [10], VSS-NSA
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Fig. 14 Comparison of EMSE of NLMS-NSA algorithm and NSA-NSA for Gaussian input when 1%
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[27], VSS-APSA [29], and NSA-NSA for high Gaussian noise and low impulsive
noise environments. It is observed that the proposed algorithm achieves an improved
performance in the presence of impulsive noise.
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3.3 Intersymbol Interference (ISI) Channel Identification Under Impulsive
Noise Environment

In this section, we consider a real intersymbol interference (ISI) channel corrupted
by impulsive noise, which occurs quite often in communication systems. Here, we
model the ISI channel as

w0 = [0.04,−0.05, 0.07,−0.21,−0.5, 0.72, 0.36, 0, 0.21, 0.03, 0.07]T
︸ ︷︷ ︸

eleven coefficients

. (47)

In practice, the channel information is unknown. To deal with such problem, the length
of our filter was set to M = 13. Quadrature phase shift keyin (QPSK) was used as the
input signal. A segment of 10,000 samples was used as the training data and another
10,000 as the test data. The ISI channel was corrupted by impulsive noise, as shown in
Fig. 16. The performance of the proposed NSA-NSA1 is demonstrated, in comparison
with the NLMS-NSA.2

Figure 17 shows the learning curves of the two algorithms in impulsive noise.
Clearly, with impulsive noise, the performance of NSA-NSA is barely affected by

1 With QPSK input, the adaptation of a(n) of NSA-NSA is given as a(n + 1) = a(n) +
ρaconj{sign{e(n)}}[y1(n) − y2(n)]λ(n)[1 − λ(n)], where conj{·} denotes conjugate operation.
2 The derivation of VSS-NSA, VSS-APSA, and NRMN is different from the original literatures, when
input signal is the complex number. For paper length optimization, and in order to focus on the simplicity
of the proposed approach, we have decided to only compare to NLMS-NSA algorithm.
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Fig. 17 Learning curves of NLMS-NSA and NSA-NSA in ISI channel identification (Testing stage)

large disturbances, while the performance of NLMS-NSA deteriorates significantly
due to NLMS’s sensitivity to outliers.

4 Conclusions

A novel NSA-NSA was proposed to improve the performance of NSA for system
identification under impulsive noise. The proposed adaptive convex scheme combines
a fast and a slow NSA filter to achieve both fast convergence speed and low steady-
state error. Moreover, a sign cost function scheme to adjust the mixing parameter
was introduced to improve the robustness of the algorithm under impulsive noise. To
further accelerate the initial convergence rate, a tracking weight transfer scheme was
applied in theNSA-NSA. Simulation results demonstrated that the proposed algorithm
has better performance than the existing algorithms in terms of convergence rate and
steady-state error.
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