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Abstract We consider the problem of sequential, blind source separation in some
specific order from a mixture of sub- and sup-Gaussian sources. Three methods of
separation are developed, specifically, kurtosis maximization using (a) particle swarm
optimization, (b) differential evolution, and (c) artificial bee colony algorithm, all of
which produce the separation in decreasing order of the absolute kurtosis based on
the maximization of the kurtosis cost function. The validity of the methods was con-
firmed through simulation. Moreover, compared with other conventional methods, the
proposed method separated the various sources with greater accuracy. Finally, we per-
formed a real-world experiment to separate electroencephalogram (EEG) signals from
a super-determined mixture with Gaussian noise. Whereas the conventional methods
separate simultaneously EEG signals of interest along with noise, the result of this
example shows the proposedmethods recover from the outset solely those EEG signals
of interest. This feature will be of benefit in many practical applications.

B Wang Rongjie
Roger811207@163.com

Zhan Yiju
Yjzhan@zd100com.cn

Zhou Haifeng
Zhf216@163.com

1 Marine Engineering Institute, Jimei University, Xiamen 361021, China

2 Fujian Provincial Key Laboratory of Naval Architecture and Ocean Engineering,
Xiamen 361021, China

3 School of Engineering, Sun Yat-sen University, Guangzhou 510006, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-015-0192-4&domain=pdf


Circuits Syst Signal Process (2016) 35:3220–3243 3221

Keywords Blind source separation · Kurtosis · Sub-Gaussian distribution ·
Sup-Gaussian distribution · Swarm optimization algorithm

1 Introduction

Recently, blind source separation (BSS), or blind signal separation, has received con-
siderable attention in the fields of digital communications, biomedical engineering,
speech processing, image processing, and robot navigation [2,7,9,15,19,20]. The
objective of BSS is to extract the original source signals from their mixtures using
only the information of the observed signal with no or very limited knowledge about
the source signals. Over the past few years, many methods have been developed to
solve the BSS problem. They can be largely classified into two approaches. In the
context of BSS, all the sources are simultaneously recovered or estimated from the
observations, such as those based on the joint diagonalization cost function and the
natural gradient [26], those based on temporal predictability and the differential search
algorithm [3], and the nonlinear contract function-based BSS [31]. However, the dif-
ferent neurons of these BSS methods [3,26] may converge to the same maximization,
i.e., extracting the same sources from mixtures. The other class of algorithm is called
blind source extraction (BSE). BSE is an extension of the BSS technique. Compared
with these methods [3,26,31], the objective of BSE is to recover a single source or a
part of a source from the observations one by one [6,24], and this leads to low compu-
tation complexity and greater flexibility. This class of algorithms has a disadvantage
in that the choice of nonlinearity has taken several directions because of the conflict
between boundedness and analyticity. In this respect, Liouville’s theorem states that if
a function is analytic and bounded in the plane, then it is a constant. Conventional BSS
approaches do not ensure separation of source signals with a specified order in accor-
dance with their stochastic properties. There are actually three types of source signals
in [10,16]; they are known as standard normal, sup-Gaussian, and sub-Gaussian. The
kurtosis in [27,32] is used to measure signals of the different distributions. This paper
introduces a class of BSS methods based on swarm optimization, which is able to
separate sup and sub-Gaussian sources from mixtures in decreasing order according
to the absolute value of kurtosis. However, it requires the maximization of the cost
function, which is nonlinear and multimodal. Indeed, the swarm optimization algo-
rithm has yielded excellent performances in similar problems [17,18,21]. For these
reasons, we believe it is necessary and certainly beneficial to study the application of
swarm optimization algorithms in sequential BSS.

The paper is organized as follows. Sequential BSS is formulated in Sect. 2.1. Section
2.2 provides the description of the employed swarm intelligent algorithms: the particle
swarm optimization, the differential evolution approach, and the artificial bee colony
algorithm. Section 2.3 proposes a swarm intelligent optimization-based BSS. The
performance of the proposed method is numerically evaluated in Sect. 3. Section 4 is
devoted to concluding remarks.
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2 Sequential Blind Source Separation Method in Order Using Swarm
Optimization Algorithm

2.1 Problem Formulation

Consider the n unobservable components of a zero-mean vector s(t) = [s1(t), s2(t),
. . ., sn(t)]T, each component being mutually and statistically independent; here super-
script T denotes transposition and s(t) εRn . The available sensor vector x(t) =
[x1(t), x2(t), . . ., xm(t)]T, where m is the number of sensors and x(t) εRm , is given
by

x(t) = As(t), (1)

whereA εRm×n is a non-singular andunobservablematrixwith a nonzero determinant,
and its rank isn. Here, t = 0, 1, . . . , N−1 is the instant timeof sampling. The objective
of sequential BSS is to recover or estimate only a single source from the observations.
The separated signal can be given by

y(t) = wTx(t) = wTAs(t), (2)

where the extracted weighted vectorw is am column vector. Let g = wTA; if only one
element of g is nonzero while the others are zero, then y(t) is a recovery or estimate
of s(t) with the same site being nonzero in g. s(t) is recovered using (2) n times.

Denote B as a whitening matrix and selected so as to sphere the observations, then
z(t) = Bx(t). We estimate each source, y(t), separately finding a vector w such that

y(t) = wTz(t). (3)

Without loss of generality, we make the typical assumption that the source signals
have unit variance, i.e., E[s(t)s(t)T] = I. It also means E[y(t)2] = 1, and hence we
can rewrite E[y(t)2] as

E
[
wTz(t)z(t)Tw

]
= wTE

[
z(t)z(t)T

]
w

= 1 (4)

From (4), we can obtain ‖w‖2 = 1, where || · || denotes the Frobenius norm.
In [27,32], the kurtosis of a zero-mean random variable y(t) is defined as

K (y)
�= cum[y(t), y(t), y(t), y(t)]. (5)

For Gaussian signals, the kurtosis is zero; for non-Gaussian signals, the kurtosis is
nonzero. The kurtosis can be both positive and negative. Random variables that have
positive kurtosis are called sup-Gaussian, and those with negative kurtosis are called
sub-Gaussian. Non-Gaussianity is measured using the absolute value of kurtosis or
the square of kurtosis in [17,18,21]. We use (5) to find an optimal w,
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w = argmax
w

|K (y)| s.t. ‖w‖2 = 1. (6)

To justify the use of the optimization criterion in (6), we state the following theorem
and give its proof.

Theorem Assume that z(t) = BAs(t) where B is the whitening matrix. Then, the
local maxima (or minima) of K (y) under the constraint ‖w‖2 = 1 such that the
corresponding independent components si (t) satisfy K (si ) > 0 (or K (si ) < 0).

Proof We define a linear transformation q = (BA)Tw. Without loss of generality, it is
sufficient to analyze the stability of point qi = [0, . . . , 0, δi , 0, . . . , 0]T with |δi | = 1.
At qi , we have y(t) = qTi s(t) = δi si (t). Substituting it into (5), we then obtain

K (q) = E
{
[qTs(t)s(t)Tq]2

}
− 3

{
qTE[s(t)s(t)T]q

}2
. (7)

Evaluating the first-order gradients and second order of si (t) at optimal point qi and
using the independence of source signals, we obtain

∂K (q)

∂q

∣∣∣∣
q=qi

= [0, . . . , 0, 4K (si )δ
3
i , 0, . . . , 0]T, (8)

∂K (q)

∂q∂qT

∣∣∣∣
q=qi

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0, . . . , 0, · · · · · · , 0, . . . , 0
... · · · · · · ...

0, . . . , 0, 12K (si )δ2i , 0, . . . , 0
0, . . . , 0, · · · · · · , 0, . . . , 0

... · · · · · · ...

0, . . . , 0, · · · · · · , 0, . . . , 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

Introducing a small perturbation �q = [�q1,�q2, . . . ,�qm]T to qi . The difference
between K (qi + �q) and K (qi ) to second order in a Taylor series expansion is

K (qi + �q) − K (qi )

=
[

∂K (q)

∂q

∣∣∣∣
q=qi

]T

�q +
[
1

2
�qT

∂K (q)

∂q∂qT

∣∣∣∣
q=qi

]
�q + o(‖�q‖2)

= 2K (si )[2δ3i �qi + 3δ2i �q2i ] + o(‖�q‖2). (10)

From the constraint ‖q + �q‖2 = 1, we obtain 2δi�qi = −‖�q‖2, which implies
that the higher-order terms in (10) are o(‖�q‖2) and can be neglected. Through a
substitution, (10) can be simplified as

K (qi + �q) − K (qi ) = −2K (si ) ‖�q‖2 + o(‖�q‖2), (11)

which clearly shows that qi is an extremum and of the type implied by the conditions
of the theorem.
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According to the above analysis, it is clear that the blind separation in (6) would
extract the dominant source with the highest absolute kurtosis value. However, it may
be difficult to implement, because it requires the maximization of the cost function,
which is nonlinear and multimodal. Inspired by nature, the swarm optimization algo-
rithm is a technique of dynamic systems research, which endeavors to develop new
computational tools for problem solving by simulating and mimicking natural behav-
iors of organisms, and may result in the design of novel computational systems [4].
Indeed, some swarm optimization algorithms have obtained excellent performances
in similar problems [1,8,12]. Because of these reasons, we believe it is necessary
and certainly beneficial to study the application of swarm optimization algorithms in
sequential BSS. In the subsequent sections, we describe the details of particle swarm
optimization, differential evolution, and the artificial bee colony algorithm used in this
work.

2.2 Swarm Optimization Algorithms

2.2.1 Particle Swarm Optimization

The particle swarm optimization (PSO) is a population-based, self-adaptive search
optimization technique first introduced by Kennedy and Eberhart [14]. The PSO
algorithm emulates swarm behavior and the individuals represent points in the mul-
tidimensional space. A particle represents a possible potential solution. The swarm
initially has a population of random solutions. Each particle is given a random veloc-
ity and is flown through the problem space. Each particle has a memory and keeps
track of its previous optimal position, denoted Pbest, and corresponding fitness value.
Each swarm remembers another value, denoted Gbest, which is the optimal solution
achieved so far by a swarm. The velocity Vl(d) and the position θ l(d) of the dth
dimension of lth particle are updated by

Vl(d) = ωkVl(d) + c1r1(d)[Pbest,l(d) − θl(d)] + c2r2(d)[Gbest (d) − θl(d)],
(12)

ωk = ωmax − (ωmax − ωmin)

kmax
k, (13)

θl(d) = θl(d) + Vl(d), (14)

where d = 1, 2, . . ., D with D the dimension of the candidate solution; Pbest,l(d)

and Gbest(d) are the dth dimensional positions of Pbest of the lth particle and Gbest,
respectively; r1(d) and r2(d) are random numbers in the range [0, 1] and are different
in different dimensions; k and kmax are the iteration number and total number of
iterations, respectively, k = 1, 2, . . ., kmax; c1 and c2 are acceleration coefficients, and
ωk is the inertial weight, which plays the role of balancing the global search and local
search. According to [29],ωmax = 0.9,ωmin = 0.5 and c1+c2 = 4. l = 1, 2, . . ., NP,
with NP the particle population size.

Table 1 presents the pseudocode for the PSO algorithm that we employed in this
work.
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Table 1 Particle swarm optimization

Initialize: set kmax, NP, D. Generate initial θl(d) randomly from [θmin(d) θmax(d)], 
l=1,2, , NP, d=1, 2, …, D. θmax(d) and θmin(d) are maximum and minimum of 
candidate solution d-th dimension, respectively.
Calculate fit function of each candidate solution, and select individual 
particle’s optimal position Pbest, l and swarm particle’s optimal position Gbest.
while the fit function criterion is not reached and k≤kmax

for l=1 to Np
for d=1 to D
Update Vl(d) by (12) and (13);
Update θl(d) by (14);

end
Calculate fit function of each candidate solution;
According to fit function value of individual particle, select Pbest, l 
from the set {previous Pbest, l, θl(d)};

end
According to fit function value of swarm, select Gbest from the set
{previous Gbest, current Pbest, l };
k=k+1;

end

2.2.2 Differential Evolution

The differential evolution (DE) was proposed by Storn and Price in 1995 [23,25].
It is a population-based and directed-search method. Let us assume that θl,k(l =
1, 2, . . ., NP) are candidate solution vectors in iteration k (NP = population size).
Successive populations are generated by adding the weighted difference of two ran-
domly selected vectors into a third randomly selected vector. For classical DE, the
mutation, crossover, and selection operators are defined straightforwardly as follows.

Mutation for each vector θl,k in iteration k, a mutant Vl,k is defined by

Vl,k = θr1,k + F(θr2,k − θr3,k), (15)

where r1, r2, and r3 are mutually different random integer indices selected from [1
Np]. Further, r1 �= r2 �= r3. F ε[0, 2] is a real random constant that determines the
amplification of the added differential variation of (θr2,k − θr1,k).

Crossover DE uses the crossover operation to generate new solutions by shuffling
competing vectors and also to increase the diversity of the population. It defines the
following trial vector:

Ul,k = [Ul1,k,Ul2,k, ,UlD,k], (16)

where

Ul j,k =
{
Vl j,k, ϕ ≤ CR or j = k
θl j,k, otherwise

, (17)

CR ε[0,1] is the predefined crossover rate constant, ϕ a uniform random number gen-
erator, and k ε[1, D] a random parameter index, chosen once for each l to ensure that
at least one parameter is always selected from the mutated vector Vl j,k .
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Table 2 Differential evolution

Initialize: set kmax, NP, D, CR. Generate initial θl(d) randomly from [θmin(d)
θmax(d)], l=1,2, …, NP, d=1, 2, , D.while the fit function criterion is not 
reached and k≤kmax

for l=1 to Np
Update Vl,k by (15);
Update Ul,k by (16)-(17);
Calculate fit function of each Ul,k;
According to fit function values of θl,k and Ul,k, select new θl,k+1from 
θl,k and Ul,k;

end
k=k+1;

end

Selection The approach must determine which vectors θl,k and Ul,k should be a
next iteration θl,k+1 depending on their fitness value. Table 2 outlines the pseudocode
of DE.

2.2.3 Artificial Bee Colony Algorithm

The artificial bee colony (ABC) is an algorithm that simulates the foraging behavior
of a bee colony, and can be used to solve the multidimensional optimization problems.
A honey bee swarm consists of three kinds of bees: employed bees, onlooker bees,
and scout bees [13]. In the ABC algorithm, the position of a food source represents a
possible solution to the optimization problem and the nectar amount of a food source
corresponds to the object function of the associated solution. Let θ(l) represent the
l-th food source in the population, Ns is the population size of food source. The units
of the original ABC can be explained as follows:

Employed Bee PhaseAt this stage, each employed bee generates a new food source
θEB(l) in the neighborhood of its present position by

θEB(l, d) = θ(l, d) + ϕld [θ(l, d) − θ(r1, d)], (18)

where d = 1, 2, . . ., D and D is the dimension of candidate solution, r1 is randomly
chosen from [1, NF] and has to be different from l, i.e., r1 �= l. ϕld is a random number
in the range [−1, 1].

Once θEB(l) is obtained, it is evaluated and compared with θ(l). If the fitness of
θEB(l) is better than that of θ(l), θEB(l) replaces θ(l); otherwise if θ(l) is retained, then
kcount(l) = kcount(l)+1. kcount(l) is a non-improvement number of the solution θ(l).

Onlooker Bee Phase After all worker bees complete their searches, they share
in a dance their information related to the nectar amounts and the location of their
sources with onlooker bees. An onlooker bee evaluates the nectar information given
by each worker bee and chooses a food source site with a probability related to its
nectar amount. This probability depends on the fitness values of the solutions in the
population; it can be described as
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pl = F(l)∑Ns
l=1 F(l)

l = 1, 2, . . . , Ns, (19)

where F(l) is the fitness function of lth candidate solution. Once the onlooker has
selected her food source θ(l), she produces a modification on θOB(l) using

θOB(l, d) =
{

θ(l, d) + ϕld [θ(l, d) − θ(r1, d)], pl < MR
θ(l, d), otherwise

, (20)

where MR is a control parameter of the ABC algorithm in the range [0, 1], which
controls the number of parameters to be modified. As in the phase of the worker bee,
the onlooker bee produces a new position of the food source based on the fitness
value. If the fitness of θOB(l) is worse than that of θ(l), θ(l) is retained and kcount(l) =
kcount(l)+1; otherwise θOB(l) replaces θ(l).

Scout Bee Phase If a food source θ(l) cannot be further improved through a prede-
termined klimit(l), it is abandoned. The food source abandoned by the bees is replaced
with a new food source discovered by the scouts. The scout produces a food source
randomly from the range of [θmin(d)θmax(d)].

Pseudocode of ABC algorithm is given in Table 3.

2.3 Sequential Blind Source Separation Method in Order Using Swarm
Optimization Algorithm

The idea of this paper is the application of the swarmoptimization algorithm in sequen-
tial BSS. In other words, the swarm optimization algorithms were used to find the
global optima of (6). As explained above, the upper and lower bounds of a candidate
solution are assumed known in advance. Because of the constraint ‖w‖2 = 1, we can
rewrite w as ⎡

⎢⎢⎢⎢⎢⎣

w1
w2

...

wm−1
wm

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

cosα1
sin α1 cosα1

...

sin α1 sin α2 . . . cosαm−1
sin α1 sin α2 . . . sin αm−1

⎤
⎥⎥⎥⎥⎥⎦

, (21)

where [α1, α2, . . ., αm−1] ε[0, 2π ](m−1), i.e., the upper and lower bounds of αi (i =
1, 2, . . .,m − 1) are 0 and 2π , respectively.

The idea described in the above method aims at the extraction of one source having
the highest absolute kurtosis value. However, it can also be used for recovering the
remaining sources. After one source is extracted, we can remove it from the mixture.
This can be achieved through a deflation procedure, in which the goal is to eliminate
the contribution of the extracted y(t). Mathematically, this procedure is given by

x(t) ← x(t) − hy(t), (22)

where h = E[x(t)y(t)]/E[y2(t)] is a vector that minimizes E{[x(t) − hy(t)]2}.
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Table 3 Artificial bee colony algorithm

Initialize: set maximum number of iterations kmax, klimit, NF, D; Generate initial 
θ(l, d) randomly from [θmin(d) θmax(d)], l=1, 2, …, NF, d=1, 2, …, D.
while the fit function criterion is not satisfied and k≤kmax

Employed bee phase

S

EB

EB

EB EB

EB

for =1 to 
       ( )= ( );
       Randomly select the dimension of  the solution,
       ;
       Update ( , ) by (18);
       Calculate  fitness value ( ) of ( );
       if  ( ) is bette

l N
l l

d
l d

F l l
F l

θ θ

θ
θ

EB

count

count count

r than ( ), ( )= ( ), 
       ( )= 0; 
      else  ( )= ( )+1;
end

F l l l
k l

k l k l

⎧
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

θ θ

Onlooker bee phase

S

OB

OB OB

OB OB

count

count count

for =1 to 
       Update ( ) by (19);
       Calculate  fitness value ( ) of ( );
       if  ( ) is better than ( ), ( )= ( ), 
       ( )= 0; 
      else  ( )= ( )+1;
e

l N
l

F l l
F l F l l l

k l
k l k l

θ
θ

θ θ

nd

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

Scout bee phase

S

count limit

SB

SB SB

SB SB

count

for =1 to 
       if ( )
       Generate new ( ) randomly;
       Calculate fitness value ( ) of ( );
       if   ( ) is better than ( ), ( )= ( ),
       ( )= 0;
end

l N
k l k

l
F l l

F l F l l l
k l

⎧
≥

θ
θ

θ θ

⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

k=k+1;
end

As the outcome of the first deflation is a BSS problem with n mixtures and n − 1
sources, we reduce the dimension of n via principle component analysis (PCA) [28]
to obtain a n − 1 model. Finally, the remaining sources can be extracted by repeating
the same steps.

For clarity, the pseudocode of the proposed method is presented in Table 4.

3 Simulation Analysis

In this section, a detailed simulation is provided to investigate the performance of the
proposed method. In all experiments, the elements of the mixing matrix A in (1) are
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Table 4 Procedural steps for sequential blind source separation used in the swarm optimization algorithm

1. Initialize n´, n´=n; if m > n´, reduce observed signal to n´ through PCA in 
[29];
2. Calculate B by computing the Schur decomposition of C=x(t)x(t)T, then 
sphere the observations, z(t)=Bx(t);
3. Set α in (21) as θ, then obtain the optimal extracted vector w through 
maximizing (6) using the PSO, DE or ABC;
4. Estimate y(t) using (3);
5. Deflate using (22);
6. n´←n´-1;
7. If m > n´, reduce the observed signal to n´ through PCA in [28];
8. If n´>1 go to step 3 end 

randomly generated in accordance with a uniform distribution in [−1, 1]. The ABC
parameters are used for the simulation as specified in (23), whereas the DE and PSO
parameters are used for the simulation as given in (24) and (25), respectively. The
simulation experiments were performed using the program MALAB ver.R2010b.

⎧
⎨
⎩
kmax = 200
klimit = 5
NF = 20

(23)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kmax = 200
NP = 20
ωmax = 0.9
ωmin = 0.4
c1 = c2 = 0.2

(24)

⎧⎨
⎩
kmax = 200
CR = 0.5
NP = 20

(25)

Experiment 1 In the first experiment, we consider the separation of sub-Gaussian
signals. The source signals are shown in Fig. 1a; Fig. 1b shows the observation signal
given by (1). Figure 2 shows the convergence curve of the different swarmoptimization
algorithms for first extraction of the signal. Table 5 shows the kurtosis of the estimated
signals for a sub-Gaussian. The performance of the BSS algorithm can be evaluated
using (26) and (27). A comparison of results obtained from different BSS methods
for the sub-Gaussian signals is given in Table 6. Note that the simulation results were
presented as average values of 30 independent runs. The method1 used in [11] is that
the cost function J (y) = 1

4 y(t)
4 was maximized by the ABC algorithm of Sect. 2.

SIRi = 10 log
‖si‖2

‖si − yi‖2
i = 1, 2, . . . , n (26)

SNR = 1

n

∑
i

10 log
‖si‖2

‖si − yi‖2
(27)
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Fig. 1 Signals of Experiment 1. a Source signals. b Observation signals
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Fig. 2 Convergence curves for different swarm optimization algorithms for first extracted signals with
sub-Gaussian nature

Table 5 Kurtosis of separated signal of sub-Gaussian nature

Separated signal Source signal True value Estimated value

PSO-BSS DE-BSS ABC-BSS

y1 s1 −1.5003 −1.5004 −1.5004 −1.5004

y2 s3 −1.1875 −1.1869 −1.1875 −1.1868

y3 s2 −0.7338 −0.7297 −0.7297 −0.7297

In Table 5, themethod using the ABC algorithm is denoted ABC-BSS and that using DE and PSO is denoted
DE-BSS and PSO-BSS, respectively

Table 6 Comparison of results from different BSS methods for a sub-Gaussian signal

Source signals BSS methods

PSO-BSS DE-BSS ABC-BSS The method1 in [11]

SIRi /dB

s1 43.3334 43.3045 43.3335 43.2375

s2 29.9809 29.9836 29.9851 29.5672

s3 30.3215 30.3310 30.3259 30.1221

SNR/dB 34.5453 34.5397 34.5481 34.3089
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Fig. 3 Signals of Experiment 2. a Source signals. b Observation signals

where the vector yi is an estimation of si . Clearly, SIRi → ∞ and SNR → ∞ if
perfect separation is achieved.

Experiment 2 In this experiment, the three speech signals in Fig. 3a are used.
They are sup-Gaussian distributions and are available in [5]. Figure 3b shows the
observation signal given by (1). Figure 4 shows the convergence curve of different
swarm optimization algorithms for the first extracted signal. Table 7 gives the kurtosis
of the estimated signals of the sub-Gaussian.A comparison of results from the different
BSS methods for sup-Gaussian signals is shown in Table 8. The method2 used in [11]
is that the cost function J (y) = 1

a1
exp[−a1y(t)2/2]y(t) was maximized using the

ABC algorithm given in Sect. 2, a1 ≈ 1.
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Fig. 4 Convergent curve of different swarm optimization algorithms for the first extracted sup-Gaussian
signals

Table 7 Kurtosis of the separated sup-Gaussian signals

Separated signal Source signal True value Estimated value

PSO-BSS DE-BSS ABC-BSS

y1 s3 5.5813 5.5816 5.5816 5.5816

y2 s1 5.0720 5.0737 5.0737 5.0737

y3 s2 3.9000 3.8907 3.8907 3.8907

Table 8 Comparison of results from different BSS methods for sup-Gaussian

Source signals BSS methods

PSO-BSS DE-BSS ABC-BSS The method2 in [11]

SIRi/dB

s1 38.3914 38.3921 38.3913 38.3332

s2 25.3188 25.3185 25.3188 24.7163

s3 47.3185 47.3157 47.3185 38.6097

SNR/dB 37.0095 37.0088 37.0095 33.8864
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Fig. 5 Signals of Experiment 3. a Source signals. b Observation signals
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Fig. 6 Convergent curve of different swarm optimization algorithms for first extracted signals with sub-
and sup-Gaussian nature

Table 9 Kurtosis of separated signals of sub- and sup-Gaussian nature

Separated signal Source signal True value Estimated value

PSO-BSS DE-BSS ABC-BSS

y1 s1 5.0720 5.0761 5.0762 5.0762

y2 s2 3.9000 3.8478 3.9013 3.9013

y3 s3 −1.5004 −1.4995 −1.4995 −1.4996

y4 s4 −0.7331 −0.7336 −0.7336 −0.7335

Table 10 Comparison of results from different BSS methods for sub- and sup-Gaussian signals

Source signals BSS methods

PSO-BSS DE-BSS ABC-BSS Method3 in [11] Method1 in [26] Method1 in [24]

SIRi /dB

s1 33.2932 32.7590 33.9471 35.4620 30.0469 25.8577

s2 39.3677 39.4511 41.1020 15.7000 16.3074 24.4787

s3 27.9899 27.1727 28.2107 26.8559 26.8471 2.0858

s4 34.2056 33.7043 34.0221 13.0322 13.7630 10.0781

SNR/dB 33.7141 33.2718 34.3208 22.7625 21.7411 15.6251
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Fig. 7 Recovered signals in Experiment 3. a Recovered signals of ABC-BSS method. b Recovered signals
of DE-BSS method. c Recovered signals of PSO-BSS method. d Recovered signals of the method3 in [11].
e Recovered signals using the method1 in [26]. f Recovered signals of the method1 in [24]
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Fig. 7 continued
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Fig. 8 Comparison of results of different BSS methods

Fig. 9 EEG signals

Experiment 3 This experiment exemplifies the separation of four source signals
given in Fig. 5a; the observation signals are shown in Fig. 5b. Both s1(t) and s2(t) are
speech signals of sup-Gaussian nature, whereas s3(t) and s4(t) are the communication
signals of sub-Gaussian nature. The convergent curve for different swarm optimization
algorithms for the first extraction of the signal is shown in Fig. 6. The kurtosis of the
estimated signals (Table 9) and a comparison of results from different BSS methods
(Table 10) are given for sup- and sub-Gaussian signals. The method3 used in [11]
maximizes the cost function J (y) = 1

a2
log cosh[a2y(t)] using the ABC algorithm in

Sect. 2, 1 ≤ a2 ≤ 2. The method1 in [26] maximizes the cost function in [26] using
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Fig. 10 Mixed EEG signals of the four channels

the DE algorithm in Sect. 2. The method1 in [24] maximizes the cost function in [24]
using the PSO algorithm in Sect. 2.

From Figs. 2, 4, and 6, we observe that the ABC algorithm requires less iterations to
achieve the fineness value compared with DE and PSO. A comparison of results from
Tables 6, 8, and 10 shows that the ABC-BSS can separate sources of any distribution
and has superior performance compared with DE-BSS and PSO-BSS. From Fig. 7
and Tables 5, 7, and 9, the proposed method is able to extract source signals (of sub-
Gaussian and/or sup-Gaussian nature) one by one with decreasing order of absolute
kurtosis. However, the results in Fig. 7d–f clearly demonstrate that method3 in [11],
method1 in [26], andmethod1 in [24] cannot extract source signals in the order specified
by their stochastic properties. Compared with the proposed methods, the method in
[11] separated sources with lower accuracy, especially for the mixed case of sub- and
sup-Gaussians.

Experiment 4 To examine the noise impact of the separated performance of the
proposed methods, in the last experiment, the four observation signals in Fig. 5b were
added with different white Gaussian noise of varying signal-to-noise ratio (SNR)
from 10 to 35dB. Moreover, we verify the effectiveness of the proposed method by
comparing it with the algorithms in [11,24], and [26]. More details of the algorithm
in [11] are available in [22]. The performance of the recovered signals is evaluated by
(27). Figure 8 shows a comparison of results for five different BSS methods.

As observed in Fig. 8, the separated performance of ABC-BSS, DE-BSS, and PSO-
BSS is quite similar. The comparison of results also shows that ourmethod can separate
sources of sub- and sup-Gaussian nature with higher accuracy compared with other
conventional methods.

Experiment 5 This class of BSS described in Sect. 2 could be essential in many
applications, especially when the number of sources is large, and only some of them
are interesting or useful signals buried in Gaussian noises. In this experiment, to
further confirm the estimation performance of the proposed algorithms, we used a
real-world example to compare the performance with those of the algorithm used in
[24]. Figure 9 shows two electroencephalogram (EEG) signals that are available in
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Fig. 11 Recovered EEG signals of the different BSS methods. a Recovered EEG signals of the ABC-BSS
method.bRecovered EEG signals of theDE-BSSmethod. cRecovered EEG signals of theDE-BSSmethod.
d Recovered EEG signals of the method in [24]
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Table 11 Kurtosis of separated EEG signals

Separated signal Source signal True value BSS methods

PSO-BSS DE-BSS ABC-BSS

y1 s2 39.1266 39.1372 39.1372 39.1272

y2 s1 3.5458 3.5405 3.5405 3.5405

y3 s3 −0.0356 −0.0474 −0.0474 −0.0377

Table 12 Comparison of results for the different BSS methods applied to the EEG signal

Source signals BSS methods

PSO-BSS DE-BSS ABC-BSS Method in [24]

SIRi /dB

s1 28.0683 28.0683 28.0699 4.4413

s2 38.7114 38.7119 38.7918 16.6768

[5], the kurtosis is positive and relatively large for the EEG signals (as also for clear
heart, eye movement, and eye blinking artifacts); the kurtosis is zero or negative for
noise. We mixed two EEG signals and one white Gaussian noise into four channels
of an EEG. The mixed signals of the four channels are shown in Fig. 10. Figure 11
shows that we have employed different BSS methods to recover the EEG signals from
the mixed signals; a comparison of the recovery performance is shown in Table 12.
Table 11 shows the kurtosis of the estimated EEG signals. Note that m and n in this
experiment are 4 and 3, respectively. Because the method in [26] uses an assumption
that implies m = n, the method is not appropriate if m > n. Also, [11] makes the
further assumption that the dimensions of x(t) and s(t) are equal.

As expected, Table 11 shows the proposed methods first recover those EEG signals
of interest, whereas the method in [24] separated “useful” signals and “useless” noise
simultaneously. Again, the superior performance of our method is confirmed by the
results in Fig. 11 and Table 12. These features enable the proposed method to be of
benefit in practice.

4 Conclusion

This paper introduced a class of sequential BSS methods that maximized the kurtosis
cost function. They are able to extract the source signals of sub- and sup-Gaussian
form one by one in a specific order determined according to their stochastic properties,
specifically, in decreasing order of the absolute kurtosis. Simulation results demon-
strated the excellent performance of the proposed method. Compared with previous
methods, the methods introduced have the following merits: recovery of the original
signals from a linear mixture of signals with higher accuracy and extraction of various
sources in decreasing order according to the absolute value of the kurtosis. In addition,
the proposed methods are suitable for m ≥ n. These features make the methods suit-
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able in many applications, especially when the number of sources is large and when
only some signals are of interest or when useful signals are buried in white Gaussian
noise.

Recently, complex-valued signals have arisen in many applications as diverse as
wireless communications, radar, and functional magnetic resonance imaging. When
processing has to be done in a transform domain such as Fourier space or com-
plex wavelet domains, the data are again complex-valued. To perform BSS of such
complex-valued signals, there are a number of options. For complex-valued signals,
the Gaussianity implies zero kurtosis, sup-Gaussianity implies positive kurtosis, and
sub-Gaussianity implies negative kurtosis [30]. The resolution of sequential BSS of
various complex sources is one of the challenging problems of BSS. Future work may
include developing sequential complex BSS algorithms that achieve the objective of
extracting complex-valued signals one by one with specified order.
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