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Abstract In this paper, we study the parameter estimation problem of a class of output
nonlinear systems and propose a recursive least squares (RLS) algorithm for estimating
the parameters of the nonlinear systems based on the model decomposition. The pro-
posed algorithm has lower computational cost than the existing over-parameterization
model-based RLS algorithm. The simulation results indicate that the proposed algo-
rithm can effectively estimate the parameters of the nonlinear systems.

Keywords Parameter estimation - Recursive identification - Least squares -
Hierarchical identification principle - Nonlinear system

1 Introduction

Iterative methods and recursive methods have widely been used in system identification
[7,8,15], system control [31,33], signal processing [30] and multivariate pseudo-linear
regressive analysis [37] and for solving matrix equations [6]. The parameter estima-
tion methods have received much attention in system identification [28,38,39]. For
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example, Wang [35] gave a least squares-based recursive estimation algorithm and
an iterative estimation algorithm for output error moving average systems using the
data filtering technique. Dehghan et al. [5] studied the fourth-order variants of the
Newton’s method without the second-order derivatives for solving nonlinear equa-
tions. Shi et al. [32] studied the output feedback stabilization of networked control
systems with random delays modeled by the Markov chains. Li [25] developed a max-
imum likelihood estimation algorithm for Hammerstein CARARMA systems based
on the Newton iteration. Wang and Zhang [43] proposed an improved least squares
identification algorithm for multivariable Hammerstein systems.

The typical nonlinear systems include the Wiener systems [14], the Hammerstein
systems [18], the Hammerstein—Wiener systems [3] and feedback nonlinear systems
[1,20]. A Wiener nonlinear model is composed of a linear dynamic block followed by
a static nonlinear function and a Hammerstein model puts a nonlinear function before a
linear dynamic block [2,44]. Voros [34] proposed the key term separation technique for
identifying Hammerstein systems with multi-segment piecewise-linear characteristics.
Recently, a decomposition-based Newton iterative identification method was proposed
for a Hammerstein nonlinear FIR system with ARMA noise [12].

This paper considers the parameter identification problem of a special class of
output nonlinear systems, whose output is the nonlinear function of the past outputs
[7,8]. For this class of nonlinear systems with colored noise, Wang et al. [36] gave
a least squares-based and a gradient-based iterative identification algorithms; Hu et
al. [21] proposed a recursive extended least squares parameter estimation algorithm
using the over-parameterization model and a multi-innovation generalized extended
stochastic gradient algorithm for nonlinear autoregressive moving average systems
[22]; Bai presented an optimal two-stage identification algorithm for Hammerstein—
Wiener nonlinear systems [4]. The least squares algorithms play a key role in the
parameter estimation of linear systems [17,19,29]. This paper derives a new recursive
least squares algorithm for output nonlinear systems using the hierarchical identifica-
tion principle. The proposed method has less computational load and can be extended
to study parameter estimation of dual-rate/multi-rate sampled systems [9,10,26].

This paper is organized as follows: Section 2 gives the representation of a class
of nonlinear systems. Sections 3 and 4 derive a least squares algorithm and a model
decomposition-based recursive least squares algorithm. Section 5 gives the computa-
tional efficiency of the proposed algorithm and the recursive extended least squares
algorithm. Section 6 provides a numerical example to show the effectiveness of the
proposed algorithm. Finally, some concluding remarks are offered in Sect. 7.

2 The System Description and its Identification Model

Let us define some notation. “A =: X”’or “X := A” stands for “A is defined as X”’; 1,,
denotes an n-dimensional column vector whose elements are all 1; I (I,) represents
an identity matrix of appropriate sizes (n x n); z denotes a unit forward shift operator
with zx(r) = x(t + 1) and z~'x(f) = x(t — 1). Define the polynomials in the unit
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backward shift operator z !

A@=az ' +abz 4+ +a, 77",

A(2) == arz Va7 4+ an,z~ ",
B() i=b1z "+ baz 2 o by M,
D) :=14+diz ' +doaz 2+ +dy,z",

2

and the parameter vectors:

a:=lay,a,...,ay,]" €R",
b:=1[by. by ... .by,]" € R™,
c:=[cr,c2,...,cp1" € R,

d:=[d,do,... dy]" €R".
A Hammerstein system (i.e., an input nonlinear system) can be expressed as [11]
y(t) = A'(2)y(t) + B2) f (u(t) + D(2)v(1),

by extending the input nonlinearity to the output nonlinearity, we can obtain a special
class of nonlinear systems [21,36]:

y(@) =A@ f(y (1) + B(x)u(r) + D(2)v (), ey

where u(¢) and y(¢) are the input and output of the system, respectively, and v(¢) is

white noise with zero mean and variance o2,

For simplicity, assume that the nonlinear part is a linear combination of a known
basis f := (f1, f2, ..., fa.) with coefficients (c1, c2, ..., cp.):

y@) = fy(0) =c1 i) + 2 2y (@) + -+ - + e fu V(D)) = f(y(D)e.

For the parameter identifiability, we must fix one of the coefficients ¢;’s, or ||c|| = 1
with ¢y > O [11].
Equation (1) can be rewritten as

ng np ng
Yy =D aiz T fF®) + D biz () + Y diz 7 v() + v(t)
i=1 i=1 i=1
=aif(y(t— 1) +af(yt =)+ +ay fF{ = na)
+bru(t — 1) + bau(t = 2) + -+ + by, u(t — np)
+div(t — 1) +dov(t —=2)+--- +dy,v(t —ng) +v(1). 2)
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Define the information matrix F(¢), the input information vector ¢(¢) and the noise
information vector ¥ (¢) as

N =1) fO—=1D) ... fo.(y(r—1))
[ =2) o =2)) ... fo(y(r —=2))

F(t) — . : : c Rnaxnc’ (3)
Sy =na)) Lyt =na)) - fu (Y& —1n4))

o) :==[u@—1),ut—2),...,u(t —np)]" € R", “)

Y() =i —1,v@—=2),...,v0 —ng)]" € R". (5)

Then, Eq. (2) can be written as
y@) =a"F(t)c+ @ ()b + ¥ " (t)d + v(1). (6)

The objective of identification is to present new methods for estimating the unknown
parameter vector ¢ for the nonlinear part and the unknown parameter vectors a, b and
d for the linear subsystems from the measurement data {u(z), y(¢) : t =1,2,3,...}.

3 The Least Squares Algorithm Based on the Model Decomposition

Let é(;) = |:3g;i| and 1§(t) = [gg;] denote the estimates of 6 := |::;i| and

¥ = |:i_’i| at time ¢, respectively, and @ := [ 0 . For the identification model in (6),

2
using the hierarchical identification principle (the decomposition technique), define
the quadratic cost functions:

J10) == J(a,b(t —1),e(t — 1), d)

! . 2
= > [y =9 Dbt~ 1)~ (& = DE (), w8 |

j=1

b(@) := J (@), b, c,d1))

t
~ 2
= > [y —vaw -1 (. @ oF ] -

j=1

Define the output vector Y, and the information matrices @, ¥,, £2, and =, as

Y= (1), yQ),s .., yOT € R, ™

&, = [0(1). 9(2), ..., ()] € ™, ®)

W, = (), Q). ... YO € RO, ©

. TFMet—1) FQt—1) ... FO = DT oinn

R, = N N A R atid) 10
’ [ (D) O . B0 } € (10)
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x>

_[ e 0@ ... o0 T _pmixeuino
e |:FT(1)&(t) F'(Qa() ... F'(t)a(r) €R ’ an
Then, J1(0) and J>(#) can be equivalently written as

J10) = ||Y; — @bt — 1) — 2,0|2,
h@) =Y, —¥,d(t) — £

For the two optimization problems, letting the partial derivatives of J; (@) and J2(#)
with respect to @ and ¥ be zero gives

aJ1(0 . A o
@) = 28,[Y, — @bt — 1) — 2,6()] =0, (12)
96 0=0(r)
3 (¥ . . L
20) .= —2E,[Y, —W,d(1) — EH(1)] = 0. (13)
o9 P=0(1)
or
A;fzté(t) = SAZ:[YI - ¢ZB(I - 1],
é:-?zﬁ(t) = éf[Y, —w,d(®)].

In order to ensure that the inverses of the matrices fl:fl ;and £ :.’.5.' ; €Xist, we suppose
that the information matrices flt and £ ¢ are persistently exciting. Let 'iI,, I}(I) 0(t)
be the estimates of ¥, ¥ (¢) and v(¢) at time ¢.

Replacing the unknown ¥, in (12)—(13) with lIAIt, we have the following least
squares algorithm for estimating the parameter vectors § and ¥:

0(r) = 12,2171 2,1Y, — @bt — 1], (14)
d() = [E,E 17 E Y, — ¥, d0)), (15)
=D YQ.. POT (16)
v(@)=[0@¢—1),00¢ —2),...,00 —ng)]", (17
0(t) = y(t) — &' (OF ) — " (0b(1) — ¥ (0d(1). (18)

The procedures of computing the parameter estimates é(t) and 9 (7) are listed in the
following.

1. To initialize: let + = p, collect the input—output data {u(i), y(i) : i =
0,1,2,..., p—=1}(p > ng +np +n.+ny) and set the initial values b(p — 1) =
1,,/po, ¢(p — 1) = a random vector with |[¢(p — D)|| = 1, 0(i) = a random

number. p is normally a large positive number (e.g., po = 10%), give the basis
function f; ().

2. Collect the input—output data u(r) and y(r), form Y, using (7), F(¢) using (3),
@(t) using (4), @, using (8) and 1/}(t) using (17).
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3. Compute flt using (10).

4. Update the parameter estimate 9(t) using (14) and read a(¢) and d (¢) from 9(1) =

a()
dit) |
5. Compute é’, using (11) and form IIAlt using (16).

b(r)

6. Update the parameter estimate 19([) using (15), read IAJ(t) from 1§(t) = [é o

and normalize ¢(¢) using

[y + 12 np +ne)

&(r) = sen{[9 ()1 (np + 1)} — .
I3y + 1 < np + ne) |

7. Compute 0(¢) using (18).
8. Increase f by 1, go to Step 2 and continue calculation.

4 The Recursive Least Squares Algorithm Based on the Model
Decomposition

For the identification model in (6), define the quadratic cost functions:

t
530) =" [y()) — 0" (Db — [ F' (). ¥ ()18 ],
j=1
t

1) =" [y() = ¥ (Hd — ") a' F(HI# |

j=1

Define the information matrices ¢ (¢), $2; and Z; as

)

(1) :==[c"F"(t), ¥"(t)]" e R"aT"d, (19)
_[Fhe FQ)c... F)e ' isnginy
2 '_['ﬁ(l) v ... ~/f<r)} € BT (20)
= [ e 0@ . 00 T piximino
Se= |:FT(1)a F'Qa ... FT(t)a} € R, @D

Then, J3(0) and J4(¥#) can be equivalently rewritten as

J30) =||Y, — &b — 2,0
Ja@®) = |Y, — ¥,d — E,9|*.

Similarly, minimizing J3(@) and J4(¥#), we can obtain the least squares estimates:

0(1) = [(2!2,17'2'[Y, — &,b], (22)
() =[ETE, ) ETY, — W.d]. (23)
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Define the covariance matrix,

t
P =22, = 0,()9i())
j=1
=Pt — 1)+ 0,00} (t) e RUaTmI*tatna) - p)y =1, ... (24)

Hence, Eq. (22) can be rewritten as

0(t) = Py(1)R][Y, — ®,b]
_ T Yioy —®1b
= Piot@} e o Z e

=Pi(OPT (t =Pt — D {R]_[Y,1 — ®,_1b] + ¢, (D[y(t) — 9" (1)b]}
= PPt — DO — 1)+ Pi(0)@, (DY (1) — 9" (1)b]. (25)

Applying the matrix inversion lemma [7,27]
(A+BC) '=A""-A"'BU+cAaA'B)y'ca™!.
to (24) gives

Pt — Do (e ()Pt — 1)

P =R = s OP - e o 20
Pre-multiplying both sides of (24) by P (t) gives
I=Pi(OPT (= 1)+ P19, ()9} (). 27)
Substituting (27) into (25) gives the recursive estimate of the parameter vector 6:
() = I = Pr(g1 (9} 010 — 1)+ P01 (Y1) = ¢ (1)b]
=00 — 1)+ P1(Ng,(O[y(1) — " ()b — @} (18 — D). (28)

Define the gain vector L1 (¢) := P1(t)@(¢t) € R" T Using (26), it follows that

Pt — Do, (1)

Li(t) = = .
l+i(@®)P1( — De(?)

(29)

Using (29), Eq. (26) can be rewritten as

Pi(t) = Pi(t—=D)=LiOe 1) P1t—1)=[1-Li()@ (")]P1(t—1), P1(0)=pol.

(30)
Here, we can see that the right-hand sides of (19) and (28) contain the unknown
parameter vectors ¢ and b, respectively. The solution is to replace the unknown b
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and ¢4 (¢) in (28) and (30) with their corresponding estimates I;(t —1)and ¢,(t) =
[&'(t — DE"(t), ¥ (1), we have

0(1) =0t — 1) + P1()@,(DIy(1) — 9" (bt — 1) — §T ()8 — 1],
Pi(t) = [y ny — LiOPOIP1(t — 1), P1(0) = polnyiny 31)
1/}(t) =[0@¢—=1),0(—=2),...,00 —ng)]" € R™, (32)

Define the information vector @,(t) := [@"(¢), a"F(¢)]" € R"™*" and the covari-
ance matrix P;l(t) = ETE, € RUw+ndx(+ne) and the gain vector Ly (t) =
Py (t)p,(t) € R"™*"c  Similarly, some unknown terms are replaced with their esti-
mates; we can obtain the recursive estimate of the parameter vector #:

F(t) = Dt — 1)+ P2()@YD)y(1) — ¥ ()d(1) — 50)d(t — D], (33)
$>(t) = [9"(1), @™ (1) F(1)] € R™ T, (34)

Thus, we can summarize the recursive least squares algorithm for estimating the para-
meter vectors @ and ¥ of the nonlinear systems based on the model decomposition
(the ON-RLS algorithm for short) as follows:

0(t) =00t — 1) + Li()[y(t) — 9" ()bt — 1) — @] ()0t — )], (35)

Li(t) = P1(t — D@ (0O[1 + @1 () P1( — D (D17, (36)
Pi(t) = Lnyiny — LiO@TOIP1(t — 1), P1(0) = poly,sny, 37)
F() =Dt — 1)+ La)ly(@) — ¥ ()d(1) — §3)3 (1 — 1], (38)
Lo(t) = Pa(t — D@, (01 + §3(1) Pa(t — D)1, (39)
Po(t) = Unysn, — LoO@5O P2t — 1), P2(0) = pol i, (40)
P1(1) = ["(t = DF" (1), ¥" (0", 1)
@,(1) = [@" (1), a" (HF)]", (42)
o) =[u@t—1D,u—2),...,ut—np)]", 43)
fh(t) =[0@—=1),00—=2),...,00 —na)]", (44)
0(1) = y(1) — @' (O F(0)e(t) — ¢"(0b(r) — ¥ (1) (@), 45)

[ AGE—1) HGE—=1) .. fuE—1)

AHGE=2) HOGE—=2) ... fu(y—2)
F(r) = . : . : (46)

| AGE —12) LG —1a) ... fu. (3 = 14))

- 10

O@1) = 1§(t)] . a7

The procedures of computing the parameter estimation vectors 9(t) and f?(t) in (35)—
(47) are listed in the following.
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7.
8.

. To initialize: let + = 1, and set the initial values P1(0) = pol,,4n,, 9(0) =

Lugtng/Po, B(0) = 15,/ po, P2(0) = polLu,sn., po = 10, [|I2(0)]| = 1, give the

basis function f; ().

Collect the input—output data u(¢) and y(¢), form F(¢) using (46), ¢(¢) using (43),

¥ (1) using (44) and compute @, (¢) in (41).

Compute L (¢) using (36) and P(¢) using (37).

Update the parameter estimate 6 (¢) using (35) and read a(¢) and d(¢) from 0 (¢) =
a()

[Zi(t) ]

Form @,(¢) in (42) and compute L, (¢) using (39) and P, (¢) using (40).

Update the parameter estimate 1A7(t) using (38) and read i(t) from f}(t) = [28 ]

and normalize ¢(¢) using

(3] (np + 1 :np +ne)
I3 O 1np + 12 np +ne)ll

&) = sgnf{[# (1)} (np, + 1)) (48)

c(1)
Compute 0(¢) using (45).
Increase t by 1, go to Step 2 and continue the recursive calculation.

and let 1§(t) = |:b(t) } .

The flowchart for computing the estimates 9(t) and 1§(t) in (35)—(47) is shown in
Fig. 1.

To show the advantages of the proposed ON-RLS algorithm, the following gives the

stochastic gradient algorithm with a forgetting factor A for estimating the parameter
vectors @ and # of the nonlinear systems (the ON-SG algorithm for short) [11]:

b)) =00c—-1+ ‘;’fl‘—((:))[ym — @' bt — 1) — 10 — D], (49)
ri() = A (@) + 19, (O1% 0 <A< 1, 1 (0) = 1, (50)
d() =B — 1)+ ‘fj((:)) () — ¥ (0d(1) — §5 Dt — D], (51)
ra(t) = Ara () + @2 (O, r2(0) = 1. (52)

Remark 1 The ON-RLS algorithm in (35)—(47) has faster convergence rates than the
ON-SG algorithm in (49)—(52)—see the last columns in Tables 3 and 4.

5 The Comparison of the Computational Efficiency

In order to show the advantage of the ON-RLS algorithm, the following gives simply
recursive extended least squares algorithm in [21] for comparison.
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Fig. 1 The flowchart of
computing the parameter
estimates 0 (¢) and 1§(t)

Define the parameter vectors,

a®c
7= b
d

Then, we have the following recursive extended least squares (RELS) algorithm [21]:

e )

l

Initialize: t = 1

l

Collect u(t), y(t),
and form F(t), (t), ¥(t) and @, (t)

!

Compute L1(t) and Py (t)

!

Update the estimate 6(t),

read a(t) and d(t) from 8(t)

l

Form ¢, (t), La(t) and P»(t)

l

Update 9(t), read b(t) and é(t) from d(t)

l

Normalize é(t) and compute (t)

l

t:=t+1

eR", n:=ngne+np+ng.

() =91 — 1)+ LDy — ")z — 1], #(0) = 1,/po,
L(t) =Pt — DI+ @ ()P — )dpn)] ™",
P(t) =1, — L " (0)IP(t — 1), P(0) = pol,,

o) =[h"(y(@ —1)),.

L) hT()’(f - na))s

w(t — 1), .. u(t —np), 0@ — 1), ..., 0t — na)]",
h(t) = [ (y(0), ha(y(®)), ..., hu (Y(£)]" € R,
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0(1) = y(1) — " (1) B (1).

Remark 2 Compared with the recursive extended least squares algorithm, which
involves the covariance matrix P (¢) of large size (ngne +np+ng) X (ngne+np+ng),
the ON-RLS algorithm has less computational load because it involves two covariance
matrices P (t) and P,(t) of small sizes (n,+ngq) X (ng+ng) and (np+n.) X (np~+n.)—
see the details in Tables 1 and 2. From the simulation example (omitted in the paper),
we can see that the parameter estimation errors given by the ON-RLS algorithm are
very close to those given by the RELS algorithm.

It has been just pointed out by Golub and Van Loan [16] that the flop (floating
point operation) counting is a necessarily crude approach to the measuring of program
efficiency since it ignores subscripting, memory traffic, and the countless other over-
heads associated with program execution, the flop counting is just a “quick and dirty”
accounting method that captures only one of the several dimensions of the efficiency
issue although multiplication/division and addition/subtraction with different lengths
are different. The flop numbers of the ON-RLS and RELS algorithms at each recursion
are given in Tables 1 and 2. Their total flops are, respectively, given by

Ni = 4(n, + nd)2 + 4(np + nc)2 +4nyane + Sng + 100, + 7ne + 100y,

Na = d(nane + np +ng)* + 6(nane + np + nq).
In order to compare the computational efficiency of these two algorithms, we count the
difference between the amount of calculation of these two algorithms. When n, > 2

and np > 2, ngnp > ng +np, No > 4(ng +np +ne + nd)2 +6(ng +np +ne +ng).
Then, we have

Na = Ni > 4(na +ne + np +na)* + 6(na + ne +np +na) — 4(ng +na)’*
—4(np + ne)* — dngne — 5nq — 100, — Tne — 10ng
= 10n4n: + 8np — S)ng + 8ne — Mnp + 8np — 4)ng > 0.
It is clear that the ON-RLS algorithm requires less computational load than the RELS

algorithm. For example, when n, = np, = n. = ng = 5, we have N, — N| =
5110 — 1060 = 4050 flops.

6 Example

Consider the following nonlinear system:

y(@) =A@ @) + B(@u) + D(@)v(t),
A(z) = alz_l + azz_2 =075z = 0.612_2,
B(z) = biz ' =0.96z7",
D) =1+diz ' =14+04z7",
SO @) = c1y@) + czsin(y(¢)) = 0.61y(r) + 0.79sin(y (1)),
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Table 2 The computational efficiency of the RELS algorithm

Variables Numbers of Numbers of additions
multiplications
P) =9 — 1)+ L)) nane +np +ng Rane + np +ng
e(t) = y(t) — " ()31 — 1) nane +np + ng Rane +np +ng
£ =Pt —1p() (nane +np +ng)* (nanc +np +ng)*
—(nane +np +ng)
L(t) = ¢/ +¢"1)¢1) 2nane +np +nq) nane +np +nq
P()=P@—1)— L0 ) (nane +np +ng)* (nane +np +ng)*
Sum 2(ngne + np -i-n,,;)2 2(ngne + np -i-nd)2
+4ngne+np+ng) + 2(ngne +np +ng)
Total flops Ny :=4(ngne +np + nd)2 + 6(ngne +np +ng)

Table 3 The ON-RLS parameter estimates and errors

t aj ap dp by cl %) 8 (%)

100 —0.72330 —0.58823 0.18282 0.88621 0.64330 0.71342 14.64393
200 —0.74339 —0.62911 0.30539 0.95622 0.57017 0.86840 7.76977
500 —0.73155 —0.59822 0.28568 0.96286 0.56532 0.84086 8.00060
1000 —0.76569 —0.60078 0.37239 0.98029 0.59412 0.81967 3.05103
2000 —0.75253 —0.60414 0.36940 0.96736 0.58600 0.81925 2.94798
3000 —0.75807 —0.61033 0.39273 0.96469 0.59701 0.80581 1.40439

True values —0.75000 —0.61000 0.40000 0.96000  0.61000  0.79000

0 =lai,az, di1"
= [-0.75, —0.61, 0.4]",
# = [by, c1, c2]” = [0.96, 0.61,0.79]",
O = [aj,as,d;, by, c1, c2]" =[-0.75, —0.61, 0.4, 0.96, 0.61, 0.79]".

In simulation, the input {u(z)} is taken as a persistent excitation signal sequence with
zero mean and unit variance, and {v(¢)} as a white noise sequence with zero mean and
variance o> = 0.502. Applying the ON-RLS algorithm and the ON-SG algorithm with
A = 0.99 to estimate the parameters of this system, the parameter estimates and errors
are given in Tables 3 and 4, and the parameter estimation errors § := ||@ (1) —O||/|| O ||
versus ¢ are shown in Figs. 2 and 3.

From Tables 3, 4 and Figs. 2, 3, we can draw the following conclusions.

— It is clear that the parameter estimation errors given by two algorithms become
smaller with the data length increasing.

— The parameter estimation accuracy of the ON-RLS algorithm is higher than that
of the ON-SG algorithm.

— The parameter estimates given by the ON-RLS algorithm converge faster to their
true values compared with the ON-SG algorithm for appropriate forgetting factors.
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Table 4 The ON-SG parameter estimates and errors

t ay a) dp by cl %) 8 (%)
100 —0.87270 —0.62619  0.45483  0.74665  0.56561 0.90142 16.61447
200 —0.83230 —0.66142 047472 0.79375  0.56805  0.88884 13.82537
500 —0.79048 —0.66185  0.48719  0.90499  0.51606  0.87919 10.58202
1000 —0.77568 —0.62755  0.46471 095122 0.51390  0.84625 7.88796
2000 —0.76758 —0.63322  0.45726  0.96158  0.55884  0.83236 5.48969
3000 —0.77247 —0.59245  0.44199  0.97625  0.59996  0.7939%4 3.22994
True values —0.75000 —0.61000  0.40000  0.96000  0.61000  0.79000
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Fig. 2 The ON-RLS estimation errors versus ¢ (02 = 0.502)
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Fig. 3 The ON-SG estimation errors versus ¢ (02 = 0.502)

7 Conclusions
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Using the hierarchical identification principle, a recursive least squares algorithm is
derived for a special class of output nonlinear systems by transforming a nonlinear
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system into two identification models. The proposed algorithm can give a satisfactory
identification accuracy and has higher computational efficiencies compared with the
recursive extended least squares parameter estimation algorithm in [21]. The proposed
algorithm can be extended to study identification problems of multivariable systems
[13], linear-in-parameters systems [41,42] and impulsive dynamical systems [23,24]
and applied to other fields [45—47].
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