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Abstract Minimum energy control problem for the fractional positive electrical cir-
cuits with bounded inputs is formulated and solved. Sufficient conditions for the
existence of solution to the problem are established. A procedure for solving of the
problem is proposed and illustrated by example of fractional positive electrical circuit.
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1 Introduction

A dynamical system is called positive if its trajectory starting from any nonnegative
initial state remains forever in the positive orthant for all nonnegative inputs. An
overview of state of the art in positive theory is given in the monographs [3,17].
Variety of models having positive behavior can be found in engineering, economics,
social sciences, biology and medicine, etc.

Mathematical fundamentals of the fractional calculus are given in the monographs
[27–29]. The positive fractional linear systems have been investigated in [5,6,8,18,
19,21]. Stability of fractional linear continuous-time systems has been investigated
in the papers [1,20,21]. The notion of practical stability of positive fractional linear
systems has been introduced in [20]. Some recent interesting results in fractional
systems theory and its applications can be found in [2,29,30,33,34].
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The minimum energy control problem for standard linear systems has been for-
mulated and solved by J. Klamka in [22–25] and for 2D linear systems with variable
coefficients in [22]. The controllability and minimum energy control problem of frac-
tional discrete-time linear systems has been investigated by Klamka in [26]. The
minimum energy control of fractional positive continuous-time linear systems has
been addressed in [4,11,13] and for descriptor positive discrete-time linear systems in
[4,6,10,12]. The minimum energy control problem for positive and positive fractional
electrical circuits has been investigated in [13–15].

In this paper, the minimum energy control problem for fractional positive electrical
circuits with bounded inputs will be formulated and solved.

The paper is organized as follows. In Sect. 2, the basic definitions and theorems of
the fractional positive electrical circuits are recalled and the necessary and sufficient
conditions for the reachability of the electrical circuits are given.

The main result of the paper is given in Sect. 3 where minimum energy control
problem is formulated, sufficient conditions for its solution are established, and a
procedure is proposed. Illustrating example of fractional positive electrical circuit
is given in Sect. 4. An extension to the method is presented in Sect. 5. Concluding
remarks are given in Sect. 6.

The following notation will be used: �—the set of real numbers, �n×m—the set of
n × m real matrices, �n×m+ —the set of n × m matrices with nonnegative entries and
�n+ = �n×1+ , Mn—the set of n × n Metzler matrices (real matrices with nonnegative
off-diagonal entries), In—the n × n identity matrix.

2 Preliminaries

The following Caputo definition of the fractional derivative will be used [21]

Dα f (t) = dα

dtα
f (t) = 1

Γ (n − α)

t∫

0

f (n)

(t − τ)α+1−n
dτ , n − 1 < α ≤ n ∈ N = {1, 2, . . .}

(2.1)
where α ∈ � is the order of fractional derivative and f (n)(τ ) = dn f (τ )

dτ n and �(x) =
∞∫
0
e−t t x−1dt is the gamma function.

Consider a fractional electrical circuit composed of resistors, coils, condensators
and voltage (current) sources. Using the Kirchhoff’s laws, we may describe the tran-
sient states in the electrical circuit by state equations [7,9,16,17,21,28]

Dαx(t) = Ax(t) + Bu(t), 0 < α ≤ 1 (2.2)

where x(t) ∈ �n, u(t) ∈ �m are the state and input vectors and A ∈ �n×n, B ∈ �n×m .
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Theorem 2.1 [21] The solution of Eq. (2.2) is given by

x(t) = Φ0(t)x0 +
t∫

0

Φ(t − τ)Bu(τ )dτ, x(0) = x0 (2.3)

where

Φ0(t) = Eα(Atα) =
∞∑

k=0

Aktkα

Γ (kα + 1)
(2.4)

Φ(t) =
∞∑

k=0

Akt (k+1)α−1

Γ [(k + 1)α] (2.5)

and Eα(Atα) is the Mittag–Leffler matrix function [21].

Definition 2.1 [21] The fractional system (2.2) is called the (internally) positive frac-
tional system if and only if x(t) ∈ �n+, t ≥ 0 for any initial conditions x0 ∈ �n+ and
all inputs u(t) ∈ �m+, t ≥ 0.

Theorem 2.2 [21] The continuous-time fractional system (2.2) is (internally) positive
if and only if

A ∈ Mn, B ∈ �n×m+ . (2.6)

Definition 2.2 The state x f ∈ �n+ of the fractional system (2.2) is called reachable
in time t f if there exist an input u(t) ∈ �m+, t ∈ [0, t f ] which steers the state of
system (2.2) from zero initial state x0 = 0 to the state x f .

A real square matrix is called monomial if each of its row and each of its column
contain only one positive entry and the remaining entries are zero.

Theorem 2.3 The positive fractional system (2.2) is reachable in time t ∈ [0, t f ] if
and only if the matrix A ∈ Mn is diagonal and the matrix B ∈ �n×n+ is monomial.

Proof Sufficiency It is well known [17,21] that if A ∈ Mn is diagonal, then Φ(t) ∈
�n×n+ is also diagonal and if B ∈ �n×m+ is monomial, then BBT ∈ �n×n+ is also
monomial. In this case, the matrix

R f =
t f∫

0

Φ(τ)BBTΦT(τ )dτ ∈ �n×n+ (2.7)

is also monomial and R−1
f ∈ �n×n+ . The input

u(t) = BTΦT(t f − t)R−1
f x f (2.8)
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steers the state of the system (2.2) from x0 = 0 to x f since using (2.3) for x0 = 0 and
(2.5) we obtain

x(t f ) =
t f∫

0

Φ(t f − τ)Bu(τ )dτ =
t f∫

0

Φ(t f − τ)BBTΦT(t f − τ)dτ R−1
f x f

=
t f∫

0

Φ(τ)BBTΦT(τ )dτ R−1
f x f = x f . (2.9)

The proof of necessity is given in [11].

3 Problem Formulation and Its Solution

Consider the fractional positive electrical circuit (2.2) with A ∈ Mn and B ∈ �n×m+
monomial. If the system is reachable in time t ∈ [0, t f ], then usually there exist many
different inputs u(t) ∈ �n+ that steers the state of the system from x0 = 0 to x f ∈ �n+.
Among these inputs, we are looking for input u(t) ∈ �n+, t ∈ [0, t f ] satisfying the
condition

u(t) ≤ U ∈ �n+, t ∈ [0, t f ] (3.1)

that minimizes the performance index

I (u) =
t f∫

0

uT(τ )Qu(τ )dτ (3.2)

where Q ∈ �n×n+ is a symmetric positive defined matrix and Q−1 ∈ �n×n+ .
The performance index (3.2) is a measure of the energy used for steering the state

of the systems from x0 = 0 to x f .
The minimum energy control problem for the fractional positive electrical circuit

(2.2) can be stated as follows.
Given the matrices A ∈ Mn , B ∈ �n×m+ , α, U ∈ �n+ and Q ∈ �n×n+ of the

performance matrix (3.2), x f ∈ �n+ and t > 0, find an input u(t) ∈ �n+ for t ∈ [0, t f ]
satisfying (3.1) that steers the state vector of the system from x0 = 0 to x f ∈ �n+ and
minimizes the performance index (3.2).

To solve the problem, we define the matrix

W (t f ) =
t f∫

0

Φ(t f − τ)B Q−1BTΦT(t f − τ)dτ (3.3)

where Φ(t) is defined by (2.5). From (3.3) and Theorem 2.3, it follows that the matrix
(3.3) ismonomial if andonly if the fractional positive electrical circuit (2.2) is reachable
in time [0, t f ]. In this case, we may define the input
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û(t) = Q−1BTΦT(t f − t)W −1(t f )x f for t ∈ [0, t f ]. (3.4)

Note that the input (3.4) satisfies the condition u(t) ∈ �n+ for t ∈ [0, t f ] if

Q−1 ∈ �n×n+ and W −1(t f ) ∈ �n×n+ . (3.5)

Theorem 3.1 Let ū(t) ∈ �n+ for t ∈ [0, t f ] be an input satisfying (3.1) that steers the
state of the fractional positive electrical circuit (2.2) from x0 = 0 to x f ∈ �n+. Then
the input (3.4) satisfying (3.1) also steers the state of the electrical circuit from x0 = 0
to x f ∈ �n+ and minimizes the performance index (3.2), i.e., I (û) ≤ I (ū).

The minimal value of the performance index (3.2) is equal to

I (û) = xTf W −1(t f )x f . (3.6)

Proof If the conditions (3.5) aremet, then the input (3.4) is well defined and û(t) ∈ �n+
for t ∈ [0, t f ]. We shall show that the input steers the state of the electrical circuit
from x0 = 0 to x f ∈ �n+. Substitution of (3.4) into (2.3) for t = t f and x0 = 0 yields

x(t f )=
t f∫

0

Φ(t f − τ)Bû(τ )dτ=
t f∫

0

Φ(t f − τ)B Q−1BTΦT(t f −τ)dτ W −1
f x f =x f

(3.7a)
since (3.3) holds. By assuming the inputs ū(t) and û(t), t ∈ [0, t f ] steers the state of
the system from x0 = 0 to x f ∈ �n+, i.e.,

x f =
t f∫

0

Φ(t f − τ)Bū(τ )dτ =
t f∫

0

Φ(t f − τ)Bû(τ )dτ (3.7b)

and
t f∫

0

�(t f − τ)B[ū(τ ) − û(τ )]dτ = 0. (3.7c)

By transposition of (3.7c) and postmultiplication by W −1(t f )x f , we obtain

t f∫

0

[ū(τ ) − û(τ )]TBT�T(t f − τ)dτW −1(t f )x f = 0. (3.8)

Substitution of (3.4) into (3.8) yields

t f∫

0

[ū(τ ) − û(τ )]TBT�T(t f − τ)dτW −1x f =
t f∫

0

[ū(τ ) − û(τ )]TQû(τ )dτ = 0.

(3.9)
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Using (3.9), it is easy to verify that

t f∫

0

ū(τ )TQū(τ )dτ =
t f∫

0

û(τ )TQû(τ )dτ +
t f∫

0

[ū(τ ) − û(τ )]TQ[ū(τ ) − û(τ )]dτ .

(3.10)
From (3.10), it follows that I (û) < I (ū) since the second term in the right-hand side
of the inequality is nonnegative. To find the minimal value of the performance index
(3.2), we substitute (3.4) into (3.2) and we obtain

I (û) =
t f∫

0

ûT(τ )Qu(û)dτ = xTf W −1

t f∫

0

�(t f − τ)B Q−1BT�T(t f − τ)dτ W −1x f

= xTf W −1x f (3.11)

since (3.3) holds. ��

4 Procedure and Example

To find t ∈ [0, t f ] for which û(t) ∈ �n+ reaches its minimal value using (3.4), we
compute the derivative

dû(t)

dt
= Q−1BTΨ (t)W −1(t f )x f , t ∈ [0, t f ] (4.1)

where

Ψ (t) = d

dt
[ΦT(t f − t)]. (4.2)

Knowing 	(t) and using the equality

Ψ (t)W −1(t f )x f = 0 (4.3)

we can find t ∈ [0, t f ] for which û(t) reaches its maximal value.
Note that if the electrical circuit is asymptotically stable lim

t→∞ Φ(t) = 0, then û(t)

reaches its maximal value for t = t f and if it is unstable, then for t = 0.
From the above considerations, we have the following procedure for computation

of the optimal inputs satisfying the condition (3.1) that steers the state of the system
from x0 = 0 to x f ∈ �n+ and minimizes the performance index (3.2).

Procedure 4.1 Step 1 Knowing A ∈ Mn and using (2.5), compute �(t).
Step 2 Using (3.3), compute the matrix W f for given A, B, Q, α and some t f .
Step 3 Using (3.4) and (4.3), find t f for which û(t) satisfying (3.1) reaches its
maximal value and the desired û(t) for given U ∈ �n+ and x f ∈ �n+.
Step 4 Using (3.6), compute the maximal value of the performance index.
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Fig. 1 Electrical circuit

Example 4.1 Following [17], consider the fractional electrical circuit shown in Fig. 1
with given resistances R1, R2, R3, inductances L1, L2 and source voltages e1, e2.

Using the Kirchhoff’s laws, we can write the equations

e1 = R3(i1 − i2) + R1i1 + L1
dαi1
dtα

, (4.4a)

e2 = R3(i2 − i1) + R2i2 + L2
dαi2
dtα

(4.4b)

where 0 < α < 1, which can be written in the form

dα

dtα

[
i1
i2

]
= A

[
i1
i2

]
+ B

[
e1
e2

]
(4.5a)

where

A =
[

− R1+R3
L1

R3
L1

R3
L2

− R2+R3
L2

]
, B =

[
1

L1
0

0 1
L2

]
. (4.5b)

The fractional electrical circuit is positive since the matrix A is a Metzler matrix and
the matrix B has nonnegative entries.

In [17], it was shown that the electrical circuit is reachable if R3 = 0. In this case,
the matrix A has the form

A =
[

− R1
L1

0

0 − R2
L2

]
(4.6)

Consider the fractional positive reachable electrical circuit shown in Fig. 1 for R1 =
R2 = 1, R3 = 0, L1 = L2 = 1 and α = 0.7. Compute the input û(t) satisfying the
condition

û(t) =
[

e1
e2

]
≤

[
20
20

]
for t ∈ [0, t f ] (4.7)
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that steers the state of the electrical circuit from zero state to final state x f = [ 1 1 ]T
(T denotes the transpose) and minimizes the performance index (3.1) with

Q =
[
2 0
0 2

]
. (4.8)

Using the Procedure 4.1, we obtain the following:
Step 1 Taking into account that

A =
[−1 0

0 −1

]
(4.9)

and using (2.5), we obtain

Φ(t) =
∞∑

k=0

Akt (k+1)α−1

Γ [(k + 1)α] =
∞∑

k=0

[
(−1)k 0
0 (−1)k

]
t (k+1)0.7−1

Γ [(k + 1)0.7] . (4.10)

Step 2 Using (3.3), (4.8), (4.9) and taking into account that B = I2, we get

W (t f ) =
t f∫

0

Φ(t f − τ)B Q−1BTΦT(t f − τ)dτ =
t f∫

0

Φ(τ)B Q−1BTΦT(τ )dτ

= 1

2

t f∫

0

Φ2(τ )dτ = 1

2

t f∫

0

[ ∞∑
k=0

[
(−1)k 0
0 (−1)k

]
t (k+1)0.7−1

Γ [(k + 1)0.7]

]2

dτ

= 1

2

t f∫

0

∞∑
k=0

∞∑
l=0

[
(−1)k+l 0

0 (−1)k+l

]
τ (k+l)0.7−0.6

Γ [(k + 1)0.7]Γ [(l + 1)0.7]dτ

= 1

2

∞∑
k=0

∞∑
l=0

[
(−1)k+l 0

0 (−1)k+l

]
1

Γ [(k + 1)0.7]Γ [(l + 1)0.7]
t (k+l)0.7+0.4

f

(k + l)0.7 + 0.4

=
[
0.3729 0

0 0.3729

]
. (4.11)

Step 3 Using (2.7) and (2.8), we obtain

û(t) = Q−1BTΦT(t f − t)W −1(t f )x f

= 1

2

( ∞∑
k=0

[
(−1)k 0
0 (−1)k

] (
t f − t

)(k+1)0.7−1

Γ [(k + 1)0.7]

)
W −1(t f )

[
1
1

]
(4.12)

Note that the electrical circuit is stable. Therefore, û(t) reach its maximal value for
t = t f (Fig. 2).
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Fig. 2 Input signal and state variable for t f = 5[s]

Step 4 From (3.6), we have the minimal value of the performance index

I (û) = xTf W −1(t f )x f (4.13)

where W (t f ) is given by (4.11).

5 Extension to Fractional Positive Electrical Circuits with Different
Orders

Consider an electrical circuit composed of resistors, n capacitors and m voltage (cur-
rent) sources. Using the Kirchhoff’s laws, we may describe the transient states in the
electrical circuit by the fractional differential equation
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dαx(t)

dtα
= Ax(t) + Bu(t), 0 < α < 1, (5.1)

where x(t) ∈ �n , u(t) ∈ �m , A ∈ �n×n , B ∈ �n×m . The components of the state
vector x(t) and input vector u(t) are the voltages on the capacitors and source voltages,
respectively. Similarly, using theKirchhoff’s laws,wemay describe the transient states
in the electrical circuit composed of resistances, inductances and voltage (current)
sources by the fractional differential equation

dβ x(t)

dtβ
= Ax(t) + Bu(t), 0 < β < 1, (5.2)

where x(t) ∈ �n , u(t) ∈ �m , A ∈ �n×n , B ∈ �n×m . In this case, the components of
the state vector x(t) are the currents in the coils.

Now let us consider electrical circuit composed of resistors, capacitors, coils
and voltage (current) sources. As the state variables (the components of the state
vector x(t)), we choose the voltages on the capacitors and the currents in the coils.
Using Eqs. (5.1), (5.2) and Kirchhoff’s laws, we may write for the fractional linear
circuits in the transient states the state equation

⎡
⎣
dα

xC
dtα

dβ
xL

dtβ

⎤
⎦ =

[
A11 A12
A21 A22

] [
xC

xL

]
+

[
B1
B2

]
u, 0 < α, β < 1, (5.3)

where the components of xC ∈ �n1 are voltages on the capacitors, the components
of xL ∈ �n2 are currents in the coils and the components of u ∈ �m are the source
voltages and

Ai j ∈ �ni ×n j , Bi ∈ �ni ×m, i, j = 1, 2. (5.4)

Theorem 5.1 The solution of Eq. (5.3) for 0 < α < 1; 0 < β < 1 with initial
conditions

xC (0) = x10 and xL(0) = x20 (5.5)

has the form

x(t) = Φ0(t)x0 +
t∫

0

[Φ1(t − τ)B10 + Φ2(t − τ)B01] u(τ )dτ , (5.6a)

where

x(t) =
[

x1(t)
x2(t)

]
, x0 =

[
x10
x20

]
, B10 =

[
B1
0

]
, B01 =

[
0
B2

]
,
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Fig. 3 Fractional electrical
circuit

Tkl =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

In for k = l = 0[
A11 A12
0 0

]
for k = 1, l = 0

[
0 0

A21 A22

]
for k = 0, l = 1

T10Tk−1,l + T01Tk,l−1 for k + l > 0

�0(t) =
∞∑

k=0

∞∑
l=0

Tkl
tkα+lβ

�(kα + lβ + 1)
,

�1(t) =
∞∑

k=0

∞∑
l=0

Tkl
t (k+1)α+lβ−1

� [(k + 1)α + lβ]
,

�2(t) =
∞∑

k=0

∞∑
l=0

Tkl
tkα+(l+1)β−1

� [kα + (l + 1)β]
. (5.6b)

Proof is given in [18,21].

The extension of Theorem 5.1 to systems consisting of n subsystems with different
fractional orders is given in [18,21].

Example 5.1 Consider the fractional electrical circuit shown in Fig. 3 [19,31,32] with
given source voltages e1, e2, ultracapacitor C1 = 1 of the fractional order α = 0.7,
ultracapacitor C2 = 2 of the fractional order β = 0.6, conductances G1 = 4, G ′

1 =
4, G2 = 3, G ′

2 = 6, G12 = 0 and N = n1 + n2 = 2.

Using the Kirchhoff’s laws, we can write the equations

C1
dαu1

dtα
= G ′

1(v1 − u1),

C2
dβu2

dtβ
= G ′

2(v2 − u2) (5.7)

and
[

(G1 + G ′
1) 0

0 (G2 + G ′
2)

] [
v1
v2

]
=

[
G ′

1 0
0 G ′

2

] [
u1
u2

]
+

[
G1 0
0 G2

] [
e1
e2

]
.

(5.8)
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From (5.8), we obtain

[
v1
v2

]
=

[
(G1 + G ′

1) 0
0 (G2 + G ′

2)

]−1 [
G ′

1 0
0 G ′

2

] [
u1
u2

]

+
[

(G1 + G ′
1) 0

0 (G2 + G ′
2)

]−1 [
G1 0
0 G2

] [
e1
e2

]
. (5.9)

Substitution of (5.9) into

[
dαu1
dtα

dβu2
dtβ

]
=

[
− G ′

1
C1

0

0 − G ′
2

C2

] [
u1
u2

]
+

[ G ′
1

C1
0

0
G ′
2

C2

] [
v1
v2

]
(5.10)

we obtain [
dαu1
dtα

dβu2
dtβ

]
= A

[
u1
u2

]
+ B

[
e1
e2

]
, (5.11)

where

A =
⎡
⎣

G ′
1

C1

(
G ′
1

(G1+G ′
1)

− 1
)

0

0
G ′
2

C2

(
G ′
2

(G2+G ′
2)

− 1
)

⎤
⎦ =

[−2 0
0 −1

]
=

[
A1 0
0 A2

]
,

B =
⎡
⎣

G ′
1G1

C1(G1+G ′
1)

0

0
G ′
2G2

C2(G2+G ′
2)

⎤
⎦ =

[
2 0
0 1

]
=

[
B1
B2

]
. (5.12)

From (5.12), it follows that A is a diagonal Metzler matrix and the matrix B is mono-
mial matrix with positive diagonal entries. Therefore, the fractional electrical circuit
is positive for all values of the conductances and capacitances.

Find the optimal input (source voltage) ê(t) ∈ �2+, t ∈ [0, t f ] satisfying the
condition

ê(t) =
[

ê1(t)
ê2(t)

]
<

[
1
1

]
for t ∈ [0, t f ] (5.13)

for the performance index (3.2) with Q = diag[2, 2] which steers the system from
initial state (voltage drop on capacitances) u0 = [ 0 0 ]T to the finite state u f = [ 2 3 ]T
and minimizes the performance index (3.2) with (5.12).

Using (5.6) and (5.12), we obtain

Φ1(t)B10 + �2(t)B01 =
[

Φ1
11(t) 0
0 �2

22(t)

] [
B1
B2

]
= M(t), (5.14)
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where

�1
11(t) =

∞∑
k=0

∞∑
l=0

t (k+1)0.7+l0.6−1

Γ [(k + 1)0.7 + l0.6]
(−2)k,

�2
22(t) =

∞∑
k=0

∞∑
l=0

tk0.7+(l+1)0.6−1

Γ [k0.7 + (l + 1)0.6]
( − 1)l . (5.15)

From (5.6a), (5.12) and (3.3), we have

W (t f ) =
t f∫

0

M(t f − τ)Q−1MT(t f − τ)dτ

=
t f∫

0

[
Φ1

11(τ ) 0
0 Φ2

22(τ )

] [
8 0
0 2

] [
Φ1

11(τ ) 0
0 Φ2

22(τ )

]T
dτ . (5.16)

Note that the electrical circuit is stable. Therefore, ê(t) reach its maximal value for
t = t f .

Now using (3.4) and (5.16), we obtain

ê(t) = Q−1MT(t f − t)W −1(t f )u f

=
[
1 0
0 0.5

] [
Φ1

11(t f − t) 0
0 Φ2

22(t f − t)

]T
W −1(t f )

[
2
3

]

=
[

Φ1
11(t f − t) 0

0 0.5Φ2
22(t f − t)

]T ⎡
⎢⎣

t f∫

0

[
8Φ1

11(τ )[Φ1
11(τ )]T 0

0 2Φ2
22(τ )[�2

22(τ )]T
]
dτ

⎤
⎥⎦

−1 [
2
3

]

=

⎡
⎢⎢⎢⎣
0.25[Φ1

11(t f − t)]T
t f∫
0

[�1
11(τ )[Φ1

11(τ )]T]−1dτ

1.5[Φ2
22(t f − t)]T

t f∫
0

[�2
22(τ )[Φ2

22(τ )]T]−1dτ

⎤
⎥⎥⎥⎦ , (5.17)

Theminimal value of t f satisfying the condition (3.1) can be found from the inequality

⎡
⎢⎢⎢⎣
0.25[Φ1

11(t f − t)]T
t f∫
0

[Φ1
11(τ )[�1

11(τ )]T]−1dτ

1.5[Φ2
22(t f − t)]T

t f∫
0

[Φ2
22(τ )[�2

22(τ )]T]−1dτ

⎤
⎥⎥⎥⎦ <

[
1
1

]
for t ∈ [0, t f ]

(5.18)

and the minimal value of the performance index (3.2) is equal to
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I (ê) = uT
f W −1u f = [ 2 3 ]

⎡
⎢⎣

t f∫

0

[
8Φ1

11(τ )[Φ1
11(τ )]T 0

0 2Φ2
22(τ )[�2

22(τ )]T
]
dτ

⎤
⎥⎦

−1 [
2
3

]

= 0.5

t f∫

0

[Φ1
11(τ )[Φ1

11(τ )]T]−1dτ + 3

t f∫

0

[Φ2
22(τ )[Φ2

22(τ )]T]−1dτ . (5.19)

6 Concluding Remarks

Necessary and sufficient conditions for the reachability of the fractional positive elec-
trical circuits have been established (Theorem 2.3). The minimum energy control
problem for the fractional positive electrical circuits with bounded inputs has been
formulated and solved. Sufficient conditions for the existence of a solution to the prob-
lem have been given (Theorem 3.1), and a procedure for computation of optimal input
and the minimal value of performance index has been proposed. The effectiveness of
the procedure has been demonstrated on the example of fractional positive electrical
circuit. The presented method can be extended to positive discrete-time linear systems
and to fractional positive discrete-time linear systems with bounded inputs.
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