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Abstract Underdetermined blind source separation (UBSS) is a hard problem to solve
since itsmixing system is not invertible. Thewell-known“two-step approach” has been
widely used to solve the UBSS problem and the most pivotal step is to estimate the
underdetermined mixing matrix. To improve the estimation performance, this paper
proposes a new clustering method. Firstly, the observed signals in the time domain
are transformed into sparse signals in the frequency domain; furthermore, the linearity
clustering of sparse signals is translated into compact clustering by normalizing the
observed data. And then, the underdeterminedmixingmatrix is estimated by clustering
methods. The K -means algorithm is one of the classical methods to estimate the
mixing matrix but it can only be applied to know the number of clusters in advance.
This is not in accord with the actual situation of UBSS. In addition, the K -means is
very sensitive to the initialization of clusters and it selects the initial cluster centers
randomly. To overcome the fatal flaws, this paper employs affinity propagation (AP)
clustering to get the exact number of exemplars and the initial clusters. Based on those
results, the K -means with AP clustering as initialization is used to precisely estimate
the underdetermined mixing matrix. Finally, the source signals are separated by linear
programming. The experimental results show that the proposedmethod can effectively
estimate the mixing matrix and is more suitable for the actual situation of UBSS.

B Xuan-sen He
hxs2010@hnu.edu.cn

Fan He
923893529@qq.com

Wei-hua Cai
249131014@qq.com

1 College of Information Science and Engineering, Hunan University, Changsha 410082, China

2 School of Politics and Public Administration, Yunnan Minzu University, Kunming 650504, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-015-0173-7&domain=pdf


2882 Circuits Syst Signal Process (2016) 35:2881–2913

Keywords Underdetermined blind source separation (UBSS) · Sparse repre-
sentation · Compact clustering · K -means clustering · Affinity propagation (AP)
clustering

1 Introduction

The goal in the Blind Source Separation (BSS) problem [7] is to estimate and separate
an unobserved vector of M source signals s ∈ RM , from N observations of their
mixture x ∈ RN while the source signals and the mixture process are all unknown. In
the noise-free case, BSS model can be expressed as x = As, where A ∈ RN×M is the
mixing matrix. To solve the BSS problem, independent component analysis (ICA) is
one of the most widely used techniques and ICA is essentially a method for extracting
individual signals from mixtures [26]. The ICA is said to be complete when the mix-
ing matrix A is squared and invertible, N = M ; to be overcomplete when it contains
more sources than observations, M > N ; to be undercomplete when it contains fewer
sources than observations,M < N [26]. For undercomplete ICA, the number of inde-
pendent sources in the given mixture has to be determined before performing ICA. In
[25,27], the authors demonstrated that normalized determinant of the global matrix is
a measure of the number of independent sources, M , in a mixture of N observations.
With the rapid development of BSS/ICA technologies and their applications, a series
of new BSS/ICA methods have emerged [1]. For audio BSS/ICA, the research has
progressed to real-world scenarios today [43], with the following applications. The
broadband ICAwas used to minimize the statistical independence and can be success-
fully exploited for acoustic source localization [23]. For speech BSS, a joint approach
for single-channel speaker identification and speechBSSwas proposed in [24]. In [40],
the authors proposed a single-channel BSS algorithm. The proposed method assumed
that the sources were characterized as autoregressive processes and constructed a
pseudo-stereo mixture by time-delaying and weighing the observed single-channel
mixture. Ensemble empirical mode decomposition (EEMD)-based methods are often
used for single-mixture BSS. To solve the edge effect problem, Guo [13] proposed
an edge effect elimination method which was based on principal component analysis
(PCA), ICA and edge effect elimination of EEMD. For microphone array processing,
in [30] the authors designed a unified framework for joint optimization and estimat-
ing the sound sources under auditory uncertainties such as reverberation or unknown
number of sounds, and a unifiedmodel was proposed for sound source localization and
separation based on Bayesian nonparametrics. In distributed microphone arrays, the
source location information can be defined as the intra- and inter-node levels. Souden
et al. [37] utilized both of them to cluster and separate multiple competing speech
signals. The normalized recording vector was used to capture the intra-node informa-
tion, and different features including the energy level differences with and without the
phase differences between nodes were used to deal with the inter-node level. In [29],
the authors addressed the problem of sound BSS from a multi-channel microphone
array capture via estimation of source spatial covariance matrix of a short-time Fourier
transformed mixture signal. It had been proved that multi-channel BSS can separate
the deterministic sinusoidal signals by using ICA technique, and in [19], the authors
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derived a single-channel BSS method for deterministic sinusoidal signals with ICA,
this method can achieve separation by utilizing additional filters to virtually provide
a mixture matrix for BSS.

Overcomplete ICA is a hard problem to solve since the mixing matrix A is not
invertible. As wasmentioned above, the single-channel BSS is overcomplete or under-
determined BSS (UBSS). To perform UBSS, identification of the mixing matrix and
source recovery becomes two distinct problems, thus the “two-step approach” is often
used. The first step is to estimate the mixing matrix and the second step is to sep-
arate the source signals. The most critical step of UBSS is to estimate the mixing
matrix. In the two-sensor case, based on sparse representation, the classical potential
function method [4] can be used to estimate the mixing matrix. Based on sparse com-
ponent analysis (SCA), a discriminatory K -weighted hyperline clustering algorithm
[46] was developed via weighing scheme to deal with the blind identification problem
of the underdetermined mixing matrix of multiple dominants. The K -mean cluster-
ing algorithms are commonly used to solve the UBSS problem given sufficiently
sparse sources, but in any case other than deterministic sources, this lacks theoret-
ical justification. Indeed, mean-based clustering does not possess any equivariance
(performance independent of A). Based on this consideration, Theis [41] proposed a
median-based clustering method and proved its equivariance and convergence; and in
[44] the authors proposed a method combining the fuzzy clustering and eigenvalue
decomposition technique to estimate the mixing matrix in order to deal with the non-
strictly sparse sources. For underdetermined convolutive mixtures of audio sources, a
two-stage method based on frequency bin-wise clustering and permutation alignment
was proposed in [34]; and in [28], the authors proposed a convolutive UBSS through
weighted interleaved ICA and spatio-temporal source correlation. In addition, the
observed signals in the frequency domain were normalized into positive values and
became compact clustering. In [14], the authors proposed an ant colony clustering
algorithm to estimate the pivotal datum in the data stack so as to estimate the column
vectors of the mixing matrix. From the above analysis, the clustering algorithms are
the most important methods to estimate the mixing matrix of UBSS and the precondi-
tion of cluster analysis is that the sources are sparse. Therefore, sparse representation
is actually of paramount importance in UBSS; without it, the estimation of the mixing
matrix is not possible at all. If the mixing matrix has been successfully estimated,
some methods can be used to separate the sources. For a given overcomplete basis
matrix, the corresponding sparse solution (coefficient matrix) with minimum l1 norm
is unique with a probability of one, which can be obtained using a standard linear
programming algorithm [21]. Based on this, Li et al. [22] gave a development of a
recoverability analysis and obtained a necessary and sufficient condition under which
a source column vector can be recovered by solving a linear programming problem.
And often such methods are fit to data by solving mixed l1 − l2 convex optimization
problems [47].

In signal processing, the first and foremost task is to represent a signal. The tradi-
tional representation is to ideally sample a signal in space or time. This representation,
while convenient for the purposes of displaying or playback, is mostly inefficient
for analysis tasks. Signal processing techniques commonly require more meaning-
ful representations which capture the useful characteristics of the signal [31]. Sparse
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representations offer a powerful emerging model for signals and approximate a data
source as a linear combination of few elementary signals (atoms) from a pre-specified
dictionary [9]. This is mainly due to the fact that important classes of signals such as
audio and images have naturally sparse representations with respect to fixed bases (i.e.,
Fourier, wavelet), or concatenations of such bases [45]. Moreover, efficient and prov-
ably effective algorithms based on convex optimization or greedy pursuit are available
for computing such representations with high fidelity [9].

In this paper, we investigate audio UBSS and the basic scheme is as follows: Since
audio signal may not be sparse enough in the time domain, we do the UBSS in the
frequency domain in which the signals are sufficiently sparse. Furthermore, the linear
clustering characteristic of sparse signal in the time domain is translated into compact
cluster by normalizing the observed data in the frequency domain. Through estimating
the pivotal datum in a normalized data stack, the column vector of the underdetermined
mixing matrix can be estimated. In the traditional processing methods of UBSS, the
number of source signals is assumed to be known and the K -means algorithm is used
to estimate the mixing matrix. In practice, however, the sources and the number of
sources are unknown, so the K -means is not suitable for the actual situation of UBSS.
Based on this consideration, this paper employs affinity propagation (AP) clustering
to estimate the exact number of clusters (the number of sources); then the K -means
algorithmwith AP clustering as the initialization is used to estimate themixingmatrix.
The rest of this paper is organized as follows: The signal sparse representation and
normalization for the UBSS problem are discussed in Sect. 2. The estimation of the
mixing matrix is discussed in Sect. 3. First, we utilize AP clustering to search the
initial cluster centers (the number of sources) as a preprocessing, and then the K -
means is used to estimate the column vectors of the mixing matrix. In Sect. 4, we use
the linear programming method to separate the source signals. The simulations are
made in Sect. 5 to test and validate the performance of the proposed method. Finally,
Sect. 6 summarizes the results and presents the conclusions.

2 Signal Sparse Representation and Normalization

In the case of noise-free, the UBSS model of time domain can be expressed as x(t) =
As(t), where t is the time sampling point, s(t) = [s1(t), . . ., sM (t)]T is the source
signal vector, x(t) = [x1(t), . . ., xN (t)]T is the observed signal vector, and A is the
N × M(N < M) underdetermined mixing constant matrix. That is

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...

xN (t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1M
a21 a22 · · · a2M
...

...
. . .

...

aN1 aN2 · · · aNM

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

s1(t)
s2(t)

...

sM (t)

⎤
⎥⎥⎥⎦ (1)

where ai j (1 ≤ i ≤ N , 1 ≤ j ≤ M) is the ijth element of the matrix A. To obtain a
useful formulation of this system, the mixing matrix A is decomposed into its column
vector a j ( j = 1, . . ., M):
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A = [
a1 a2 . . . aM

]
(2)

and

a j = [
a1 j a2 j . . . aN j

]T (3)

Thus, Eq. (1) can be rewritten as

x(t) = a1s1(t) + a2s2(t) + . . . + aMsM (t) (4)

In general, an important audio signal processing framework is as follows: segment
the signal into (overlapping) frames; process each frame separately; then reconstruct
audio signal using the processed frames. For theUBSS problem, estimating themixing
matrix and sources are usually carried out in the time–frequency (T–F) domain, since
these signals are sparser than those in the time domain alone. In addition, considering
the frame pattern of audio signal processing, we use the short-time Fourier transform
(STFT) to realize the transformation from time domain into frequency domain, since
STFT can be achieved by selecting the audio frame using the window function. In
the frequency domain, the audio signal is sufficiently sparse, i.e., at a given discrete
frequency point k, we suppose that only S j (k) is nonzero and the other source signals
are zero or near to zero.Using the signal sparse representation in the frequency domain,
the Eq. (4) becomes

X(k) = a j S j (k) ( j = 1, . . . , M) (5)

where k is the discrete frequency index, X(k) and S j (k) are the STFT of time signals
x(t) and s j (t), respectively. Equation (5) is the vector form, and we can also rewrite
(5) as its component form:

X1(k)

a1 j
= X2(k)

a2 j
= · · · = XN (k)

aN j
= S j (k) (6)

Equation 6 is a linear equation and the direction vector a j = [a1 j , . . ., aN j ]T of the
straight line is the j th column of the mixing matrix A. That is, sparse signals have the
linear clustering characteristics and every source signal will determine such a straight
line. Therefore, the estimation of themixingmatrix will be translated into the direction
estimation of the straight line.

A straight line can be depicted by two directions. For example, a straight line in
three-dimensional space can be depicted by direction vector (1, 1, 1) or another vector
(−1, −1, −1). To depict the straight line by unique vector, we can take mirroring
mapping of the direction vectors to the positive side of the plane or sphere (super-
sphere). For example, map vector (−1,−1,−1) to (1, 1, 1). This mapping process can
be realized by normalizing the observed signals in frequency domain:

X#(k) =
⎧⎨
⎩

X (k)
||X (k)|| X (k) ≥ 0

−X (k)
||X (k)|| X (k) < 0

(7)

where || · || denotes Euclidean norm.
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In the frequency domain, the normalization (7)maps the points to the half unit circle
(sphere or hyper-sphere) to form data-intensive clusters. Each straight line maps to
a unique point on the half unit circle. That is, the linear clustering characteristic of
sparse signal is translated to compact clustering. Thus, the estimation of the column
vectors of the mixing matrix A is changed into clustering the point X#(k) on the half
unit circle. In each dense data stack, there is a pivotal datum (cluster center) that its
direction can denote the direction of the straight line. Based on this consideration, we
can estimate the direction of the straight line by searching the pivotal datum in the data
stack; consequently, the estimation of the mixing matrix of UBSS can be realized.

3 Mixing Matrix Estimation

Cluster analysis aims to seek a partition of the data in which data objects in the same
clusters are homogenous while data objects in different groups are well separated [32].
This homogeneity and separation are evaluated through the criterion functions. One
such criterion function is the sum-of-squared-error criterion, which is the most widely
used criterion function in clustering practice. Suppose we have a set of data objects
x j ( j = 1, . . ., N ) and we want to organize them into K clusters C = {C1, . . . ,CK }.
The sum-of-squared-error criterion is defined as

J (U,M) =
K∑

k=1

N∑
j=1

ukj ||x j − mk ||2

=
K∑

k=1

N∑
j=1

ukj (x j − mk)
T (x j − mk) (8)

where U = {ukj } is a partition matrix,

ukj =
{
1, if x j ∈ cluster k
0, otherwise

(9)

with

K∑
k=1

ukj = 1 ∀ j (10)

M = {m1, . . . ,mK } is the cluster prototype or centroid (means) matrix, and

mk = 1

Nk

N∑
j=1

ukjx j (11)

is the samplemean for the kth clusterwith Nk data objects. The partition thatminimizes
the sum-of-squared-error criterion is regarded as optimal and is called the minimum
variance partition. Clearly, the sum-of-squared-error criterion is appropriate for the
clusters that are compact and well separated.
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Based on the criterion function, we must find a clustering algorithm that can realize
the goal of minimizing the sum-of-squared-error. In various clustering methods, the
K -means algorithm seeks an optimal partition of the data by minimizing the sum-of-
squared-error criterion with an iterative optimization procedure, which belongs to the
category of hill-climbing algorithms.

3.1 K -means Algorithm

The K -means algorithm is one of the best-known andmost popular iterative clustering
algorithms. Each iteration consists of two basic steps: (a) partitioning the training
signal space into K regions or clusters; and (b) computing the centroid of each region.
The basic clustering procedure of K -means is summarized as follows:

(1) Initialize a K -partition randomly or based on some prior knowledge. Calculate
the cluster prototype matrix M = {m1, . . . ,mK };

(2) Assign each object in the data set to Ck using the so-called nearest-neighbor rule,
i.e.,

x j ∈ Ck, if ||x j − mk || < ||x j − mi ||
for j = 1, . . . , N , i �= k, and i = 1, . . . , K

(12)

(3) Recalculate the cluster prototype matrix based on the current partition,

mk = 1

Nk

∑
x j∈Ck

x j (13)

(4) Repeat steps (2) and (3) until there is no change for each cluster.

The algorithm described above performs batch mode learning, since the update of
the prototypes occurs after all the data points have been processed. Correspondingly,
the on-line or incremental mode K -means adjusts the cluster centroids each time a
data point is presented,

mnew = mold + η(x − mold) (14)

where η is the learning rate.
K -means algorithm is regarded as a staple of clustering methods, due to its ease

of implementation. It works well for many practical problems, particularly when the
resulting clusters are compact and hyper-spherical in shape [32]. This means that K -
means algorithm is well suited for clustering the normalized data as in (7), that is, it
can be well used to estimate the mixing matrix of UBSS.

While K -means has these desirable properties, it also suffers several major draw-
backs, particularly the inherent limitations when hill-climbing methods are used for
optimization. The first problem that plagues K -means is that the iteratively optimal
procedure cannot guarantee the convergence to a global optimum. Since K -means
can only converge to a local optimum, different initial points generally lead to differ-
ent convergence centroids, which makes it important to start with a reasonable initial
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partition to achieve high-quality clustering solutions. However, in theory, there exist
no efficient and universal methods for determining such initial partitions. The sec-
ond problem is that K -means assumes that the number of clusters K is known by
the users, which, unfortunately, usually is not true in practice. Like the situation for
cluster initialization, there are also no efficient and universal methods for the selection
of K . Therefore, identifying K in advance becomes a very important topic in cluster
validity. In addition, K -means is sensitive to outliers and noise. The calculation of
the means considers all the data objects in the cluster, including the outliers. Even if
an object is quite far away from the cluster centroids, it is still forced into a cluster
and used to calculate the prototype representation, which therefore distorts the cluster
shapes. These disadvantages of the K -means algorithm attract a great deal of effort
from different communities, and as a result, many variants of K -means have appeared
to address these obstacles.

3.2 Cluster Validity Analysis

There are many clustering algorithms that attempt to expose the inherent partitions
in the underlying data. Each algorithm can partition data, but different algorithms
or input parameters cause different clusters, or reveal different clustering structures.
Thus, the problem of objectively and quantitatively evaluating the resulting clusters, or
whether the clustering structure derived is meaningful, which is referred to as cluster
validation, is particularly important. For example, if there is no clustering structure
in a data set, the output from a clustering algorithm becomes meaningless and is just
an artifact of the clustering algorithm. In this case, it is necessary to perform some
type of tests to assure the existence of the clustering structure before performing any
further analysis. Such problems are called clustering tendency analysis.

With respect to three types of clustering structures (i.e., partitional clustering, hier-
archical clustering and individual clusters), there are three categories of testing criteria,
known as external criteria, internal criteria and relative criteria. Given a data setX and
a clustering structure C derived from the application of a certain clustering algorithm
on X, external criteria compare the obtained clustering structure C to a pre-specified
structure, which reflects a priori information on the clustering structure of X. In con-
trast to external criteria, internal criteria evaluate the clustering structure exclusively
fromX, without any external information. Relative criteria compareC with other clus-
tering structures, obtained from the application of different clustering algorithms or
the same algorithm but with different parameters onX, and determine which one may
best represent X in some sense. For example, a relative criterion would compare a set
of values of K for the K -means algorithm to find the best fit of the data. Both external
criteria and internal criteria are closely related to statistical methods and hypothesis
tests. They require statistical testing, which could become computationally intensive.
Relative criteria eliminate such requirements and concentrate on the comparison of
clustering results generated by different clustering algorithms or the same algorithm
but with different input parameters. In this section, we only discuss cluster validity
approaches based on relative criteria and focus on the problem of how to estimate the
number of clusters K .
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For many partitional clustering algorithms, K is required as a user-specified para-
meter. Although in some cases, K can be estimated in terms of the user’s expertise or
a priori information for more applications, K still needs to be estimated exclusively
from the data themselves. Either over-estimation or under-estimation of K will affect
the quality of resulting clusters. A partitionwith toomany clusters complicates the true
clustering structure, therefore making it difficult to interpret and analyze the results.
On the other hand, a partition with too few clusters causes the loss of information and
misleads the final decision. Therefore, to estimate the number of clusters is called the
fundamental problem of cluster validity.

Perhaps the most direct method to estimate the value of K is to project data points
onto a two- or three-dimensional Euclidean space, using data visualization methods.
In that way, visual inspections can provide some useful insight on the number of
clusters, and for that matter, even the assignment of data points to different clusters
could be determined. However, the complexity of many real data sets makes the 2
or 3-dimensional projections far from sufficient to represent the true data structures;
therefore, the visual estimation of K can only be restricted to a very small scope of
applications.

For probabilistic mixture, model-based clustering (e.g., K -means), finding the cor-
rect number of clusters K is equivalent to fitting a model with observed data and
optimizing some criterion. Usually, the expectation maximization (EM) algorithm is
used to estimate the model parameters for a given K , which also goes through a pre-
defined range of values. The value of K that maximizes or minimizes the defined
criterion is considered optimal. A Monte Carlo cross validation (MCCV) method was
proposed in [36], which randomly divides data into training and test sets a certain
number of times using a fraction β (e.g., a half-half division of training and test set
works well based on the empirical results). K can be selected either directly based
on the criterion function or through the calculated posterior probabilities. The most
widely used model selection criteria are Akaike’s information criterion (AIC) [2],
Bayesian information criterion (BIC) [35], deviance information criterion (DIC) [38],
and Bayes factors (BF) [17,18]. There are several important differences between AIC,
BIC, DIC, and BF. All maximum likelihood and Bayesian criteria are alike, in that
model selection is linked to parameter estimation. In the calculation of AIC and BIC,
parameter estimation is done by maximizing the likelihood in an attempt to find the
single best point estimate. Parameters for DIC and BF are estimated using Bayesian
methods, which integrate rather than maximize over the parameter space. While both
DIC and BF incorporate parameter uncertainty and correlation in the sampling of
the joint posterior distribution, one criticism of AIC and BIC is that neither consider
parameter uncertainty in their calculations. This is not a maximum likelihood ver-
sus Bayesian issue; several maximum likelihood criteria, including the information
complexity criterion (or non-coding information theoretic criterion, ICOMP) [5,6],
do include parameter correlation and uncertainty. In [10], the author analyzed and
compared the performance of five model selection criteria (AIC, BIC, DIC, BF, and
ICOMP). InMonte Carlo comparisons ofmodel selection performance, the truemodel
is almost always considered among the candidate models. While the goal of Monte
Carlo comparisons is to estimate the frequency of selecting the true model, the goal
of model selection applied to real data is to find a model that best approximates truth.
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If the simulation-based rules were applied to inference in the real world, all criteria
would be wrong 100% of the time.

From the above analysis, validity criteria are used to examine hierarchical clus-
tering structures, partitional clustering structures, or individual clusters. Particularly,
estimating the number of clusters in underlying data is a central task in cluster valida-
tion, attracting efforts from a wide variety of disciplines and leading to a large number
of indices, criteria, and ad hoc methods. With all these validation criteria, indices,
and methods, it is important to keep in mind that no criterion, index, or method is
superior to any other for all problems encountered. In general, clustering algorithms
search the space of cluster locations and number of clusters to optimize the AIC, BIC
,or DIC measure, and the splitting decision is done by computing the BIC or AIC
for Gaussian dataset. In this paper, we mainly investigate the UBSS of audio sources
(super-Gaussian dataset) rather than the division criterion, so we expect to find an
existent clustering method to accurately estimate the number of sources. And this
clustering method is used as preprocessing of the K -means algorithm, since K -means
is well qualified for solving the UBSS problem if the number of sources is known in
advance. Fortunately, affinity propagation (AP) clustering [12] can be applied to the
case of an unknown number of clusters. The novel AP clustering doesn’t need the
initialization and it can quickly search the exact number of clusters. Thus, we use AP
clustering to search the initial cluster prototype matrix; based on this, the K -means is
performed with this initial partition to improve the estimated accuracy of the mixing
matrix of UBSS.

3.3 AP Clustering

Clustering data based on a measure of similarity is a critical step in scientific data
analysis and in engineering systems [12]. A common approach is to use data to learn a
set of centers such that the sum of squared errors between data points and their nearest
centers is small. When the centers are selected from actual data points, they are called
exemplars [12]. The most obvious feature of AP clustering is that it simultaneously
considers all data points as potential exemplars.

AP is a fast algorithm and has advantages in searching speed, general applicability,
and good clustering performance. Differing from the K -means algorithm, AP works
based on similarities between pairs of data points, and simultaneously considers all
the data points as potential cluster centers (called exemplars). The similarity sim(i, k)
indicates howwell the data point with index k is suited to be the exemplar for data point
i . When the goal is to minimize squared error (Euclidean distance), each similarity is
set to a negative squared error. For points xi and xk , the similarity is defined as [12]

sim(i, k) = −||xi − xk ||2 (15)

AP takes as input a real number sim(k, k) for each data point k so that data points with
larger values of sim(k, k) are more likely to be chosen as cluster centers. These values
are referred to as preferences. The number of clusters is influenced by the values of
the input preferences, but also emerges from the message-passing procedure.
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In order to find appropriate exemplars, AP accumulates evidence, responsibility
r(i, k), from data point i for how well-suited point k is to serve as the exemplar for
point i , and accumulates evidence, availability av(i, k), from candidate exemplar point
k for how appropriate it would be for point i to choose point k as its exemplar. From the
view of evidence theory [16], larger the value r(:, k) + av(:, k), the more probability
the point k as a final cluster center. Based on the evidence accumulation, AP searches
for clusters through an iterative process until a high-quality set of exemplars and
corresponding clusters emerges.

The messages r(i, k) and av(i, k) can be viewed as log-probability ratios. To begin
with, the availabilities are initialized to zero: av(i, k) = 0. Then, the responsibilities
are computed using the rule [12]:

r(i, k) = sim(i, k) − max
j s.t. j �=k

{av(i, j) + sim(i, j)} (16)

In the first iteration, the availabilities are zero, r(i , k) is set to the input similarity
between point i and point k as its exemplar, minus the largest of the similarities
between point i and other candidate exemplars. In later iterations, when some points
are effectively assigned to other exemplars, their availabilities will drop below zero
as prescribed by the update rule below. These negative availabilities will decrease the
effective values of some of the input similarities s(i , j) in the above rule, removing the
corresponding candidate exemplars from competition. For k = i , the responsibility
r(k, k) is set to the input preference that point k be chosen as an exemplar, s(k, k),
minus the largest of the similarities between point i and all other candidate exemplars.
This self-responsibility reflects accumulated evidence that point k is an exemplar,
based on its input preference tempered by how ill-suited it is to be assigned to another
exemplar.

The above responsibility update rule (16) lets all candidate exemplars compete for
ownership of a data point, and the following availability update rule gathers evidence
from data points as to whether each candidate exemplar would make a good exemplar:

av(i, k) = min

⎧⎨
⎩0, r(k, k) +

∑

j s.t. j /∈{i,k}
max[0, r( j, k)]

⎫⎬
⎭ (17)

the availability av(i, k) is set to the self-responsibility r(k, k) plus the sum of the
positive responsibilities candidate exemplar k receives from other points. Only the
positive portions of incoming responsibilities are added, because it is only necessary for
a good exemplar to explain some data points well (positive responsibilities), regardless
of how poorly it explains other data points (negative responsibilities). If the self-
responsibility r(k, k) is negative, the availability of point k as an exemplar can be
increased if some other points have positive responsibilities for point k being their
exemplar. To limit the influence of strong incoming positive responsibilities, the total
sum is thresholded so that it cannot go above zero. The self-availability av(k, k) is
updated differently:
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av(k, k) =
∑

j s.t. j �=k

max{0, r( j, k)} (18)

This message reflects accumulated evidence that point k is an exemplar, based on the
positive responsibilities sent to candidate exemplar k from other points.

In addition, there are two important parameters in AP: the preferences p(k) =
sim(k, k) in diagonal of similarity matrix Sim = {sim(i, k)} and the damping factor λ.
Obviously,

r(k, k) = p(k) − max
j s.t. j �=k

{av(k, j) + sim(k, j)} (19)

The larger the p(k) value, the larger the r(k, k) and av(i, k) values, so that it has more
probability that the point k is as a final cluster center, i.e., the p(k) value influences
which and how many exemplars will win as final cluster centers. This means that the
number of identified clusters is increased or decreased by adjusting p(k) accordingly,
and usually a good choice is to set all the p(k) values to be the median of all the
similarities between data points.

Furthermore, when updating the messages, it is important that they be damped to
avoid numerical oscillations that arise in some circumstances. In each iterative step i ,
the values of r(i, j) and av(i, j) are updated with the one in last iteration

av(i, k) = (1 − λ)av(i, k) + λav(i − 1, k)
r(i, k) = (1 − λ)r(i, k) + λr(i − 1, k)

(20)

where the damping factor λ ∈ [0, 1] and the default value is λ = 0.5. Another function
of the damping factor is to improve convergence when AP fails to converge on account
of oscillations (or identified exemplars are in periodic variation), where λ needs to be
increased to eliminate oscillations [12].

The above update rules require only simple, local computations that are easily
implemented, and messages need only be exchanged between pairs of points with
known similarities. At any point during AP, availabilities and responsibilities can be
combined to identify exemplars. For point i , the value of k that maximizes av(i, k) +
r(i, k) either identifies point i as an exemplar if k = i , or identifies the data point that
is the exemplar for point i .

Obviously, AP clustering can effectively overcome the inherent defect of the K -
means algorithm.WithAP as initialization, the traditional K -means is used to estimate
the underdetermined mixing matrix of UBSS; this is the innovation point of this paper.

4 Source Signals Estimation

In Sect. 3, we have obtained the underdetermined mixing matrix A by the clustering
algorithms. Based on this matrix, the second step of the “two-step approach” is to
separate the source signals.

In the noise environment, the UBSS model is x = As + v, where v ∈ RN is a
vector of additive Gaussian noise. For sparse signals, the model x = As + v has the
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property that only a small number of the components xi (i = 1, . . . , N ) are signifi-
cantly nonzero at the same time. In the frequency domain, the observed signals are
sufficiently sparse, only a component is nonzero. That is, the given nonzero com-
ponent has a sparse distribution. A random variable xi is called sparse when xi has
a distribution with a peak at zero and heavy tails, as is the case, for example, with
the double exponential (Laplace) distribution. For all practical purposes, sparsity is
equivalent to super-Gaussianity or leptokurtosis. In this paper, we only investigate the
UBSS of audio signals which are super-Gaussian sources, so the separation process
is as follows.

For sparse signals, source separation is achieved by solving the following optimiza-
tion problem [4]:

min
A,S

1

2σ 2 ||AS(k) − X#(k)||2 +
∑
i,k

|Si (k)| (21)

where σ 2 is the variance of the noise. The first term of (21) is the sum of squared
reconstruction error (the log-likelihood of the Gaussian noise); the second term is the
penalty for non-sparsity (assuming independent Laplacian source or super-Gaussian
source).

Obviously, (21) is a multi-variable optimization problem. It is difficult to estimate
the mixing matrix and the sources at the same time. Since the mixing matrix A was
given in Sect. 3, problem (21) becomes

min
S

1

2σ 2 ||AS(k) − X#(k)||2 +
M∑
i=1

|Si (k)| (22)

In this paper, we only consider the case of noise-free, problem (22) is reduced into

min
S

M∑
i=1

|Si (k)| s.t. AS(k) = X#(k) (k = 1, . . . , F) (23)

The problem (23) is a linear programming problem, and it can be separated into F
problems at each k, which are easier to solve.

5 Simulation and Analysis

To check the effectiveness of the proposed method, three simulations are done in dif-
ferent cases (with different mixing matrices). In all simulations, we also compare the
traditional K -means and the direction estimation of mixing matrix (DEMIX) method
[3] with the proposed method. All the methods are carried out under the same condi-
tions in order to get a fair conclusion.
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5.1 Simulation Environment and Performance Index

All the simulations are carried out in MATLAB 7.10.0 (R2010a), system of the PC
is Windows 7, CPU is Intel(R) Celeron(R) 1007U-1.5GHz, and memory is 4 GB
(gigabyte).

All the methods are tested using the SixFlutes data set [4]: the sound of a flute
playing steady, isolated notes are recorded at high quality in an acoustically isolated
booth without reverberation, and sampled at 44,100 Hz with 16 bits resolution. Six
743 ms excerpts (32,768 samples) are selected for the source signals, corresponding
to notes s1(t), s2(t), s3(t), s4(t), s5(t) and s6(t).

We use the angular deviation [39] to check the estimated accuracy of the mixing
matrix:

d(a, â) = 180

π
arccos

〈
a, â

〉
||a|| · ||â|| (24)

where a is the column vector of the original mixing matrix A, and â is the column
vector of the estimated matrix Â. When the angular deviation is smaller, the accuracy
of the estimation is higher.

In addition, we use the correlative coefficients [11] to check the similarity between
the original sources and the recovered sources.

ρi j =
∑T

t=1 si (t)ŝ j (t)√∑T
t=1 [si (t)]2 ∑T

t=1 [ŝ j (t)]2
(25)

where si (t) is the i th source signal, ŝ j (t) is the j th recovered signal, andT is the number
of sampling points in time domain. If the algorithm is effective ρi i will approximate
to 1 or −1, and ρi j (i �= j) approximates to 0.

In order to compare the DEMIXmethod with the proposed method, we also use the
source to interference ratio (SIR), the source to distortion ratio (SDR) and the source
to artifacts ratio (SAR) [42].

SIR = 10 log10
||starget||2
||einterf ||2 (26)

SDR = 10 log10
||starget||2

||einterf + eartif ||2 (27)

SAR = 10 log10
||starget + einterf ||2

||eartif ||2 (28)

Here the recovered time domain signal is decomposed into the sum of three terms,
with reference to the original unmixed source signal

srecov = starget + einterf + eartif (29)
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where srecov is the recovered source signal, starget is the portion of the recovered signal
that relates to the original or target source, einterf is the portion that relates to interfer-
ence from other sources, and eartif is the portion that relates to artifacts generated by
the separation technique and/or the re-synthesis method. The SIR provides a measure
of the presence of other sources in the separated source; the SDR provides a measure
of the overall quality of the sound source separation; the SAR provides a measure of
the artifacts present in the signal due to separation and/or re-synthesis.

In [42], the authors discussed the performance measures SIR, SDR and SAR in
detail. The assumptions are as follows: (1) the true source signals and noise signals (if
any) are known; (2) the user chooses a family of allowed distortions F according to
the application (but independently of the kind of mixture or the algorithm used). The
mixing system and the de-mixing techniques do not need to be known. Depending
on the exact applications, different distortions can be allowed between an estimated
(recovered) source and the wanted true source. In [42], the authors considered four
different sets of such allowed distortions, from time-invariant gains to time-varying
filters. In each case, the estimated source was decomposed into a true source part plus
error terms corresponding to interferences, additive noise, and algorithmic artifacts.

Separate performance measures are computed for each estimated source ŝ j by
comparing it to a given true source s j . Note that the measures do not take into account
the permutation indeterminacy of BSS. If necessary, ŝ j may be compared with all the
sources (s j ′)1≤ j ′≤N and the “true source”may be selected as the one that gives the best
results. In [42] the estimated source was decomposed as ŝ j = starget +einterf +enoise +
eartif , where starget = f (s j ) was a version of s j modified by an allowed distortion
f ∈ F , and where einterf , enoise and eartif were, respectively, the interferences, noise,
and artifacts error terms. These four terms should represent the part of ŝ j perceived
as coming from wanted source s j , from other unwanted source (s j ′) j ′ �= j , from sensor
noise (ni )1≤i≤M , and from other causes (like forbidden distortions of the sources
and/or “burbling” artifacts). The decomposition was based on orthogonal projections.
Let

∏{y1, . . ., yk} denote the orthogonal projector onto the subspace spanned by the
vector y1, …, yk , and the projector was a T × T matrix, where T was the length of
these vectors. The three orthogonal projectors [42] were as follows:

Ps j =
∏

{s j } (30)

Ps =
∏ {

(s j ′)1≤ j ′≤N
}

(31)

Ps,n =
∏ {

(s j ′)1≤ j ′≤N , (ni )1≤i≤M
}

(32)

where s j was the wanted source, s j ′ was a unwanted source, and ni was a component
of the noise vector n. The estimated source ŝ j was decomposed as the sum of the four
terms [42]:

starget = Ps j ŝ j (33)

einterf = Psŝ j − Ps j ŝ j (34)

enoise = Ps,n ŝ j − Psŝ j (35)
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eartif = ŝ j − Ps,n ŝ j (36)

The computation of starget was as follows [42]:

starget = 〈ŝ j , s j 〉s j
||s j ||2 (37)

where 〈a, b〉 was the inner product between two signals a and b, and ||a||2 = 〈a, a〉
was the energy of a.

The computation of einterf was a bitmore complex [42]. If the sourcesweremutually
orthogonal, then

einterf =
∑

j ′ �= j 〈ŝ j , s j ′ 〉s j ′
||s j ′ ||2 (38)

Otherwise, if we use a vector c of the coefficients such that [42]

Psŝ j =
N∑

j ′=1

c̄ j ′s j ′ = cH s (39)

where c̄ j ′ was the complex conjugate of c j ′ , and (·)H denoted Hermitian transposition.
Then

c = R−1
ss [〈ŝ j , s1〉, . . . , 〈ŝ j , sN 〉]H (40)

where Rss was the Gram matrix of the source defined by (Rss) j j ′ = 〈s j , s j ′ 〉.
The computation of Ps,n proceeds in a similar fashion; however, most of the timewe

canmake the assumption that the noise signals aremutually orthogonal and orthogonal
to each source, so that [42]

Ps,n ŝ j ≈ Psŝ j +
∑M

i=1 〈ŝ j , ni 〉ni
||ni ||2 (41)

In this paper, we only discuss the BSS model in the noise-free case; the second term
of the right-hand side of (41) will not be considered. Similarly, the error term (enoise)
is not considered. That is, the estimated source srecov is decomposed into the sum of
three terms as in (29).

When the powers of starget, einterf , and eartif vary across time, the perceived sep-
aration quality also varies. We take this into account by defining local numerical
performance measures in the following way [42].

First, we compute starget, einterf , and eartif as in (30)–(34), (36). Then, denoting w

a finite-length centered window, we compute the windowed signals srtarget, e
r
interf , and

erartif centered in r , where s
r
target(t) = w(t − r)starget(t), and so on. Finally, for each r ,

we compute the local measures SIRr , SDRr , and SARr as in (26)–(28) but replacing
the original terms by the windowed terms centered in r .
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SIRr , SDRr , and SARr thus measure the separation performance on the time frame
centered in r . All these values can be visualizedmore globally by plotting them against
or by summarizing them into cumulative histograms. Global performance measures
can also be defined in the spirit of segmental SNR [8]. The shape of the window has
not much importance generally, only its duration is relevant.

5.2 The Procedures of Simulations

The observed signals x(t) in time domain are processed in frame format of length
L samples and they are multiplied by a Hanning window. A hop distance d is used
between the starting points of successive frames, leading to an overlap of L−d samples
between consecutive frames. Each frame is transformed with STFT (a standard Fast
Fourier transform (FFT) of length L), and the real and imaginary parts of the positive
half spectrum are taken, for a total of L coefficients. For each signal, the coefficients of
successive frames are concatenated in a single vector X(k), which is the actual input
to the separation procedure. Using Eq. (7), the signals X(k) in frequency domain are
normalized to X#(k).

The window function selection needs explaining in the case of the Hanning window
to deal with the STFT. In the frequency domain, spectral amplitude estimation forms
the basis ofmost signal restoration systems and the simplest form of spectral amplitude
estimation is spectral subtraction [33]. The audio signals x(t) in the time domain are
generally divided into frames (or blocks) of L sample length. Each frame is windowed,
using a window and then transformed via discrete Fourier transform (DFT) to L
spectral samples. The main function of the window and the overlap operations is to
alleviate discontinuities at the endpoints of each output block. Although there are
a number of useful windows (for example, rectangular window, Hamming window,
Barlett window, Blackman window) with different frequency/time characteristics, in
most implementations of the spectral subtraction, a Hanning window is used [33]. In
removing distortions introduced by spectral subtraction, the postprocessor algorithm
makes use of such information as the correlation of each frequency channel from one
block to the next, and the durations of the signal events and the distortions.

FFT-based measurements are subject to errors from an effect known as leakage.
This effect occurs when the FFT is computed from of a block of data which is not
periodic. To correct this problem, appropriate window functions must be applied. In
a signal analyzer, the time record length is adjustable but it must be selected from a
set of predefined values. Since most signals are not periodic in the predefined data
block time periods, a window must be applied to correct for leakage. A window
is shaped so that it is exactly zero at the beginning and end of the data block and
has some special shape in between. This function is then multiplied with the time
data block forcing the signal to be periodic. A special weighting factor must also be
applied so that the correct FFT signal amplitude level is recovered after thewindowing.
A window function minimizes the effect of leakage to better represent the frequency
spectrumof the data.Window functions aremost easily understood in the time domain;
however, they are often implemented in the frequency domain instead.Mathematically
there is no difference when the windowing is implemented in the frequency or time
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Table 1 Window functions and their features

Window Best for these
signal types

Frequency
resolution

Spectral leakage Amplitude accuracy

Barlett Random Good Fair Fair

Blackman Random or mixed Poor Best Good

Flat top Sinusoids Poor Good Best

Hanning Random Good Good Fair

Hamming Random Good Fair Fair

Kaiser Random Fair Good Good

Tukey Random Good Poor Poor

Welch Random Good Good Fair

Boxcar Transient and
synchronous
sampling

Best Poor Poor

domains, though themathematical procedure is somewhat different.When thewindow
is implemented in the frequency domain, the FFT of the window function is computed
one time and saved in memory and then it is applied to every FFT frequency value
correcting the leakage in the FFT. This gives rise to one measure of the window’s
characteristics, known as the side lobe. The FFT of a window has a peak at the applied
frequency and other peaks, called side lobes, on either side of the applied frequency.
The height of the side lobes indicates what affect the windowing function will have
on frequencies around the applied frequency. In general, lower side lobes reduce the
leakage in the measured FFT but increase the bandwidth of the major lobe. FFT
windows reduce the effects of leakage but cannot eliminate leakage entirely. In effect,
they only change the shape of the leakage. In addition, each type of window affects
the spectrum in a slightly different way. Many different windows have been proposed
over time, each with its own advantage and disadvantage relative to the others. Some
are more effective for specific types of signal types such as random or sinusoidal.
Some improve the frequency resolution, that is, they make it easier to detect the exact
frequency of a peak in the spectrum. Some improve the amplitude accuracy, that is,
they most accurately indicate the level of the peak. The best type of window should be
chosen for each specific application. The most common windows and their features
[20] are given in Table 1.

According to Table 1, Hanning, Hamming, Tukey and Welch produce good fre-
quency resolution. Hanning is the most commonly used window function for random
signals because it provides good frequency resolution and leakage protection with fair
amplitude accuracy [20]. The advantage of the Hanning window is very low aliasing,
and the tradeoff is slightly decreased resolution (widening of the main lobe). If the
Hanning window is used to sample a signal in order to convert to frequency domain,
it is complex to reconvert to the time domain without adding distortions [15].

On the other hand, one of the disadvantages of window functions is that the begin-
ning and end of the signal is attenuated in the calculation of the spectrum. This means
that more averages must be taken to get a good statistical representation of the spec-
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trum, increasing the time to complete themeasurement. Overlap processing is a feature
that is available in most signal processing that can recover the lost data and reduce the
measurement time. This processing reduces the total measurement time by recovering
a portion of each previous frame that otherwise is lost due to the effect of the window-
ing function. Overlap processing is particularly effective at reducing the measurement
time for low frequency tests (generally under 50 Hz) for which the frame acquisition
times are very long.

For the normalized data X#(k), the K -means is carried out to estimate the cluster
centers by setting the number of clusters in advance; for the DEMIX method, the
directions of the mixing matrix is counted and estimated based on a clustering algo-
rithm; for the proposed method, the number of clusters and the initial cluster centers
are evaluated by AP clustering, and the results are regarded as the initial values of
the K -means to estimate the ideal cluster centers which are the column vectors of the
underdetermined mixing matrix.

In the following experiments, we use the traditional K -means algorithm, and the
main parameters are the following: the initial cluster centroid positions are chosen
randomly from the observed signals, the number of times to repeat the clustering is 1,
and the maximum number of iterations is 100. The stopping criterion of K -means is
that the assignments no longer change.

After obtaining the mixing matrix, the source signals are separated by the linear
programming as in (23). The solutions give the estimation of M sparse source signals
in the frequency domain. For each estimated source, the coefficient vector is split
back into frames. The real and imaginary components are regrouped into complex
coefficients, and the spectra are extended to negative frequencies. For each spectrum,
the standard IFFT is used to obtain time domain frames of length L . Each frame is
multiplied by the inverse window, and the overlap between frames is removed, 50% on
either side, by keeping only the central part of the frame (thus avoiding the distortion at
the edges that often appears after frequency domain manipulation). The re-synthetized
signals are finally built by simple concatenation of the resulting pieces.

5.3 Simulations

To evaluate the performances of the above algorithms, some simulations are given
here, in different cases.

1. UBSS of three source signals from two mixed signals.

The three source signals are s1(t), s2(t), and s6(t) respectively. The number of
samples of each signal is 7500. Two different mixing matrices are used; one is the
white noise channel and the other is the Gaussian channel. For each type of the mixing
matrices and each algorithm, we carry out ten trials, respectively. For the white noise
channel, the mixing matrix is randomly generated by MATLAB command A = 2 ∗
rand(2, 3) − 1 and one of the mixing matrices is:

A =
[−0.7808 0.4757 −0.3481

−0.2011 0.7464 0.8084

]
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Fig. 1 Three source signals and two mixed signals

The mixed signals are obtained by x(t) = As(t) = [x1(t), x2(t)]T . The waveforms of
the source signals and the mixed signals are shown in Fig. 1.

We take STFT of the two mixed signals x1(t) and x2(t) in frame. For each frame
with L = 2048, we multiply a Hanning window. Since the number of samples of each
signal is 7500 and the number of frames must be an integer, we take the hop distance
d = round(0.15 ∗ L ∗ 4) = 1229, where round(x) rounds x to nearest integer. Thus,
every signal is decomposed into six frames and the very end of the signal is removed.
The overlap between the successive frames is L−d = 819. After the STFT operation,
the transformed signals X1(k) and X2(k) are the coefficients in frequency domain and
k is the discrete frequency index. A simple and useful representation of mixture space
is a scatter plot of the data, which shows X2(k) against X1(k) for every data point k.
The scatter plot is shown in Fig. 2a.

From Fig. 2a, we can see that the three sources gave three straight lines, this reflects
the linear clustering characteristic of sparse signals. In the scatter plot, the column
vectors of the mixing matrix are mapped into the directions of the lines and the matrix
A can be estimated via line clustering. In this paper, to depict each line by a unique
vector, the signals are normalized in scale and mapped the directional vectors to the
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Fig. 2 The scatter plot X1 versus X2 of the three sparse source signals

positive side of the plane. Figure 2b shows the data points to the half unit circle and
the sources are embodied in the data stack.

For convenience, the proposed method is expressed as “AP-K -Means,” the conven-
tional K -means algorithm is expressed as “K -means” and the direction estimation of
mixing matrix method is expressed as “DEMIX.” For the normalized data, we use AP
clustering to seek the number of clusters and the initial cluster centers. To speed the
convergence of AP, we set the damping factor λ = 0.9. For the given mixing matrix
A, we use AP-K -Means and DEMIX to estimate the mixing matrix. The results are
as follows:

ÂAP−K =
[−0.9685 0.5211 −0.4009

−0.2488 0.8514 0.9153

]
ÂDEMIX =

[−0.9685 0.5375 −0.3961
−0.2492 0.8433 0.9182

]

For K -means, we set the number of clusters K = 3 in advance and the estimatedmixing
matrix is

ÂK =
[−0.5539 0.6329 −0.3942

0.8326 0.7008 0.9189

]

Based on the estimated mixing matrix, we separate the sources by linear programming
and do IFFT to obtain the signals in the time domain.
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Table 2 Correlative coefficients
of the three methods

Methods Correlative coefficients

signal1 signal2 signal3

K -means 0.9831 0.9992 0.9334

AP-K-Means 0.9957 0.9938 0.9916

DEMIX 0.9956 0.9937 0.9909

To compare the similarity between the original source and the estimated source,
we compute the correlative coefficient of each signal of the three methods. The results
are shown in Table 2.

FromTable 2 we can see that the similarity index of AP-K -Means is superior to that
of DEMIX though the correlative coefficients of these two methods are very similar.
For K -means, the correlative coefficient of signal2 is only slightly better than that of
AP-K -Means and DEMIX, but the performance indices of the other signals are poor.
On the whole, the UBSS performances of AP-K -Means and DEMIX are better than
that of K -means. This trial illustrates that AP-K -Means can commendably recover
the sources.

For AP-K -Means, the waveforms of the separated sources and the original sources
are shown in Fig. 3. From Fig. 3, we can know that the estimated sources precisely
recover the original sources.

To have a better performance comparison of the three methods, we consider the
data of all the ten trials. The angular deviations and the correlative coefficients of the
ten trials are shown in Figs. 4 and 5.

From Figs. 4 and 5, we can clearly see that the angular deviation curve and the
correlative coefficient curve of DEMIX almost coincide with that of AP-K -Means.
However, the curves of K -means have larger fluctuation; this illustrates the limitation
of K -means since it can only converge to a local optimum.

To compare the indices of SDR, SIR andSAR,wefirst verify the relationship among
the SDR, SIR and SAR using AP-K -Means. In all the ten trials, when time-invariant
(TI) filters distortion and TI gains distortion are allowed [42], the SDR, SIR and SAR
for single signal s1(t) are shown in Fig. 6.

From Fig. 6 we can know that the SIR has the maximum values and the SDR has
the minimum values, but the SDR can provide a measure of the overall quality of BSS
[42]. Thus, for the signal s1(t), we compute the SDR of the three methods and the
results are shown in Fig. 7.

From Fig. 7, we clearly see that the separation performance of AP-K -Means is
almost the same as that of DEMIX, and these two methods are greatly superior to the
K -means.

For the three estimated source signals, we also compute the average SDR, SIR and
SAR values of all the ten trials; the results of the three methods are shown in Table 3.

From Table 3, we can see that the average SDR, SIR and SAR indices of DEMIX
are best for signal1, the indices of K -means are best for signal2, and the indices of
AP-K -Means are best for signal3. In spite of this, from Table 3 we can still see that
the average indices for signal1 and signal3 of K -means are very poor, especially since
the SDR value of signal1 is only 7, and this shows the estimated signal has serious
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Fig. 3 Three original sources and the recovered sources of AP-K -Means

1 2 3 4 5 6 7 8 9 10
0

50

100

th
e 

fir
st

 c
ol

um
n 

angular deviations of the mixing matrix

1 2 3 4 5 6 7 8 9 10
0

50

100

th
e 

se
co

nd
 c

ol
um

n

AP-K-Means
K-means
DEMIX

1 2 3 4 5 6 7 8 9 10
0

50

100

number of trials

th
e 

th
ird

 c
ol

um
n

Fig. 4 The angular deviations of the three methods



2904 Circuits Syst Signal Process (2016) 35:2881–2913

1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1
correlative coefficients of the original sources and the estimated sources

si
gn

al
1

1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

si
gn

al
2

AP-K-Means
K-means
DEMIX

1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

number of trials

si
gn

al
3

Fig. 5 The correlative coefficients of the three methods

1 2 3 4 5 6 7 8 9 10
10

20

30

40
SDR,SIR,SAR

TI
-g

ai
n 

di
st

or
tio

n 
al

lo
w

ed

SDR
SIR
SAR

1 2 3 4 5 6 7 8 9 10
15

20

25

30

35

TI
-fi

lte
r d

is
to

rti
on

 a
llo

w
ed

number of trials
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distortion. On average, the performance indices of DEMIX and AP-K -Means are
nearly the same and they are better than that of K -means. In addition, from Table 3 we
can also know that the quantitative indices for IT-filters allowed distortion are bigger
than that of IT-gains allowed distortion. This shows that the factor of IT-gains allowed
distortion has more influence on the performance of UBSS.

For Gaussian channel, the mixing matrix is randomly generated byMATLAB com-
mandA = randn(2, 3), and we have also made ten trials. In the experiment, we found
that the source signals could not be correctly separated in several trials using the
estimated matrix of K -means method, and AP-K -Means and DEMIX were able to
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Fig. 7 The SDR comparison of the three methods

Table 3 The average SDR, SIR and SAR of the three methods

Signals Methods TI-gains distortion are allowed TI-filters distortion are allowed

SDR SIR SAR SDR SIR SAR

signal1 K -means 7.0330 13.6877 8.5362 7.4341 11.3393 10.2404

AP-K-Means 20.8297 30.4808 21.3402 21.3213 25.6493 23.3678

DEMIX 20.8716 30.5172 21.3829 21.3626 25.6838 23.4128

signal2 K -means 25.8698 32.3080 27.3297 26.3070 30.2760 28.8995

AP-K-Means 19.5301 30.3008 19.9340 20.0412 24.5747 21.9630

DEMIX 19.5275 30.2947 19.9317 20.0404 24.5720 21.9633

signal3 K -means 11.8564 18.7928 13.9995 12.5595 16.5265 15.9440

AP-K-Means 15.1319 27.0147 15.4379 15.9522 21.3150 17.5129

DEMIX 15.0744 26.9537 15.3809 15.8947 21.2504 17.4591

Bold values indicate the average SDR, SIR and SAR of all the ten trails in the case of three sources

separate the source signals successfully. Thus, we picked a matrix in which K -means
can be used:

A =
[
1.5357 −1.9171 1.2744
0.4344 0.4699 0.6385

]

Since AP-K -Means and DEMIX have almost the same performance, here we only
compared AP-K -Means and K -means method. The estimated matrices of these two
methods are:

ÂAP−K =
[
0.9623 −0.9704 0.8925
0.2720 0.2411 0.4509

]
ÂK =

[−0.9591 −0.9711 −0.9194
0.2830 0.2388 0.3821

]
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Fig. 8 The waveforms of the recovered source signals of the two methods. a AP-K -Means method,
b K -means method

For AP-K -Means, the angular deviations for each column vector of the estimated
mixing matrix are 0.0112, 0.1806, 0.1916 and that of K -means are 147.7658, 0.0431,
4.0442. Obviously, the first column of the mixing matrix was not truly estimated using
K -means. For the sake of observing the separation results more intuitively, we gave
the waveforms of the recovered source signals of these two methods. The results are
shown in Fig. 8.

Compared with the source signals in Fig. 1, we know that AP-K -Means can accu-
rately recover the source signals. Unfortunately, K -means cannot recover the first
source signal, and the recovery effects of the other two signals are also very poor. This
fully shows that the local optimum of K -means is fatal in some cases.

2. UBSS of four source signals from two mixing signals

The four source signals are s1(t),s2(t),s5(t) and s6(t). The white noise and Gaussian
mixingmatrices are randomly generated byMATLABcommandsA = 2∗rand(2, 4)−
1 and A = randn(2, 4). For each method, we carried out five trials for the white noise
mixing matrix and five trials for Gaussian mixing matrix, respectively.

WhenTI-filters distortion andTI-gains distortion are allowed, for the four estimated
source signals, the average SDR, SIR and SAR of the ten trials are shown in Table 4.

From Table 4, we can see that the average SIR, SDR and SAR for the first three
signals of AP-K -Means are superior to that of DEMIX, while the performance indices
for the signal4 of DEMIX are better than that of AP-K-Means. On the contrary, the
performance indices of K -means are the worst; in particular, the SDR values for the
signal4 are only 3.9907 and 5.2553, which are unacceptable for the UBSS.

We also computed the average correlative coefficients of all the ten trials to compare
the similarity indices between the original sources and the recovered sources. The
results are shown in Table 5.
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Table 4 The average SDR, SIR and SAR of the ten trials

Signals Methods TI-gains distortion are allowed TI-filters distortion are allowed

SDR SIR SAR SDR SIR SAR

signal1 K-means 13.4397 19.1299 15.2298 13.7085 16.5484 17.3115

DEMIX 15.1500 21.8819 16.3565 15.4618 18.7790 18.4564

AP-K-Means 15.1962 21.9696 16.3939 15.5116 18.8297 18.5069

signal2 K-means 13.4060 19.5367 15.1033 13.8634 16.8861 17.2988

DEMIX 14.4171 21.8598 15.4614 14.8028 18.8715 17.1484

AP-K-Means 14.4813 21.9748 15.5188 14.8684 18.9430 17.2068

signal3 K-means 6.3959 15.0940 7.3942 7.2927 11.3780 9.9264

DEMIX 9.1322 16.5332 10.2449 9.7754 13.3170 12.5809

AP-K-Means 9.1458 16.5510 10.2586 9.7847 13.3259 12.5908

signal4 K-means 3.9907 12.5568 5.3094 5.2553 9.4885 8.1138

DEMIX 7.8243 14.7662 9.1279 8.9246 12.6743 11.6259

AP-K-Means 7.7236 14.6979 9.0230 8.8257 12.5820 11.5270

Bold values indicate the average SDR, SIR and SAR of all the ten trials in the case of four sources

Table 5 The average correlative
coefficients of the ten trials

Bold values indicate the average
correlative coefficients of all the
ten trials in the case of four
sources

Methods signal1 signal2 signal3 signal4

K-means 0.9654 0.9668 0.8716 0.8132

AP-K-Means 0.9814 0.9810 0.9424 0.9250

DEMIX 0.9814 0.9807 0.9423 0.9250

From Table 5, we also know that AP-K -Means can more precisely recover the
source signals compared with the other two methods, and the average indices of
DEMIX are also very close to that of AP-K -Means.

In order to illustrate the performance indices more specifically, we only carried out
one trial to compare these three methods. The white noise mixing matrix is:

A =
[−0.7276 −0.9949 −0.7414 −0.5072

−0.6884 0.1365 0.6652 0.8593

]

The mixed signals are obtained by x(t) = As(t) = [x1(t), x2(t)]T . As in the previous
simulation, we also transformed the mixed signals to the frequency domain and nor-
malized the signals into positive data. Then, using the three methods to estimate the
mixing matrix, the results are, respectively:

AAP-K =
[−0.7225 −0.9907 −0.7447 −0.4998

−0.6884 0.1360 0.6672 0.8637

]

ADEMIX =
[−0.7265 −0.9907 −0.7433 −0.5087

−0.6872 0.1359 0.6690 0.8609

]

AK =
[−0.7225 −0.3271 −0.7959 −0.5156

−0.6884 0.9439 0.5565 0.8565

]
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Table 6 Correlative coefficients
of the specific trial

Bold values indicate the
correlative coefficients of the
given trial in the case of four
sources

Methods signal1 signal2 signal3 signal4

K-means 0.9947 0.9743 0.9537 0.8574

AP-K-Means 0.9952 0.9886 0.9548 0.9304

DEMIX 0.9952 0.9886 0.9241 0.9295

Table 7 The SDR, SIR and SAR of AP-K -Means and DEMIX

Signals Methods TI-gains distortion are allowed TI-filters distortion are allowed

SDR SIR SAR SDR SIR SAR

signal1 DEMIX 20.1875 29.8741 20.6858 20.5430 25.4527 22.2487

AP-K-Means 20.1203 29.7156 20.6300 20.4756 25.3435 22.2016

signal2 DEMIX 16.3353 25.3529 16.9297 16.5800 21.5532 18.2737

AP-K-Means 16.3092 25.2265 16.9186 16.5532 21.4982 18.2605

signal3 DEMIX 7.6722 15.2602 8.6312 8.2202 12.7690 10.3204

AP-K-Means 7.7164 15.2961 8.6762 8.2582 12.7785 10.3734

signal4 DEMIX 8.0280 14.3787 9.3284 8.7408 12.6276 11.2531

AP-K-Means 8.0899 14.4262 9.3930 8.8134 12.6835 11.3343

Bold values indicate the SDR, SIR and SAR for AP-K -means and DEMIX of the given trial in the case of
four sources

In this trial, the correlative coefficients of these three methods are shown in Table 6.
From Table 6, we see that the similarity index of AP-K -Means is better than that

of the other two methods. In addition, the similarity index of DEMIX is still similar
to that of AP-K -Means, so we only compare the SDR, SIR and SAR values of these
two methods. The results of this trial are shown in Table 7.

FromTable 7we see that the performance indices for signal1 and signal2 ofDEMIX
are better than that of AP-K -Means; however, the performance indices for signal3 and
signal4 of AP-K -Means are better than that of DEMIX. These results again show that
the UBSS performance of AP-K -Means is very close to that of DEMIX.

3. UBSS of five source signals from two mixing signals.

The five source signals are s1(t),s2(t),s3(t),s4(t) and s5(t), respectively. The white
noise and Gaussian mixing matrices are randomly generated byMATLAB commands
A = 2 ∗ rand(2, 5) − 1 and A = randn(2, 5). For the three methods, we, respectively,
carry out five trials for each type of the mixing matrix.

For each signal, the average SDR, SIR and SAR of all the ten trials are shown in
Figs. 9 and 10.

With the increase in the number of sources for the fixed number of mixed signals
(two sensors), from Figs. 9 and 10 we can know that the performance indices SDR,
SIR and SAR became worse since the difficulty of blind separation increased. In spite
of this, the indices of DEMIX and AP-K -Means are still very similar and very good.
Conversely, the performance indices of K -means are relatively poor. In particular,
when IT-filters distortion is allowed the SDR for signal4 of K -means is 1.7053, and



Circuits Syst Signal Process (2016) 35:2881–2913 2909

1 2 3 4 5
0

5

10

15
TI-filter distortion allowed

SD
R

1 2 3 4 5
0

5

10

15

SI
R

1 2 3 4 5
5

10

15

sequence of source signals

SA
R

AP-K-Means
K-means
DEMIX

Fig. 9 The average SDR, SIR and SAR of IT-filters allowed distortion

when IT-gains distortion is allowed the SDR for signal4 of K -means is only 1.1841.
These results show that the performance index of K -means has dropped dramatically
with the increase in the number of source signals.

In order to compare more intuitively, we only carried out one trial. In this trial, the
white noise mixing matrix is

A =
[

0.2400 0.5802 −0.7245 −0.8791 0.3181
−0.9664 −0.8170 0.6818 −0.4808 0.9426

]

Given the mixing matrix A, the estimated mixing matrices of the three methods are
respectively:

AAP-K =
[

0.2437 0.5705 −0.7289 −0.8827 0.3221
−0.9682 −0.8191 0.6816 −0.4678 0.9418

]

ADEMIX =
[

0.2406 0.5799 −0.7280 −0.8755 0.3194
−0.9706 −0.8147 0.6856 −0.4831 0.9476

]

AK =
[

0.2546 0.6581 0.9023 −0.8687 0.3221
−0.9643 −0.7444 0.4307 −0.4944 0.9418

]
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Fig. 10 The average SDR, SIR and SAR of IT-gains allowed distortion

Table 8 Correlative coefficients comparison

Methods signal1 signal2 signal3 signal4 signal5

K -means 0.9427 0.8592 0.7709 0.5593 0.7108

AP-K-Means 0.9654 0.8527 0.9351 0.9336 0.9161

DEMIX 0.9645 0.8519 0.9336 0.9330 0.9152

Bold values indicate the correlative coefficients of the given trial in the case of five sources

We computed and compared the correlative coefficients of the three methods. The
results are in Table 8.

From Table 8, the similarity index of K -means for the signal2 is better than that of
AP-K -Means and DEMIX. However, for the other signals the similarity indices of K -
means are worse than that of the other two methods. Particularly, the similarity index
of K -means for the signal4 is only 0.5593 which resulted in severe distortion of the
recovered signal. Moreover, all the similarity indices of AP-K -Means are superior to
that of DEMIX, and this proves once again that AP-K -Means can obtain high degree
of similarity between the original sources and the recovered sources.
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6 Conclusion

We have proposed a new approach to estimate the number of sources and the mixing
matrix of underdetermined audio BSS. The simulations on stereophonic recordings
have illustrated the performance of the proposedmethod: (a) to accurately estimate the
number of sources in the instantaneous case for the fixed two sensors; (b) to robustly
estimate the underdetermined mixing matrix and recover the source signals that clas-
sical clustering algorithms like K -means failed to estimate. The UBSS performance
of the proposed method is slightly better than that of the DEMIX method while the
performance indices of these two methods are very similar.

The proposed method exploits a certain level of sparsity of the time–frequency
representations to estimate the underdeterminedmixingmatrix. Ourmain contribution
is the use of AP clustering to accurately estimate the number of sources, together with
the K -means to estimate the mixing matrix. The proposed method seems essentially
limited by the fact that it relies on the assumption that each target source is sufficiently
sparse in time–frequency regions. This condition is likely to fail when the sources
representations are not sparse enough. This would require adequate modifications
of the clustering algorithm which may become significantly more complex. Another
interesting perspective is to extend the present method to the convolutive case; this
points out the orientation of future study.
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China [No. 60572183] and the Research Projects of the Open Fund Project of Key Laboratory in Hunan
Universities [No. 14K022].
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