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Abstract This paper investigates the robust adaptive sliding mode control problem
for a class of nonlinear uncertain neutral Markovian jump systems. In this study, the
system state is unmeasurable and the upper norm bounds of the nonlinear functions
are unavailable. An observer-based adaptive sliding mode controller is synthesized to
render the resulting error system stochastically stable with a prescribed disturbance
attenuation level. Finally, a numerical example is exploited to demonstrate the effec-
tiveness of the control scheme.

Keywords Markovian jump systems (MJSs) · Sliding mode control (SMC) ·
Adaptive sliding mode controller · H∞ control

1 Introduction

In practice, unpredictable structural changes may occur unexpectedly due to repairs
of sudden environment disturbances, random failures, etc. [11,39,46,47]. The use
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of neutral Markovian jump systems (MJSs) consisting of Markovian parameters is
one of the appropriate ways to describe and model these types of dynamical sys-
tems. MJSs refer to a class of hybrid systems with multiple system modes where
each mode corresponds to a deterministic subsystem, and the mode switching is
dominated by a Markov process [25]. In the past few years, stochastic stability,
stochastic stabilization, H∞ filtering and H∞ control of neutral MJSs have been
investigated [5,6,9,18,23,24,30,34,41,43,44]. In [9], the authors investigated H∞
sliding mode control (SMC) for uncertain stochastic systems with input nonlinear-
ity and Markovian switching. In [43], the authors considered the stability analysis
of neutral MJSs with both time-varying delay and partially unknown transition
probabilities, but they did not include the parameter uncertainties, unknown non-
linearity or H∞ performance. In [23], the authors investigated the problem of
H∞ control and passive filter design for Markovian jump impulsive networked
control systems with uncertainties and random packet dropouts . The effects
of nonlinearity, time delay and SMC control strategy, however, have not been
considered.

Because of its robustness against model uncertainties, parameter variations and
external disturbances, SMC has been proven to be an effective control algorithm for a
variety of both linear and nonlinear systems [1–4,7,8,29,31,40,42,48,49]. Tomention
a few, in [4], the authors investigated the problem of SMC for stochastic MJSs with
possible actuator degradation. Besides, H∞ SMC has also been widely studied in
[17,38]. In particular, the authors presented a sliding mode controller for uncertain
time-delay systems with H∞ performance in [17] . Extensive attention has been paid
to the observer-based SMC problem [17,28,45]. The authors in [28] proposed an SMC
scheme based on the state estimation to stabilize a series of Itô stochastic time-delay
systems. The SMC problem was considered by [33] in the case of Markovian jump
linear systems with parameter uncertainties and disturbances. It appears, however, that
the issue of SMC with H∞ performance for uncertain neutral MJSs with unmeasured
states and unknown nonlinearity has still not been adequately researched and this is
the motivation for the study.

In this paper, we investigate the robust adaptive SMC problem for uncertain neu-
tral MJSs with unmeasured states and unknown nonlinearity. In this design, the
upper bounds of the nonlinear term are unknown and the parameter uncertainties
are norm-bounded. An appropriate integral sliding mode surface is constructed such
that the resultant sliding motion equation system is stochastically stable. The designed
observer-based adaptive sliding mode controller can adapt the unknown upper bounds
of nonlinearity, and then the reachability of system state trajectories and error trajec-
tories can be satisfied. A sufficient condition of stochastic stability of the closed-loop
system can be achieved by using the technique of linear matrix inequality (LMI).
Finally, a numerical example is shown to validate the effectiveness of the proposed
control scheme.

The organization of this paper is given as follows. Themain problems are formulated
in Sect. 2. In Sect. 3, an observer with H∞ performance and integral sliding mode
surface is presented and Sect. 4 presents an adaptive sliding mode controller. Section 5
presents a numerical example to prove the feasibility of the mentioned method, and
Sect. 6 concludes this paper.
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Notations: The superscript “T ” represents the matrix transposition. Rn shows the
n -dimensional Euclidean space. A matrix X > 0 means that X is real symmetric
and positive definite. ‖·‖1 and ‖·‖ refer to the 1-norm and usual Euclidean vector
norm, respectively. The notation (Ω,F ,P) denotes the probability space. Ω , F and
P represent the sample space, σ -algebra of subsets of the sample space and proba-
bility measure on F , respectively. L2[0,∞) stands for the space of square integral
vector functions. E{·} indicates the mathematical expectation operator on the given
probability P . The symbol “∗” denotes a term induced by symmetry.

2 Problem Formulation

Let {rt , t ≥ 0} be a right-continuousMarkov process taking values in the finite discrete
space S = {1, 2, . . . , s} with generator Π = (πi j ) (i, j ∈ S) given by

Pr{rt+�t = j |rt = i} =
{

πi j�t + o (�t) , i �= j

1 + πi i�t + o (�t) , i = j
(1)

where �t > 0 and lim�t→0
o(�t)
�t = 0. πi j is the transition rate from mode i to j

if i �= j and πi i = −∑ j �=i πi j . Consider a class of uncertain neutral MJSs with
nonlinearity on a complete probability (Ω,F ,P) as follows:

ẋ(t) − Dẋ(t − τ) = (A(rt ) + �A(rt , t))x(t)

+ (Ad(rt ) + �Ad(rt , t))x(t − d)

+ B(u(t) + f (x, t) + d(t)), (2)

y(t) =C(rt )x(t),

x(t, r0) = φ(t, r0), t ∈ [−d̄, 0
]
, r0 ∈ S

where x(t) ∈ R
n denotes the state vector, u(t) ∈ R

m denotes control input, y(t) ∈
R

p denotes measured output, f (x, t) ∈ R
m and d(t) ∈ R

m indicate nonlinearity
and external disturbance, respectively. φ(t, r0) is an initial vector-valued continuous
function, which is defined in the interval

[−d̄, 0
]
. A(rt ) ∈ R

n×n, Ad(rt ) ∈ R
n×n, B ∈

R
n×m, C(rt ) ∈ R

p×n and D ∈ R
n×n are constant system matrices with appropriate

dimensions. �A(rt , t) and �Ad(rt , t) are parameter uncertainties. τ and d denote the
constant time delay. Besides, d̄ = max{τ, d} and the input matrix B has full column
rank in this paper. For notional simplicity, when the uncertain neutral MJSs operate
in the i-th mode, system (2) can be rewritten as

ẋ(t) − Dẋ(t − τ) = (Ai + �Ai (t))x(t)

+ (Adi + �Adi (t))x(t − d)

+ B(u(t) + f (x, t) + d(t)), (3)

y(t) = Ci x(t),

x(t, r0) = φ(t, r0), t ∈ [−d̄, 0
]
, r0 ∈ S
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where A(rt ),�A(rt , t), Ad(rt ),�Ad(rt , t) andC(rt ) are denoted by Ai ,�Ai (t), Adi ,
�Adi (t) and Ci , respectively.

In the following, we define the two operators as follows:

D̄ : C ([−τ, 0],Rn) −→ R
n : D̄ (x̂t) = x̂(t) − Dx̂(t − τ),

D : C ([−τ , 0], Rn) −→ R
n : D (et ) = e(t) − De(t − τ).

We assume that the admissible uncertainties

[�Ai (t), � Adi (t)] = Mi Fi (t) [Ni , Ndi ] , ∀i ∈ S (4)

where Mi , Ni and Ndi are the real constant matrices with appropriate dimensions, and
Fi (t) is an unknown time-varying matrix function satisfying

FT
i (t)Fi (t) ≤ I, ∀i ∈ S. (5)

The following definitions, assumption and lemmas are necessary in this paper.

Definition 1 [26] Let V (x(t), rt , t ≥ 0) = V (x(t), i) be a stochastic positive func-
tional candidate, which has twice differentiable on x(t). Define its infinitesimal
operator LV (x(t), i) as

LV (x(t), i) = lim
�t→0+

1

�t

[
E{V (x(t + �t), rt+�t ) | x(t), rt = i} − V (x(t), i)

]
.

(6)

Definition 2 [33] For the closed-loop system with u(t) = 0, the equilibrium point 0
is stochastically stable, if for any x(0) and i ∈ S

∫ ∞

0
E{‖x(t, x(0))‖2}dt < +∞. (7)

Assumption 1 The nonlinear function f (x, t) satisfies

‖ f (x, t) ‖≤ α + β ‖ y(t) ‖, (8)

where α > 0 and β > 0 are unknown constants.

Lemma 1 [10] (Schur complement) Let symmetric matrices W, R and S with appro-
priate dimensions, then R < 0, W − ST R−1S < 0 is equivalent to

[
W S

ST R

]
< 0.

Lemma 2 [10] Let E ∈ R
n, G ∈ R

n and a positive scalar ε. Then we have ET G +
GT E ≤ εGTG + ε−1ET E .
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3 Observer-Based Sliding Mode Control

In practice, the bounds of the nonlinearity are generally not available. This means
that the two unknown constant parameters α and β are estimated by α̂(t) and β̂(t),
respectively. The estimation error of each parameter is defined as α̃(t) = α̂(t) − α,
β̃(t) = β̂(t) − β , respectively. Our purpose is to design a state observer to estimate
unmeasured state components for the uncertain neutral MJSs (3) such that the resul-
tant closed-loop system is stochastically stable despite the presence of uncertainties,
Markovian switching and external disturbance.

3.1 Observer Design

In this subsection, we design a state observer of the controlled plant (3),

˙̂x(t) − D ˙̂x(t − τ) = Ai x̂(t) + Adi x̂(t − d)

+ Li (y(t) − Ci x̂(t))

+ Bu(t) + Bus(t), (9)

ŷ(t) = Ci x̂(t),

where Li ∈ R
n×p is the observer gain to be designed and x̂(t) represents the estimation

of x(t). The robust control term us(t) is designed to remove the impact of the unknown
nonlinear term. In the following derivations, assume Se(t) = BT XiD (et ). Besides, it
is assumed that the positive symmetric matrix Xi satisfies the constraint

BT Xi = NCi . (10)

The robust control term us(t) is designed as

us(t) = (α̂(t) + β̂(t) ‖y(t)‖ + ε)sgn(Se(t)), (11)

with the adaptive laws

˙̂α(t) = cα ‖Se(t)‖ , ˙̂
β(t) = cβ ‖Se(t)‖ ‖y(t)‖ , (12)

where ε is a small positive constant, cα and cβ are positive constants chosen by the
designer. Define the error e(t) = x(t) − x̂(t), and then the estimation error dynamics
is derived from (3) subtracting (9) as:

ė(t) − Dė(t − τ) = (Ai + �Ai (t) − LiCi )e(t) + �Ai (t)x̂(t)

+ (Adi + �Adi (t))e(t − d)

+ � Adi (t)x̂(t − d)

− B(us(t) − f (x, t) − d(t)), (13)

ye(t) = Cie(t),
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where ye(t) denotes the output of the error system. Now we introduce the H∞ perfor-
mance index as follows:

J = E
{∫ ∞

0

(
yTe (θ)ye(θ) − γ 2dT (θ)d(θ)

)
dθ

}
. (14)

The performance J < 0 is converted into the following condition:

E

(
sup

0 �=d(t)∈L2

‖ye(t)‖
‖d(t)‖

)
< γ. (15)

3.2 Sliding Mode Surface Design

Define the integral sliding mode surface in the state-estimate space as follows:

S(t) = F(x̂(t) − Dx̂(t − τ)) − F
∫ t

0
(Ai + BKi )(x̂(s) − Dx̂(s − τ))ds, (16)

where F ∈ R
m×n is a given constant matrix and Ki ∈ R

m×n is a coefficient matrix,
which is designed such that Ai +BKi is Hurwitz and FB is positive definite symmetric
matrix and nonsingular.

Remark 1 Note that the linear term Fx̂(t) is continuous in integral sliding mode
surface (16). Moreover, although F(Ai + BKi ) is switching in different mode i , the
integral term F

∫ t
0 (Ai + BKi )x(s)ds is still continuous in the jump point. Then, the

pre-defined integral sliding mode surface is continuous when the uncertain neutral
MJSs states switch.

To obtain the slidingmode dynamics of system (3), we utilize the equivalent control
method in the following. Taking the derivative of S(t), we have

Ṡ(t) = F( ˙̂x(t) − D ˙̂x(t − τ)) − F(Ai + BKi )(x̂(t) − Dx̂(t − τ))

= F(Adi x̂(t − d) + Bu(t) + Bus(t) + FAi Dx̂(t − τ)

+ LiCi e(t)) − FBKi x̂(t) + FBKi Dx̂(t − τ). (17)

From Ṡ(t) = 0, we obtain the following equivalent control law

ueq(t) = Ki x̂(t) − (FB)−1FAdi x̂(t − d) − us(t)

− (FB)−1FLiCi e(t) − (FB)−1FAi Dx̂(t − τ) − Ki Dx̂(t − τ). (18)

Substituting the equivalent control law (18) into observer (9 ), the slidingmode dynam-
ics can be obtained as follows:

˙̂x(t) − D ˙̂x(t − τ) = (Ai + BKi )x̂(t) + B̄ Adi x̂(t − d)

+ B̄LiCi e(t) − B(Ki + (FB)−1FAi )Dx̂(t − τ), (19)
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where B̄ = I − B(FB)−1F . Thus, the stochastic stability of the overall closed-loop
system composed of (13) and (19) will be analyzed in the following theorem.

3.3 Analysis of Stochastic Stability

A sufficient condition of stochastic stability of the resulting closed-loop system com-
posed of (13) and (19) withMarkovian parameters, and a disturbance attenuation level
is given in the following theorem.

Theorem 1 Consider the overall closed-loop system composed of estimation error
dynamics (13) and sliding mode dynamics (19), given a scalar γ > 0, the integral
sliding mode surface is given by (16). If there exist matrices Xi ∈ R

n×n > 0, P1 ∈
R
n×n > 0, P2 ∈ R

n×n > 0, Q1 ∈ R
n×n > 0, Q2 ∈ R

n×n > 0, Yi ∈ R
n×p and

scalars εil (l = 1, 2, 3, 4) for any i ∈ S such that the following LMIs and equality
constraint hold,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λi11 Λi12 Xi Adi 0 0 0

∗ Λi22 0 0 0 0

∗ ∗ Λi33 0 0 0

∗ ∗ ∗ Λi44 Λi45 Xi B̄ Adi

∗ ∗ ∗ ∗ Λi55 0

∗ ∗ ∗ ∗ ∗ Λi66

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

J2 CT
i Y

T
i 0 0 Xi B

0 0 DiCT
i Y

T
i 0 0

0 0 0 0 0

0 0 0
√
2Xi B̄ 0

0 0 0 0 0

0 0 0 0 0

J1 0 0 0 0

∗ −Xi 0 0 0

∗ ∗ −Xi 0 0

∗ ∗ ∗ −Xi 0

∗ ∗ ∗ ∗ −γ 2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (20)

BT Xi = NCi , (21)
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where

Λi11 = Xi Ai + AT
i Xi + P1 + P2 + εi1N

T
i Ni

−CT
i Y

T
i − YiCi +

s∑
j=1

πi j X j + CT
i Ci ,

Λi12 = (Xi Ai + P1 + P2 − YiCi )D + εi1N
T
i Ni D + CT

i Ci D,

Λi22 = DT (P1 + P2)D − P1 + εi1D
T NT

i Ni D + DTCT
i Ci D,

Λi33 = εi2N
T
di Ndi − P2,

Λi44 = Xi (Ai + BKi ) + (Ai + BKi )
T Xi

+ εi3N
T
i Ni + Q1 + Q2 +

s∑
j=1

πi j X j ,

Λi45 = Xi (Ai + BKi )D + (Q1 + Q2)D + εi3N
T
i Ni D

− Xi B(Ki + (FB)−1FAi )D,

Λi55 = εi3D
T NT

i Ni D + DT (Q1 + Q2)D − Q1,

Λi66 = εi4N
T
di Ndi − Q2,

J1 = −diag(εi1 I, εi2 I, εi3 I, εi4 I ),

J2 = (Xi Mi , Xi Mi , Xi Mi , Xi Mi ).

Moreover, the observer gain can be obtained as

Li = X−1
i Yi , (22)

and then the system (3) with Markovian parameters is stochastically stable under
observer (9) and integral sliding mode surface (16) with a disturbance attenuation
level γ.

Proof Choose the Lyapunov functional of each subsystem as follows:

V1(i, t) = DT (et ) XiD (et ) +
∫ t

t−τ

eT (θ)P1e(θ)dθ

+
∫ t

t−d
eT (θ)P2e(θ)dθ + D̄T (x̂t) Xi D̄

(
x̂t
)

+
∫ t

t−τ

x̂ T (θ)Q1 x̂(θ)dθ +
∫ t

t−d
x̂T (θ)Q2 x̂(θ)dθ

+ c−1
α α̃2(t) + c−1

β β̃2(t). (23)

Then, based on Definition 1, we take the time derivative of Lyapunov functional
V1(i, t) along the trajectories of sliding mode dynamics and state error dynamics with
d(t) = 0 as follows:
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LV1(i, t) = 2DT (et ) Xi [(Ai + �Ai (t) − LiCi )e(t) + �Ai (t)x̂(t)

+ (Adi + �Adi (t))e(t − d) + �Adi (t)x̂(t − d)

− B(us(t) − f (x, t))] + eT (t)P1e(t) + eT (t)P2e(t)

− eT (t − τ)P1e(t − τ) − eT (t − d)P2e(t − d)

+ x̂ T (t)Q1 x̂(t) − x̂ T (t − τ)Q1 x̂(t − τ)

+ 2D̄T (x̂t) Xi [(Ai + BKi )x̂(t) + B̄ Adi x̂(t − d)

+ B̄LiCi e(t) − B(Ki + (FB)−1FAi )Dx̂(t − τ)]
+ x̂ T (t)Q2 x̂(t) − x̂ T (t − d)Q2 x̂(t − d)

+ 2c−1
β

˙̃
β(t)β̃(t) + DT (et )

s∑
j=1

πi j X jD (et )

+ 2c−1
α

˙̃α(t)α̃(t) + D̄T (x̂t) s∑
j=1

πi j X j D̄
(
x̂t
)
. (24)

Using Lemma 2 and Assumption 1, it follows from (24) that

2DT (et ) Xi � Ai (t)e(t)

≤ ε−1
i1 DT (et ) Xi Mi M

T
i XiD (et ) + εi1e(t)N

T
i Ni e(t)

≤ ε−1
i1 DT (et ) Xi Mi M

T
i XiD (et ) + εi1DT (et ) N

T
i NiD (et )

+ 2εi1DT (et ) N
T
i Ni De(t − τ) + εi1e

T (t − τ)DT NT
i Ni De(t − τ), (25)

2DT (et ) Xi � Adi (t)e(t − d)

≤ ε−1
i2 DT (et ) Xi Mi M

T
i XiD (et ) + εi2e(t − d)NT

di Ndi e(t − d), (26)

2DT (et ) Xi � Ai (t)x̂(t)

≤ ε−1
i3 DT (et ) Xi Mi M

T
i XiD (et ) + εi3 x̂

T (t)NT
i Ni x̂(t)

≤ ε−1
i3 DT (et ) Xi Mi M

T
i XiD (et ) + εi3DT (x̂t) NT

i NiD
(
x̂t
)

+ 2εi3DT (x̂t) NT
i Ni Dx̂(t − τ) + εi3 x̂

T (t − τ)DT NT
i Ni Dx̂(t − τ), (27)

2DT (et ) Xi � Adi (t)x̂(t − d)

≤ ε−1
i4 DT (et ) Xi Mi M

T
i XiD (et ) + εi4 x̂

T (t − d)NT
di Ndi x̂(t − d), (28)

− 2DT (et ) Xi B(us(t) − f (x, t)) + 2c−1
α

˙̃α(t)α̃(t) + 2c−1
β

˙̃
β(t)β̃(t)

≤ −2ε ‖Se(t)‖ < 0, (29)

2D̄T (x̂t) Xi B̄LiCi e(t)

= 2D̄T (x̂t) Xi B̄LiCi (D (et ) + De(t − τ))

≤ 2D̄T (x̂t) Xi B̄X−1
i B̄T Xi D̄

(
x̂t
)+ DT (et )C

T
i Y

T
i X−1

i YiCiD (et )

+ eT (t − τ)DTCT
i Y

T
i X−1

i YiCi De(t − τ). (30)

Substituting (25)–(30) into (24), one can obtain:

LV1(i, t) ≤ ηT (t)Φiη(t), (31)
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where ηT (t) = [DT (et ) eT (t − τ) eT (t − d) D̄T
(
x̂t
)
x̂ T (t − τ) x̂ T (t − d)

]T
, and

Φi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φi11 Φi12 Xi Adi 0 0 0

∗ Φi22 0 0 0 0

∗ ∗ Φi33 0 0 0

∗ ∗ ∗ Φi44 Φi45 Xi B̄ Adi

∗ ∗ ∗ ∗ Φi55 0

∗ ∗ ∗ ∗ ∗ Φi66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

Φi11 = Xi Ai + AT
i Xi + P1 + P2 + CT

i Y
T
i X−1

i YiCi

+ (ε−1
i1 + ε−1

i2 + ε−1
i3 + ε−1

i4 )Xi Mi M
T
i Xi

−CT
i Y

T
i − YiCi + εi1N

T
i Ni +

s∑
j=1

πi j X j ,

Φi12 = (Xi Ai + P1 + P2 − YiCi )D + εi1N
T
i Ni D,

Φi22 = DT (P1 + P2)D − P1
+ εi1D

T NT
i Ni D + DTCT

i Y
T
i X−1

i YiCi D,

Φi33 = εi2N
T
di Ndi − P2,

Φi44 = Xi (Ai + BKi ) + (Ai + BKi )
T Xi

+ 2Xi B̄X−1
i B̄T Xi + εi3N

T
i Ni + Q1

+ Q2 +
s∑

j=1

πi j X j ,

Φi45 = Xi (Ai + BKi )D + (Q1 + Q2)D

+ εi3N
T
i Ni D − Xi B(Ki + (FB)−1FAi )D,

Φi55 = εi3D
T NT

i Ni D + DT (Q1 + Q2)D − Q1,

Φi66 = εi4N
T
di Ndi − Q2.

It can be seen that LMIs (20) are obtained if the condition Φi < 0 holds by Lemma 1.
Then LV1(i, t) < 0 for ∀η(t) �= 0. The resulting closed-loop system with d(t) = 0 is
stochastically stable by the above proof.

In the following, we will demonstrate that the uncertain neutral MJSs (3) with
Markovian parameters are stochastically stable under the observer (9) and the integral
slidingmode surface (16) with a disturbance attenuation level γ, that is to say, external
disturbance d(t) �= 0. Then, the stochastic Lyapunov functional V1(i, t) as in (23).
Thus

LV1(i, t) = ηT (t)Φiη(t) + 2DT (et ) Xi Bd(t). (32)
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According to the above proof and EV1(i, t) = E
∫∞
0 LV1(i, t)dt > 0, for d(t) ∈

L2[0,∞), the system performance J can be converted into

J ≤ E
{∫ ∞

0
[yTe (t)ye(t) − γ 2dT (t)d(t) + LV1(i, t)]dt

}

= E
∫ ∞

0
ξ T (t)Ξiξ(t)dt, (33)

where ξ T (t) =
[
DT (et ) eT (t − τ) eT (t − d) D̄T

(
x̂t
)
x̂ T (t − τ) x̂ T (t − d) dT (t)

]T
.

By utilizing Lemma 1 and LMIs (20), it is straightforward that Ξi < 0, which
implies that J < 0. Thus, it results in

E

(
sup

0 �=d(t)∈L2

‖ye(t)‖
‖d(t)‖

)
< γ.

Notice that the linear equality condition (21) is equivalent to

tr[(BT Xi − NCi )
T (BT Xi − NCi )] = 0.

We introduce the condition

(BT Xi − NCi )
T (BT Xi − NCi ) < σ I, (34)

where σ > 0 is a parameter to be designed. Then, by Lemma 1, we have

[
−σ I (BT Xi − NCi )

T

∗ −I

]
< 0. (35)

Hence, the observer-based adaptive SMC problem is changed to the following mini-
mization problem:

min σ, subject to (20) and (35). (36)

Then the resulting closed-loop system composed of (13) and (19) is stochastically
stable with a disturbance attenuation level γ . This completes the proof.

Remark 2 It should be noted that (36) is a minimization problem with linear objec-
tive and LMIs constraints, and it admits a global infimum. Then, the observed-based
adaptive SMC problem can be solved if this infimum equals zero.

4 Adaptive Sliding Mode Controller Design

In this section, an adaptive SMC law will be designed to guarantee the reachability
of state trajectories of the system (3) such that it can start sliding motion. The state
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trajectories of system (3) can be driven onto the designed integral slidingmode surface
S(t) = 0 in finite time.

Theorem 2 For any i ∈ S, suppose that there exists positive definite symmetric matrix
Xi such that Theorem 1 holds, thus, the reachability of state trajectories of the uncer-
tain neutral MJSs (3) can be guaranteed by synthesizing the following adaptive SMC
law

u(t) = −li S(t) + Ki x̂(t) − (FB)−1FAdi x̂(t − d) (37)

− (α̂(t) + β̂(t) ‖y(t)‖ + ε + δi (t))sgn(S(t))

− (FB)−1FAi Dx̂(t − τ) − Ki Dx̂(t − τ),

where the above two adaptive gains are designed as in (12), li is a small positive
constant and δi (t) satisfies

δi (t) = max
i∈S

{∥∥∥(FB)−1FLi y(t)
∥∥∥+

∥∥∥(FB)−1FLiCi x̂(t)
∥∥∥} .

The synthesized adaptive SMC law (37) can not only drive the state trajectories of the
uncertain neutral MJSs (3) onto the integral sliding mode surface (16) but also keep
them on the integral sliding mode surface for all subsequent time.

Proof Choose the following Lyapunov functional

V2(t) = 1

2
ST (t)(FB)−1S(t). (38)

Then, along with the solution to sliding mode dynamics (19), we have

LV2(t) = ST (t)(FB)−1 Ṡ(t)

= ST (t)(FB)−1[F(Adi x̂(t − d) + Bu(t) + Bus(t)

+ LiCi e(t)) − FBKi x̂(t) + (FBKi + FAi )Dx̂(t − τ)]. (39)

Substituting (37) into (39), we have

LV2(t) = −li S
T (t)S(t) − ST (t)(FB)−1FLiCi e(t)

+ ST (t)(α̂(t) + β̂(t) ‖y(t)‖ + ε)sgn(Se(t))

− ST (t)(α̂(t) + β̂(t) ‖y(t)‖ + ε + δi (t))sgn(S(t)). (40)

Noting that ST (t)sgn(Se(t)) ≤ ‖S(t)‖1 . Then, (40) can be simplified as

LV2(t) ≤ −li S
T (t)S(t) + ‖S(t)‖

∥∥∥(FB)−1FLiCi e(t)
∥∥∥− δi (t) ‖S(t)‖ .

Therefore, (39) can be transformed to the following form

LV2(t) ≤ −‖S(t)‖ (δi (t) − Θi ‖e(t)‖) − li ‖S(t)‖2 ≤ 0. (41)
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Define Θi = ∥∥(FB)−1FLiCi
∥∥ , then it can be shown from (41) that,

δi (t) = max
i∈S

{∥∥∥(FB)−1FLi y(t)
∥∥∥+

∥∥∥(FB)−1FLiCi x̂(t)
∥∥∥} .

Thus, we have

LV2(t) ≤ −li ‖S(t)‖2 < 0, ∀ ‖S(t)‖ �= 0. (42)

From (42), it is straightforward that LV2(t) ≤ −li ‖S(t)‖2 < 0 (∀ ‖S(t)‖ �= 0).
Therefore, the state trajectories of the uncertain neutral MJSs (3) can be attained onto
the integral sliding mode surface S(t) under the adaptive SMC law (37) in finite time.
The proof is finished.

Remark 3 When the system is in mode i , the system state trajectories will be attracted
to the i-th integral sliding mode surface (16) due to the fact that the system switching
method is determined by a Markov process. If system mode i (i �= j) switches
to another mode j before the system state trajectories reach the i-th sliding mode
surface, then the system state still can be attracted to the j-th integral sliding mode
surface since the integral sliding mode surface is always continuous (see Remark 1),
which implies that the system state will be driven onto any sliding mode function.
Thus, when the system state reaches onto the defined integral sliding mode surface,
the state will reach within one sliding mode surface all the subsequent time.

If D = 0, the uncertain neutral MJSs (3) with Markovian switching parameters
and unknown nonlinear function become uncertain time-delay systems such that state
observer, state estimation error dynamics and sliding mode dynamics have the same
forms as (9), (13) and (19) with D = 0, respectively, for the uncertain time-delay
systems. So, based on Theorem 2, we have the following result for the uncertain
time-delay systems.

The overall closed-loop uncertain time-delay MJSs (i.e., system 9 and 13 with
D = 0) are stochastically stable with a disturbance attenuation level γ, if there exist
Xi > 0, P2 > 0, Q2 > 0 and scalars εil (l = 1, 2, 3, 4) for any i ∈ S such that the
following LMIs and equality constraint hold,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ωi11 Xi Adi 0 0 J4 CT
i Y

T
i 0 Xi B

∗ Ωi22 0 0 0 0 0 0

∗ ∗ Ωi33 Xi B̄ Adi 0 0 Xi B̄ 0

∗ ∗ ∗ Ωi44 0 0 0 0

∗ ∗ ∗ ∗ J3 0 0 0

∗ ∗ ∗ ∗ ∗ −Xi 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Xi 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ 2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (43)

BT Xi = NCi , (44)
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where

Ωi11 = Xi Ai + AT
i Xi + P2 + εi1N

T
i Ni

−CT
i Y

T
i − YiCi +

s∑
j=1

πi j X j + CT
i Ci ,

Ωi22 = εi2N
T
di Ndi − P2,

Ωi33 = Xi (Ai + BKi ) + (Ai + BKi )
T Xi

+ εi3N
T
i Ni + Q2 +

s∑
j=1

πi j X j ,

Ωi44 = εi4N
T
di Ndi − Q2,

J3 = −diag(εi1 I, εi2 I, εi3 I, εi4 I ),

J4 = (Xi Mi , Xi Mi , Xi Mi , Xi Mi ).

Moreover, the state observer gain can be then obtained by Li = X−1
i Yi .

Proof The proof of this corollary is very similar to the techniques used in Theorem 1.
It is omitted.

Remark 4 It is noted that there are few results on the robust adaptiveSMCofnetworked
systems, fuzzy systems and switched systemswithMarkovian parameters. Besides, the
proposed approaches in this paper can be also applied to the networked systems, fuzzy
systems and switched systems with Markovian parameters which have been studied
in [12–16,19–22,27,32,35–37,50,51]. Thus, in future work, it is worth studying the
research topic.

5 A Numerical Example

In this section, a numerical example is provided to demonstrate the feasibility of the
presented method. The parameter matrices of uncertain neutral MJSs (2) with two
subsystems are given as follows:

A1 =
⎡
⎢⎣

−4.5 0.1 0.2

0 −5.6 2

0.1 0.2 −5

⎤
⎥⎦ , B =

⎡
⎢⎣

−2

−1

−1

⎤
⎥⎦ , Ad1 =

⎡
⎢⎣

−1.6 0 1.2

−1.8 −1.5 −1.2

−0.4 −0.5 −2

⎤
⎥⎦ ,

M1 =
⎡
⎢⎣
0.2

0.2

0.1

⎤
⎥⎦ , N1 =

⎡
⎢⎣
0.2

0

0.1

⎤
⎥⎦
T

,C1 =
⎡
⎢⎣
0.5 0 0

0 0.5 0

0 0 0.5

⎤
⎥⎦ , Nd1 =

⎡
⎢⎣

−0.3

−0.3

−0.3

⎤
⎥⎦
T

,

D =
⎡
⎢⎣
0.5 0 0.1

0 0.5 0.1

0.1 0.1 0.5

⎤
⎥⎦ , A2 =

⎡
⎢⎣

−4 0.2 0

0 −5 0.1

0.5 0.425 −5.6

⎤
⎥⎦ ,M2 =

⎡
⎢⎣

0

−0.3

−0.3

⎤
⎥⎦ ,



Circuits Syst Signal Process (2016) 35:2741–2761 2755

Ad2 =
⎡
⎢⎣

−2 0 0.1

−0.9 −1.2 −0.1

0 0 −2

⎤
⎥⎦ ,Nd2 =

⎡
⎢⎣
0.2

0.2

0.2

⎤
⎥⎦
T

,

N2 =
⎡
⎢⎣

0

0.2

0.2

⎤
⎥⎦
T

,C2 =
⎡
⎢⎣
0.5 0 0

0 0.5 0

0 0 0.5

⎤
⎥⎦ .

We select the coefficient matrices K1 and K2 as

K1 = [−0.7468 −0.2911 −0.1313
]
,K2 = [−0.4683 −0.5531 −0.5602

]
.

The time-varying matrix function Fi (t) (i = 1, 2), the nonlinear function f (x, t) and
the external disturbance d(t) of two subsystems are given, respectively, as follows:

F1(t) = F2(t) = 0.02 sin(200t) ,

f (x, t) = 0.028 + 0.02 sin(200t)x1(t) , d(t) = 2 exp(−100t) .

Then the constant matrix F and probabilities transition matrix Π, respectively, are
given as

F = [−0.3 −0.1 −0.1
]
, Π =

[−7 7

8 −8

]
.

The initial states of original system (2) and state observer (9), respectively, are set
as x(t) = [

0.5 −0.5 0.2
]T and x̂(t) = [

0.2 −0.1 0.1
]T for t ∈ [−4, 0]. The

parameters of the adaptive laws are selected as α̂(0) = 0.027 and β̂(0) = 0.012, and
cα = 0.75, cβ = 2.5. The adaptive SMC law is designed in (37) with l1 = 0.85,
l2 = 0.80, and ε = 1. The constant time delays τ and d are chosen as τ = 4
and d = 2.5, respectively. The minimum disturbance attenuation γ = 1.3256. To
restrain the control signals from chattering, we replace sgn(S(t)) and sgn(Se(t)) with

S(t)
‖S(t)‖+0.02 and Se(t)‖Se(t)‖+0.02 , respectively. By solving the LMIs in (36), we have

L1 =
⎡
⎢⎣

0.5914 0.1982 −0.1188

0.8065 1.2528 −0.2627

−0.7962 0.0782 1.3376

⎤
⎥⎦ , L2 =

⎡
⎢⎣
1.6862 0.2745 −1.0859

0.0968 1.8497 −1.7177

0.0824 −0.0984 0.7299

⎤
⎥⎦ .
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Fig. 1 Trajectory of r(t)

Fig. 2 State estimation error e(t)



Circuits Syst Signal Process (2016) 35:2741–2761 2757

Fig. 3 State estimation responses of the uncertain neutral MJSs

Fig. 4 The trajectory of integral sliding mode surface S(t)
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Fig. 5 Estimation α̂(t)

Fig. 6 Estimation β̂(t)
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Besides, the integral sliding mode function can be computed as

S(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−0.3 −0.1 −0.1
]
x̂(t) − [−0.16 −0.06 −0.09

]
x̂(t − τ)

− [ 0.7425 0.2771 0.1349
] ∫ t

0 x̂(s)ds

+ [ 0.3848 0.1520 0.1694
] ∫ t

0 x̂(s − τ)ds, i = 1,[−0.3 −0.1 −0.1
]
x̂(t) − [−0.16 −0.06 −0.09

]
x̂(t − τ)

− [ 0.7753 −0.0450 0.1018
] ∫ t

0 x̂(s)ds

+ [ 0.3978 −0.0123 0.1239
] ∫ t

0 x̂(s − τ)ds, i = 2.

(45)

The simulation results are provided in Figs. 1, 2, 3, 4, 5 and 6. Figure 1 shows the
switching signal r(t), and Fig. 2 plots the state responses of the error estimation system
under adaptive SMC law (37). The state estimation responses and the integral sliding
mode surface are shown in Figs. 3, 4. Figures 5, 6 depict the estimated values α̂(t)
and β̂(t), respectively. It can be seen from Figs. 5, 6 that α̂(t) and β̂(t) are bounded
and the trajectories of e(t) are convergent, which can demonstrate the validity of the
proposed method.

6 Conclusion

The problem of robust adaptive SMC for uncertain neutral MJSs with unknown non-
linearity and unmeasured states has been investigated in this paper. The upper bounds
of the nonlinear term are unknown for control design in this study. An appropriate
integral sliding mode surface has been constructed such that the reduced-order equiv-
alent sliding motion can adjust the effect of the chattering phenomenon in the plant.
A sufficient condition of stochastic stability of the overall closed-loop system can be
achieved in terms of LMIs based on SMC strategy. Finally, a numerical example has
illustrated the effectiveness of the proposed scheme.
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