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Abstract Wireless communication standards make use of parallel turbo decoder
for higher data rate at the cost of large hardware resources. This paper presents a
memory-reduced back-trace technique, which is based on a new method of estimating
backward-recursion factors, for the maximum a posteriori probability (MAP) decod-
ing. Mathematical reformulations of branch-metric equations are performed to reduce
the memory requirement of branch metrics for each trellis stage. Subsequently, an
architecture of MAP decoder and its scheduling based on the proposed back trace as
well as branch-metric reformulation are presented in this work. Comparative analysis
of bit-error-rate (BER) performances in additive white Gaussian noise channel envi-
ronment for MAP as well as parallel turbo decoders are carried out. It has shown that
a MAP decoder with a code rate of 1/2 and a parallel turbo decoder with a code rate
of 1/3 have achieved coding gains of 1.28 dB at a BER of 10−5 and of 0.4 dB at a
BER of 10−4, respectively. In order to meet high-data-rate benchmarks of recently
deployed wireless communication standards, very large scale integration implementa-
tions of parallel turbo decoder with 8–64MAP decoders have been reported. Thereby,
savings of hardware resources by such parallel turbo decoders based on the suggested
memory-reduced techniques are accounted in terms of complementary metal oxide
semiconductor transistor count. It has shown that the parallel turbo decoder with 32
and 64 MAP decoders has shown hardware savings of 34 and 44% respectively.
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1 Introduction

In this era of multimedia communication, the latest wireless standards target higher
data rate to meet the requirement of various service demands of customers. Turbo
code ensures reliable communication in many of these recent standards and is used by
forward error correction unit in their physical layer [2]. Near-optimal error-rate perfor-
mance delivered by an iterative process of turbo code is the reason for its supremacy
over other channel coding techniques [26,27] and makes it acceptable by wireless
communication standards such as digital video broadcasting–satellite services to hand-
helds (DVB-SH), high-speed downlink packet access (HSDPA), IEEE 802.16e, IEEE
802.16m, third-generation partnership project long-term evolution (3GPP-LTE) and
evolving LTE-Advanced [19]. Integral parts of turbo decoder are maximum a posteri-
ori probability (MAP) decoder and pseudorandom interleaver [20,30]. However, the
conventional turbo decoder with non-parallel architecture is unable to achieve higher
data rates over 300 Mbps and 1 Gbps of 3G (such as 3GPP-LTE) and 4G (such as
LTE-Advanced) wireless communication standards, respectively [3,6]. On the other
hand, turbo decoder with parallel architecture of multiple MAP decoders can achieve
such data rates [7], and various contributions have been reported for the design of such
decoders [12,28,36–38]. Figure 1 shows a conventional turbo decoder with parallel
architecture for higher data-rate application. Soft-demodulated input soft values of
received bits, at the receiver side of communication system, are stored in the stack of
memories (MEM) at the decoder input. As shown in Fig. 1, outputs of these memories
are linkedwithmultipleMAP decoders via inter-connecting networks (ICNWs)which
route input soft values from memories, either sequentially or pseudorandomly based
on the interleaved addresses, to their respective MAP decoders. After processing the
input soft values, the extrinsic information produced by these decoders is stored in
MEM. Finally, the extrinsic information outputs from these memories are fed back
to MAP decoders via ICNW and they are used as a priori probabilities in the itera-
tive process of decoding, as shown in Fig. 1. Though the parallel turbo decoder can
achieve higher data rate, it demands huge amount of hardware resources. Reduction
in hardware requirement in parallel turbo decoder has been a motivation for our work
presented in this paper. Specifically, an objective of this work is to improve the hard-
ware savings in parallel turbo decoders by reducing the memory required for storing
forward-recursion factors and branch metrics in each MAP decoders used in such
parallel architectures. Some of the works with similar motivation have been reported
in [13,17,24,31,33,34]. A memory reduction technique based on metric compression
using non-uniform quantization and Walsh-Hadamard transform is presented in [24].
Another approach [17] is based on low-power traceback of MAP-based duo-binary
turbo decoders. Reduction in branch-metric memory and scheduling the back trace of
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Fig. 1 A conventional parallel architecture of turbo decoder which iteratively processes input soft values
to produce decoded bits

MAP algorithm are performed in [34] and [33], respectively. Our contributions in the
design of memory-reduced architecture for parallel turbo decoder are as follows.

– Newmethod of estimating the values of backward-recursion factors which initiate
back trace in the sliding-window Bahl–Cocke–Jelinek–Raviv (SWBCJR) algo-
rithm [5] for MAP decoder is presented, and it is referred as the reduced sliding
windowmaximum a posteriori probability (RSWMAP) algorithm. Furthermore, a
branch-metric-reformulation technique is provided to reduce the memory require-
ment.

– An architecture ofMAP decoder based onRSWMAP algorithm and branch-metric
reformulation is presented. Schedulingof this newMAPdecoder and a comparative
analysis ofmemory consumption by the proposed and conventionalMAP-decoder-
based parallel turbo decoders are carried out.

– Simulations for the BER performances of MAP and parallel turbo decoders are
accomplished. An overall hardware saving of the turbo decoder with parallel
architecture, based on RSWMAP algorithm and branch-metric reformulation, is
estimated. Finally, the savings of hardware resources due to reduced-memory
architecture of this work are compared with the reported contributions.

OutlineThe remainder of this paper is organized as follows. In Sect. 2, brief discussion
on the mathematical background of Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm is
carried out. Sect. 3 presents detail explanation of the suggested RSWMAP algorithm
and branch-metric-reformulation technique. In Sect. 4, architectural and scheduling
details of the MAP decoder architecture are included. Section 5 presents BER per-
formance evaluation of the MAP and turbo decoders, implementation details and
comparison with the reported works. Finally, this paper is concluded in Sect. 6.
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2 Theoretical Background

The BCJR algorithm determines probability, which is represented as P(Ut |y), that the
transmitted bit Ut is 1/0 provided the sequence y of corrupted soft values is received
[4]. This is equivalent to the a posteriori logarithmic likelihood ratio Γ (Ut |y), which
is obtained by the logarithmic transformation of probability ratio as

Γ (Ut |y) = ln

{
P(Ut = 1|y)
P(Ut = 0|y)

}
, (1)

for hardware-efficient implementation of conventional BCJR algorithm [11]. The sign
of Γ (Ut |y) indicates whether the transmitted bit is 1/0, and its magnitude indicates
the likelihood of determining a correct value of the transmitted bit. If (s′, s)→ 1 and
(s′, s) → 0 represent the sets of state transitions for the transmitted bit Ut = 1 and
Ut = 0, respectively, then Γ (Ut |y) can be expressed as [39]

Γ (Ut |y) = ln

{∑
(s′,s)→1 P(s′, s, y)∑
(s′,s)→0 P(s′, s, y)

}
. (2)

The corrupted-received sequence y can be partitioned into three subparts: yi<t−1, yi=t

and yi>t+1. Such that yi=t represents the part of y received at an instant t and the other
two parts of y received before and after this instant are yi<t−1 and yi>t+1, respectively.
Thereby, the probability P(s′, s, y) from (2) can be expressed as

P
(
s′, s, y

) = P
(
s′, s, yi<t−1, yi=t , yi>t+1

)
. (3)

Applying Bayes’ rule and assuming that the channel is memory less and discrete [39],
an expression for P(s′, s, y) from (3) can be rewritten as

P
(
s′, s, y

) = P (yi>t+1|s) × P
(
yi=t , s|s′) × P (yi<t−1|s)

= βt (s) × γt
(
s′, s

) × αt−1
(
s′) (4)

where αt−1(s′), βt (s) and γt (s′, s) are forward-recursion factor, backward-recursion
factor and branch metric, respectively. These entities are involved in the computa-
tion of Γ (Ut |y) for successive trellis stages. Thereby, expression for Γ (Ut |y) can be
formulated by substituting the value of P(s′, s, y) from (4) in (2) as

Γ (Ut |y) = ln

{∑
(s′,s)→1 αt−1(s′) × γt

(
s′, s

) × βt (s)∑
(s′,s)→0 αt−1(s′) × γt (s′, s) × βt (s)

}
∀ t = {1, 2, 3. . .N }

(5)
where N represents the block length of code. This logarithmic value of Γ (Ut |y)
is computed for each trellis stage using forward-recursion and backward-recursion
factors of all trellis states and branch metrics associated with all state transitions.
Assuming that δ represents trellis transition where sst(δ) and sen(δ) correspond to start
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and end states, the logarithmic version of BCJR algorithm computes Γ (Ut |y) value
for t th trellis stage as

Γ (Ut |y) = m̂axδ:(s′,s)⇒1{ f (δ)} − m̂axδ:(s′,s)⇒0{ f (δ)} (6)

based on the approximation using Jacobian logarithm [39] and the function f (δ) is
expressed as

f (δ) = At−1
{
sst(δ)

} + Yt (δ) + Bt
{
sen(δ)

}
(7)

where At−1(s), Bt (s) and Yt (s′, s) are the logarithmic forms of forward-recursion
factor, backward-recursion factor and branch metric, respectively, and their details are
presented in Sect. 3.

3 Algorithmic Contributions

This section presents RSWMAP algorithm, with suggested method of estimating
backward-recursion factors during the back trace, and mathematical reformulation
of branch-metric equations.

3.1 RSWMAP Algorithm

In the conventional BCJR algorithm [4], computations of forward-recursion factors,
backward-recursion factors and branchmetrics for the entire trellis stages result in huge
memory requirement and large decoding delay. Unlike this algorithm, the SWBCJR
algorithm is a decoding strategy in which the entire trellis structure is segmented
into number of sliding windows [5], and each window covers M trellis stages which
is referred as sliding window size. This value of M affects memory requirement as
well as decoding delay of the decoder, and its magnitude must be designed cautiously
for the SWBCJR algorithm to achieve adequate error-rate performance. Simultane-
ously, initialization of backward-recursion factors while back tracing the trellis stages
is an important factor responsible for the BER performance. The RSWMAP algo-
rithm focusses on the estimation of backward-recursion factor values, which initiates
the back trace, and aims to deliver better performance. On the other hand, forward-
recursion factors and Γ (Ut |y) values are computed by conventional methods in this
algorithm. The major steps involved in the RSWMAP algorithm are presented as
follows.
Initialization Assuming that the encoder is reset, the forward-recursion factors in the
logarithmic version of SWBCJR algorithm are initialized as

At=0(sk) = ln{αt=0(sk)} = ln(1) = 0 ∀ k = 0.
At=0(sk) = ln{αt=0(sk)} = ln(0) = −∞ ∀ k �= 0.

(8)

Forward recursion The forward-recursion factor of each state for successive trellis
stages is computed as
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αt (sk) = P (yi<t−1|sk) =
∑

ψ :all s′k
αt−1

(
s′
k

) × γt
(
s′
k, sk

) ∀ k∈SN (9)

based on (2) where the function ψ represents the transitions from all the previous
states of (t−1)th trellis stage associated with the state sk of t th trellis state, SN is the
total number of states in each trellis stage and γt (s′, s) is the branch metric which is
expressed as

γt (s
′
k, sk) = exp {Ut × L(Ut )/2} × exp

(
Lc

2

n∑
l=1

ytl × xtl

)
(10)

where Lc and n represent channel-reliability measure and code length, respectively.
Similarly, L(Ut ) is the a priori probability of the transmitted information bit, xtl and
ytl are transmitted bit and its received soft value, respectively. On the other hand,
logarithmic versions of forward-recursion factor and branch metric are expressed as
At (sk) = ln{αt (sk)} and Yt (s′

k, sk) = ln{γt (s′
k, sk)}, respectively, as discussed in

Sect. 2. Thereby, this logarithmic version of forward-recursion factor is obtained by
substituting the value of αt (sk) from (9) in the expression At (sk) and is given as

At (sk) = ln

⎡
⎣ ∑

ψ :all s′k
exp

{
At−1

(
s′
k

)} × exp
{
Yt

(
s′
k, sk

)}⎤⎦

= ln

⎡
⎣ ∑

ψ :all s′k
exp

{
At−1

(
s′
k

) + Yt
(
s′
k, sk

)}⎤⎦ . (11)

Thereby, based on Jacobian logarithmic approximation, which states that ln(ex +
ey)≈max(x, y) + ln(1 + e−|x−y|) = m̂ax(x, y), the forward state metric can be
approximated as

At (sk) ≈ m̂axψ :alls′k
{
At−1(sk) + Yt

(
s′
k, sk

)}
. (12)

Similarly, the branch metric computation by the logarithmic version of SWBCJR
algorithm is carried out as

Yt (s
′
k, sk) = ln{γt (s′

k, sk)} = ln

[
exp(Ut × L(Ut )/2) × exp

(
Lc

2

n∑
l=1

ytl × xtl

)]

Yt (s
′
k, sk) = Ut × L(Ut )/2 + Lc

2

n∑
l=1

ytl × xtl . (13)

Back trace and estimation of backward recursion factor Conventional SWBCJR
algorithm estimates backward-recursion factors based on border-metric initialization
techniques [5] where if M represents sliding window size, then for t ≥ M , that is
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t={M, 2·M , 3·M , 4·M ......}, the border backward-recursion factors are initialized as
βt (sk) = 1/SN∀ k = {1, 2, 3 . . . SN } during the back trace. Thereby, the backward-
recursion factors for successive trellis stages are computed from t-1 to t-M as

βt (sk) =
∑

λ:all s′′k

βt+1(sk) × γt+1
(
s′′
k , s

) ∀ k∈SN (14)

where the function λ represents the transitions from all the states of (t+1)th trellis stage
associated with the state sk of t th trellis state. Analogous to the logarithmic compu-
tation of forward-recursion metrics, the logarithmic version of backward-recursion
factor is computed as

Bt (sk) ≈ m̂axλ:alls′′k
{
Bt+1

(
s′′
k

) + Yt
(
s′′
k , sk

)}
. (15)

based on Jacobian logarithm, and the border backward-recursion factors are initialized
as Bt (sk) = ln(1/SN ) ∀ k = {1, 2, 3 . . . SN } & t ≥ M .

This paper suggests a new method of initializing the border backward-recursion
factors which initializes the back traces in SWBCJR algorithm. Consider a trellis
graph that relates present, past and future trellis states at an instant t . This relation can
be mathematically expressed by the a posteriori transition probability from (4) where
the backward-recursion factor has been expressed as

βt (sk) = P(yi>t+1|sk). (16)

It represents the probability that the received sequence after an instant t+1 is yi>t+1 at
sk state. At t=M and using the above equation, the initial value of border backward-
recursion factor responsible for initiating the back traces can be expressed as

βM (sk) = P (yi>M+1|sk) =
∑

λ:all s′′k
P

{(
yi>M+1, s

′′
k

) |sk
}

(17)

where s′′
k represents a set of trellis states at t = M+1 and they are associated with

the transitions to state sk , during back trace. The probability from (17) can be further
expressed as

βM (sk) =
∑

λ:all s′′k

P{(yi=M , yi>M , s′′
k

) |sk} =
∑

λ:all s′′k

P
[{(yi>M ) ,

(
yi=M , s′′

k

)}|sk]

=
∑

λ:all s′′k

P{(yi>M ) | (yi=M , s′′
k , sk

)} × P{(yi=M , s′′
k

) |sk} (18)

based on the Bayes’ rule which states that P[(X,Y )|Z ] = P[X |(Y, Z)] × P(Y |Z).
Applying conditions of discrete memoryless channel in (18), the mathematical expres-
sion for βM (sk) is given as
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βM (sk) =
∑

λ:all s′′k

P(yi>M |sk) × P{(yi=M , s′′
k )|sk}. (19)

Referring (4), the probabilities P(yi>M |sk) & P{(yi=M , s′′
k )|sk} from (19) can be

expressed as βM+1(s′′
k ) and γM (s′′

k , sk), respectively. Finally, the value of estimated
backward-recursion factor is

βM (sk) =
∑

λ:all s′′k

βM+1
(
s′′
k

) × γM
(
s′′
k , sk

)
(20)

where βM+1(s′′
k ) represents the probability of encoder state at an instant t =M+1

provided that the received sequence is yi>M+1. This expression can be replaced by
1/SN which is a probability that the encoder can attain one of the SN states. Thereby,
an expression for βM (sk) from (20) can be restated as

βM (sk) = 1

SN

∑
λ:all s′′

γM
(
s′′
k , sk

)
. (21)

Subsequently, the logarithmic version of this suggested border backward-recursion
factor can be expressed as

BM (sk) = ln

(
1

SN

)
+ ln

[ ∑
λ:all s′′

γM
(
s′′
k , sk

)]

= ln

(
1

SN

)
+ m̂axλ:alls′′

{
γM

(
s′′
k , sk

)}
. (22)

Unlike the conventional SWBCJRalgorithm [5],which is basedonborder initialization
method, dummy-backward-recursion-based SWBCJR algorithms perform an extra
backward recursion for L∂ trellis stages to estimate the value of backward-recursion
factors at t = M from the trellis stage t = M + L∂ [42]. Thereafter, the actual back
trace commences from t = M using the estimated backward-recursion factors from
dummy back trace. Comparatively, this method has better coding performance in
comparison with the conventional SWBCJR algorithm [5]. Thereby, the suggested
method for initialization of backward-recursion factor from (22) can be extended for
such SWBCJR algorithm based on dummy backward recursion as

BM+L∂
(sk) = ln

(
1

SN

)
+ m̂axλ:alls′′

{
γM+L∂

(
s′′
k , sk

)}
. (23)

Computation of Γ (Ut |y) Eventually, the logarithmic value of the a posteriori prob-
ability ratio Γ (Ut |y) for t th trellis stage is computed using (6) and (7), as discussed
earlier in Sect. 2, and is expressed as

Γ (Ut |y) = m̂axδ:(s′k ,sk)⇒1
[
At−1

(
s′
k

) + Yt
(
s′
k, sk

) + Bt (sk)
]

−m̂axδ:(s′k ,sk)⇒0
[
At−1

(
s′
k

) + Yt
(
s′
k, sk

) + Bt (sk)
]
. (24)
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Thereby, the decoded bit Vt is determined based on the magnitude of Γ (Ut |y) such
that

Vt = 1 ∀ Γ (Ut |y)≥0; Vt = 0 ∀ Γ (Ut |y)<0. (25)

3.2 Mathematical Reformulation of Branch-Metric Equations

Mathematical reformulation of branch-metric expression has been suggested in this
paper to lower the memory requirement of MAP decoder. Considering a trellis graph
for decoding the code generated by convolutional encoder with a transfer function of
{1,(1+ D + D3)/(1+ D2 + D3)} for n = 2, the branch-metric expression from (13)
is expressed as

Yt
(
s′
k, sk

) = 1

2
×Ut × L(Ut ) + Lc

2
(xt1 × yt1 + xt2 × yt2) (26)

where xt1 and xt2 are the systematic and parity bits, respectively, such that xt1 ∈
{+1,−1} and xt2 ∈ {+1,−1}. Similarly, yt1 and yt2 are their respective soft values.
It is to be noted that for a code length of n, each trellis stage needs at least 2n branch
metrics and they are referred as parent branch metrics [39]. Thereby, these parent
branch metrics for n = 2 are expressed as below and their state transitions are shown
in Fig. 2, which represents a trellis stage of trellis graph with eight states based on the
considered encoder transfer function.

Yt (s′
0, s0) = − 1

2 × L (Ut ) + Lc
2 (−yt1 − yt2),

Yt (s′
0, s4) = 1

2 × L (Ut ) + Lc
2 (yt1 − yt2),

Yt (s′
4, s2) = − 1

2 × L (Ut ) + Lc
2 (−yt1 + yt2) and

Yt (s′
4, s6) = 1

2 × L (Ut ) + Lc
2 (yt1 + yt2).

(27)

Fig. 2 A trellis stage of trellis graph with SN = 8, n=2 and transfer function {1,(1 + D + D3)/(1 +
D2 + D3)}
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Among these parent branch metrics, Yt (s′
0, s0) and Yt (s′

4, s2) can be expressed using
Yt (s′

4, s6) and Yt (s′
0, s4), respectively, as given below

Yt
(
s′
0, s0

) = −
[
1

2
× L (Ut ) + Lc

2
(yt1 + yt2)

]
= −Yt

(
s′
4, s6

)
.

Yt
(
s′
4, s2

) = −
[
1

2
× L (Ut ) + Lc

2
(yt1 − yt2)

]
= −Yt

(
s′
0, s4

)
. (28)

Reformulating the parent branch-metric expression of Yt (s′
0, s0) from (27), the value

L(Ut ) = −Lc(yt1 + yt2) − 2 × Yt (s′
0, s0) which is substituted in the second branch-

metric expression of Yt (s′
4, s2) from (28) and it simplifies to

Yt (s
′
4, s2) = Yt

(
s′
0, s0

) + Lc × yt2 = −Yt
(
s′
0, s4

)
⇒ Yt

(
s′
4, s2

) = −Yt
(
s′
4, s6

) + Lc × yt2 = −Yt
(
s′
0, s4

)
, (29)

because Yt (s′
0, s0) = −Yt (s′

4, s6) from (28). Referring the reformulated equations for
parent branch metrics from (28) and (29), single parent branch metric Yt (s′

4, s6) needs
to be computed as well as stored for each trellis stage and the rest can be derived as

Yt
(
s′
0, s0

) = −Yt
(
s′
4, s6

)
,

Yt
(
s′
0, s4

) = Yt
(
s′
4, s6

) − Lc × yt2, and

Yt
(
s′
4, s2

) = −Yt
(
s′
4, s6

) + Lc × yt2. (30)

In design and implementation of MAP decoder based on conventional SWBCJR algo-
rithm [42], it has to store 2n parent branch metrics of each trellis stage for at least two
sliding windows. Thereby, if nγ represents the quantization bits of branch metric, then
theMAP decoder architecturemust accommodate amemory to store 2×M× 2n × nγ

bits for parent branchmetrics alone.Unlike the conventionalmethod, theMAPdecoder
based on suggested branch-metric reformulation needs to store 2×M × nγ bits for
the branch metrics. Assuming a case study where the values of M = 32, n = 2
and nγ = 8 bits, the memory required for parent branch metrics using branch-metric
reformulation is 75% lesser than the memory required for parent branch metrics by
conventional SWBCJR algorithm.

4 Architecture and Scheduling of Decoder

In this section, an architecture ofMAP decoder and its scheduling based on RSWMAP
algorithm and branch-metric reformulation are presented.

4.1 Decoder Architecture

Figure 3 shows suggested theMAP decoder architecture which is based on RSWMAP
algorithm and branch-metric reformulation. This design is fed with input soft values
(yt1 and yt2) and the a priori probability {L(Ut )}. These values are processed by
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Fig. 3 High-level architecture of MAP decoder based on RSWMAP algorithm and branch-metric refor-
mulation

branch-metric computation (BMC) submodulewhich calculates the value ofYt (s′
4, s6),

and it is used for computing rest of the parent branch metrics, as derived in (30).
Corresponding architecture of BMC submodule is shown in Fig. 4a for computing
the value of Yt (s′

4, s6) assuming that the value of Lc=2, which is sufficient for the
MAP decoder to deliver adequate error-rate performance [11]. Its output is routed to
three separate memories: MEM1, MEM2 and MEM3 via demultiplexer, as shown in
Fig. 3, and each memory stores M×nγ bits for M branch metrics Yt (s′

4, s6). Outputs
from these memories are multiplexed and are fed to the branch-metric router (BMR)
submodule which has an architecture, as shown in Fig. 4b. It computes rest of the
parent branch metrics Yt (s′

0, s0), Yt (s
′
0, s4) and Yt (s′

4, s2) from (30).
Figure 4(c) shows an architecture of backward-recursion factor estimator (BRFE)

submodule which computes logarithmic version of estimated backward-recursion fac-
tors BM (sk) ∀ k = {1, 2, 3, . . . SN } that is expressed by (23). Branch metrics are the
inputs for BRFE submodule and are fed to the comparators for determining the maxi-
mumvalueswhich are then addedwith a constant value of ln(1/SN ) from look-up-table
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Fig. 4 Logic-level architectures of a branch-metric computation (BMC) submodule b branch metric router
(BMR) submodule c backward-recursion factor estimator (BRFE) submodule

(LUT). In Fig. 3, the estimated backward-recursion factors fromBRFE submodule are
fed to dummy statemetric computation (DSMC) submodule, which is used for dummy
back trace while decoding with suggested RSWMAP algorithm. DSMC submodule is
state metric computation (SMC) unit that comprises of SN add-compare-select (ACS)
units for computing backward-recursion factors for SN states of a trellis stage [20].
It is fed with the branch metrics from BMR submodule and the multiplexed value
of its output, which is fed back, along with the estimated backward-recursion factors
from BRFE submodule, as shown in Fig. 3. Outputs from this DSMC submodule
are fed to backward state metric computation (BSMC) submodule, which is also a
SMC unit. It computes backward-recursion factors using branch metrics and dummy
backward-recursion factors obtained fromBMRandDSMC submodules, respectively,
for successive trellis stages during the back trace. Another SMC unit with feedback
architecture is forward state metric computation (FSMC) submodule for computing
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SN forward-recursion factors, while forward-recursion process in RSWMAP decod-
ing, as shown in Fig. 3. During this process, the forward-recursion factors for the first
trellis stage are initialized as At=0(sk=0)=0 and At=0(sk �=0)=−∞ (practically very
large negative number like −1). The computed values of forward-recursion factors
by FSMC submodule are stored in the memoryMEM4, which has a capacity to store
M×SN × nα bits where nα is the quantization of forward-recursion factor. Branch
metrics obtained from BMR submodule, backward-recursion factors computed by
BSMC submodule and fetched forward-recursion factors fromMEM4 are fed to the a
posteriori logarithmic likelihood ratio computation (APLLRC) submodule. This com-
binational block determines the sum of At−1(s′

k), Bt (sk) and Yt (s′
k, sk) for all the state

transitions and obtains respective maximum values among these sums for the transi-
tions (s′

k , sk)→1 and (s′
k , sk)→0. Eventually, these maximum values are subtracted

to give the value of Γ (Ut |y) from (24), and then the decoded bits Vk are obtained
consecutively from (25).

4.2 Decoder Scheduling

Scheduling for MAP decoding based on suggested RSWMAP algorithm is illustrated
using timing chart from Fig. 5 which shows five essential processes involved in decod-

Fig. 5 Timing chart to illustrate scheduling of MAP decoding based on the suggested memory-reduced
techniques
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ing: forward-recursion, branch-metric computation, dummy back trace, back trace and
computation of Γ (Ut |y) performed along successive time slots of consecutive sliding
windows while traversing through the trellis stages. Thereby, systematic explanation
for the scheduling of RSWMAP-algorithm-based decoding is presented as follows
using the timing chart from Fig. 5 for the suggested MAP decoder architecture.

– In the time slot 0≤ T ≤T1, the branch metrics Yt (s′
4, s6) ∀ 0≤ t ≤ M − 1 are

computed by BMC submodule for M trellis stages of first sliding window. These
values are routed via demultiplexer to memory MEM1 for storage.

– In the time slot T1≤ T ≤T2, branch metrics Yt (s′
4, s6) ∀ M−1≤ t ≤ 2M− 1 are

computed for second sliding window and are stored in memory MEM2.
– In the time slot T2≤ T ≤T3, computation of Yt (s′

4, s6) ∀2M−1≤ t ≤ 3M−1 for
third slidingwindow alongwith its storage inMEM3 and dummy back trace for the
estimation of backward-recursion factors, which are used in the actual back trace
of first sliding window, are carried out. This work assumes the value of Lδ = M ;
thereby, initialization of backward-recursion factor BM+Lδ (sk) = B2M (sk) ∀
k ={1, 2,…SN} is first accomplished using BRFE submodule of the decoder. Sub-
sequently, dummy back trace is performed along the second sliding window till
t = M − 1 using DSMC submodule which is fed with the branch metrics fetched
fromMEM2 and routed byBMR submodule. On the other hand, forward-recursion
factors At (sk) ∀ 0≤ t ≤M−1 and k ={1, 2,…SN} are computed by FSMC sub-
module using branch metrics which are fetched from MEM1 and then routed by
BMR submodule.

– In the time slot T3≤ T ≤T4, actual back trace for the computation of backward-
recursion factors for the first sliding window (0≤ t ≤ 2M − 1) is performed by
BSMC submodule using the estimated values of backward-recursion factors from
DSMC submodule and the branch metrics fetched from MEM1. These values of
branch metrics fromMEM1, computed backward-recursion factors of first sliding
window and the forward-recursion factors those are fetched from MEM4 and are
fed as inputs to ALLRC submodule of the decoder. It uses these values to compute
Γ (Ut |y) from t =M−1 to t =0 for the first sliding window. It is to be noted that
the memories MEM1, MEM2, MEM3 and MEM4 are dual-port random access
memories (RAMs). Simultaneously, the dummy back trace for second sliding
window is initiated from t =3M and the branch metric of third sliding window is
computed and stored in MEM1. Forward-recursion factors for the second sliding
window is computed and then stored in MEM4.

– In the time slot T4≤ T ≤T5, actual back trace for the computation of backward-
recursion factors for the second sliding window (M ≤ t ≤ 3M−1) is performed
by BSMC submodule using the estimated values of backward-recursion factors
fromDSMC submodule and the branchmetrics fetched fromMEM2. These values
of branch metrics from MEM2, computed backward-recursion factors of second
sliding window and the forward-recursion factors of second sliding window from
MEM4 are fed as inputs to ALLRC submodule. It uses these values to compute
Γ (Ut |y) from t =2M−1 to t =M for the second sliding window. Simultaneously,
the dummy back trace for third sliding window is initiated from t =4M and the
branchmetric of fourth slidingwindow is computed and stored inMEM2. Forward-
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recursion factors for the third sliding window are computed and then stored in
MEM4.

– This process of decoding successively continues until all the N values of Γ (Ut |y)
are obtained by MAP decoder.

4.3 Comparative Analysis of Memory Requirement

Scheduling of MAP decoder, as illustrated in timing chart of Fig. 5, has indicated that
the decoder must store parent branch metric Yt (s′

4, s6) for three SWs. This implies that
the memories MEM1, MEM2 and MEM3 need to altogether store 3×M × nγ bits.
Similarly, forward-recursion factors of M trellis stages where each stage has SN states
are stored inMEM4 which has a size of SN × M × nα bits. Thereby, the total memory
required by suggested MAP decoder architecture is

MEMdecoder = M × (3×nγ + SN×nα)bits. (31)

For aMAPdecoder based on conventional SWBCJR algorithmwith dummy backward
recursion [42], the memory required for forward-recursion factors is same as that
of the decoder presented in this work. However, such conventional MAP decoder
has to store parent branch metrics for two sliding windows where each trellis stage
has 2n parent branch metrics; thereby, total of M×(2×2n×nγ + SN×nα) bits are
necessary to be stored. Similarly, MAP decoder which is designed using SWBCJR
algorithm based on border initialization, as discussed in Sect. 3.1, needs to store parent
branch metrics and forward-recursion factors for only one sliding window. Thus, the
memory required by this decoder is M×(2n×nγ + SN×nα) bits; however, it delivers
degraded BER performance which defers such decoder from practical applications.
On the other side, the conventional-BCJR-algorithm-based MAP decoder needs to
store forward-recursion factors, backward-recursion factors and parent branch metrics
for the entire N trellis stages [39]. Thereby, huge memory required by such MAP
decoder is N×(SN×nα + SN×nβ + 2n×nγ ) bits where nβ is the quantization of
backward-recursion factors. Thus, the hardware implementation of such decoder based
on conventional BCJR algorithm is avoided in practice.

Parallel turbo decoder with multiple MAP decoders stores received probabilistic
soft values of systematic and parity bits as well as the values for N extrinsic infor-
mation, which are used in the iterative process of turbo decoding, as illustrated in
Fig. 1. Thereby, Table 1 shows that the comparative analysis of memory required by
such parallel turbo decoders based on four MAP algorithms suggested RSWMAP,
dummy-backward-recursion-based SWBCJR, border-normalization-based SWBCJR
and conventional BCJR algorithms. It shows that the memory required by soft
values and extrinsic information of the turbo decoder is N×(n×nϕ + nε) bits,
which remains constant for all the parallel architectures of turbo decoder. In order
to analyze the memory required by these parallel turbo decoders, plots of mem-
ory consumed (in bits) by turbo decoder with various parallel configurations of
P = 1, 4, 8, 16, 32 and 64 number of MAP decoders are shown in Fig. 6. Subse-
quently, turbo decoder using border-normalization-based SWBCJR algorithm requires
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Table 1 Comparisonof thememory consumedbyparallel turbodecoder basedondifferentMAPalgorithms

MAP algorithms Required memory by turbo decoder (bit)

Proposed N×(n×nϕ + nε) + P×M×(3×nγ + SN×nα).

SWBCJR algorithm♠ [42] N×(n×nϕ + nε) + P×M×(2×2n×nγ + SN×nα).

SWBCJR algorithm� [42] N×(n×nϕ + nε) + P×M×(2n×nγ + SN×nα).

BCJR algorithm [39] N×{n×nϕ + nε + P×(SN×nα + SN×nβ + 2n×nγ )}.
nϕ : quantization of input soft values of systematic and parity bits
nε : quantization of extrinsic information
P: total number of MAP decoders used in the parallel architecture of turbo decoder
♠: SWBCJR algorithm with dummy backward recursion
�: SWBCJR algorithm with border initialization method
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Fig. 6 Memory required by parallel turbo decoder architectures using branch-metric reformulation,
SWBCJR- and BCJR algorithms-based MAP decoders. The plot is shown for the values N = 6144,
n = 3, SN = 8 and the quantization of (nε , nϕ , nγ , nα , nβ )= (9, 7, 8, 9, 9, 8) bits

nearly double the value of M , in comparison with other decoding algorithms con-
sidered in this paper, to deliver adequate BER performance. In Fig. 6, the values
of M for SWBCJR algorithm based on border normalization and other decod-
ing algorithms are 64 and 32, respectively. It can be observed that the proposed
MAP-decoder-based design of turbo decoder requires the least number of bits to
be stored, as compared to dummy-backward-recursion-based SWBCJR, border-
normalization-based SWBCJR and conventional-BCJR-algorithms-based decoders.
Subsequently, the percentages of improvements achieved by the suggested paral-
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lel turbo decoders with P = 64 and P = 32 configurations have been annotated
in Fig. 6. For a turbo decoder with parallel architecture of P = 64, the proposed
decoder with RSWMAP algorithm has shown 48.7 and 35.5% of improvements in
comparison with the decoders based on border-normalization-based SWBCJR and
dummy-backward-recursion-based SWBCJR algorithms, respectively. Additionally,
the suggested decoder consumes 99.5% lesser memory as compared to decoder based
on conventional BCJR algorithm, as shown in Fig. 6.

5 Performance Analysis, Trade-Offs and Comparison

In this section, BER performance analysis of MAP and parallel turbo decoders based
on the suggested RSWMAP algorithm is carried out. From an implementation per-
spective, estimation of overall hardware saving achieved by parallel turbo decoders
based on RSWMAP algorithm and branch-metric reformulation is presented. Finally,
the overall memory saving of suggested decoder architecture is compared with the
reported works.

5.1 BER Performance

Figure 7 shows the BER performance of MAP decoders, with a transfer function {1,
(1 + D + D3)/(1 + D2 + D3)} and a code rate of 1/2, for additive white Gaussian
noise (AWGN) channel using binary phase shift keying (BPSK) modulation scheme.
This performance analysis is carried out for the MAP decoders based on RSWMAP,
SWBCJR and BCJR algorithms with M = 32, using max-log-MAP approximation
[39]. Figure 7 shows that a MAP decoder with RSWMAP algorithm performs better
than the conventional SWBCJR-algorithm-based decoder by 1.28 dBat aBERof 10−5.
However, it has degraded performance of 0.21 dB, compared toBCJR-algorithm-based
MAP decoder, at a BER of 10−5. Similarly, the BER performance of parallel turbo
decoder, in AWGN channel environment with BPSK modulation, for six decoding
iterations and a turbo block length of 6144 bits is shown in Fig. 8. It shows that the
BERperformance of parallel turbo decoder based onRSWMAPalgorithm forM = 24
has a coding gain of 0.4 dB at a BER of 10−4 in comparison with the decoder based
on SWBCJR algorithm for the same value of M = 24. Subsequently, Fig. 8 shows
that the SWBCJR-algorithm-based turbo decoder with M = 32 has a similar BER
performance as the RSWMAP-algorithm-based turbo decoder decoder with M = 24.

5.2 Implementation Trade-Offs

Comparative study of BER performances has shown that the parallel turbo decoder
based on RSWMAP algorithm achieves an adequate BER performance with smaller
value of M , in comparison with the SWBCJR-algorithm-based parallel turbo decoder.
A reduced sliding window size would require lesser memory for storing branch met-
rics and forward-recursion factors. The branch-metric reformulation as well as the
RSWMAP algorithm contributes to memory saving in a MAP decoder. From the
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Fig. 8 BER performance of parallel turbo decoders with P = 64, based on different MAP algorithms for
a code rate of 1/3 and six decoding iterations

implementation perspective, overall savings of hardware resources due to reduced-
memory architecture of parallel turbo decoder, which uses MAP decoders based on
branch-metric reformulation and RSWMAP algorithm, are presented here. Recently,
the VLSI implementations of parallel turbo decoders with P = 8 [37], P = 16 [38],
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P = 32 [12] and P = 64 [29] have been reported for high-data-rate application.
Thereby, the hardware savings of parallel turbo decoders are analyzed up to P = 64
parallel configuration. Such savings of parallel turbo decoders based on proposed algo-
rithm are accounted in terms of complementary metal oxide semiconductor (CMOS)
transistor count, and the comparison is carried out with parallel turbo decoders based
on SWBCJR algorithms which is based on dummy backward recursion and border
normalization. Assuming that the memory used in parallel turbo decoder is static
random access memory (SRAM), it requires six CMOS transistors to store each bit
[40].

Referring the expressions from Table 1, the parallel turbo decoders based on pro-
posed algorithm and conventional SWBCJR algorithm which is based on dummy
backward recursion consume 6×{N×(n×nϕ + nε) + P×M×(3×nγ + SN×nα)}
transistors and 6×{N×(n×nϕ + nε) + P×M×(2n+1×nγ + SN×nα)} transistors,
respectively. Similarly, conventional SWBCJR algorithm based on border normal-
ization consumes 6×{N×(n×nϕ + nε) + P×M×(2n×nγ + SN×nα)} transistors.
Figure 9 shows the overall hardware savings in terms of CMOS transistor count for
various parallel configuration of the decoder. From the previous BER analysis, it has
been seen that parallel turbo decoder based on RSWMAP algorithm can deliver opti-
mum BER performance for M = 24 rather than for M = 32, which is required by
SWBCJR algorithm based on dummy backward recursion. On the other hand, parallel
turbo decoder using SWBCJR algorithm based on border normalization would require
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at least M = 64 to deliver adequate BER performance. Thereby, Fig. 9 shows the
CMOS transistors consumed by turbo decoders based on suggested MAP decoder for
M = 24, SWBCJR-algorithm-based MAP decoder using dummy backward recursion
for M = 32 and SWBCJR-algorithm-basedMAP decoder using border normalization
for M = 64. The percentage of hardware saving for different values of P , such as
16, 32 and 64, are shown in Fig. 9. Thereby, maximum of 52.25 and 44.14% hard-
ware resources are saved due to the reduction in memory in parallel turbo decoder
for P = 64. However, decoder which uses SWBCJR algorithm based on border nor-
malization is rarely used due to its degraded BER performance and poor hardware
utilization.

5.3 Comparisons

As discussed in Sect. 3.2, memory saving of 75% has been achieved by MAP
decoder in this work, for the storage of branch metrics, in comparison with conven-
tional SWBCJR-algorithm-based MAP decoder [42]. The overall saving of hardware
resources inMAP decoder, due to reduced-memory architecture for forward/backward
recursion factors and branch metrics altogether, is referred as state branch memory
saving (SBMS). Figure 10 shows the percentages of SBMSs achieved by proposed
and reported MAP architectures. Architecture Arch-1 presented in [33] has achieved a
saving due to reduced memory required for forward-recursion factors, and its SBMS
is 50%. Similarly, the MAP decoder kernel Arch-2 designed in [34] has achieved a

Fig. 10 Comparison for the state branchmemory savings (SBMSs) of proposed and reportedMAP decoder
architectures w.r.t conventional MAP decoder: Arch-1 [33], Arch-2 [34], Arch-3a [17], Arch-3b [17] and
Arch-4 [24]
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SBMS of 26%. Low-power and reduced-memory architecture proposed in [17] has
shown SBMSs of 24.9 and 19.6% for radix-2 (Arch3a) and radix-4 (Arch3b) architec-
tures, respectively. The state-metric-compression-based architecture Arch4 of MAP
decoder [24] has a SBMS of 50%, as shown in Fig. 10. Thus, the memory-reduced
architecture presented in this work has shown better SBMS in comparison with the
reported architectures.

6 Conclusion

This paper has highlighted a new method of estimating backward-recursion factors
to initiate the back trace for successive sliding windows in MAP algorithm. Another
contribution was the mathematical reformulation of branch-metric equations, and this
aided MAP decoder to store only single branch metric in each trellis stage. Based
on these methods, architecture and scheduling of the MAP decoder were presented.
Thereafter, comparative study on BER performance of parallel turbo decoders based
on the proposed and conventional methods was carried out, and the former had a
coding gain of 0.4 dB at a BER of 10−4. The parallel turbo decoder with proposed
MAPdecoders has resulted in better coding performance and reduced-memory design.
Finally, an overall hardware saving of this decoder was analyzed in terms of CMOS
transistor count and it has shown that a saving of 44.14% is possible for the case of 64
parallel MAP decoders. For the next generation wireless communication, higher data
rates are needed and such hardware-efficient parallel turbo decoders are required to
maintain the application of turbo code for evolvingwireless communication standards.
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