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Abstract This paper is concerned with designing delay feedback controllers of
master–slave synchronization for Lur’e systems. Through dividing the delay inter-
val into two parts and choosing two augmented Lyapunov–Krasovskii functionals,
some delay-dependent synchronization criteria are formulated in terms of linearmatrix
inequalities (LMIs), in which the conservatism can be effectively reduced based on
adjusting some useful parameters. The proposed conditions can be easily checked,
and the controller gains can be achieved by solving the derived LMIs. Finally, two
numerical examples are given to illustrate the presented results.
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1 Introduction

In past decades, synchronization control of various chaotic systems has attracted con-
siderable attention since the pioneering works of Pecora and Carroll were reported
[5,26], which shows that as some conditions are satisfied, a chaotic system (the slave
system) may become synchronized to another identical one (the master system) if
the master system sends some driving signals to the slave one. Presently, it is widely
known that there exist many benefits of having synchronization in various engineer-
ing applications, such as teleoperation, secure communication, image processing, and
harmonic oscillation generation. Moreover, there also exists synchronization in lan-
guage emergence and development, which comes up with a common vocabulary,
while agents’ synchronization in organization management will improve their work
efficiency. Therefore, the problem on chaos synchronization has been widely investi-
gated in recent years [1–4,8,16–19,24,25,29,31,32,38–40,42].

Meanwhile, since Lur’e system can represent many nonlinear models as its spe-
cial cases and exhibit some chaotic behaviors, its synchronization has received much
attention and many elegant results have been proposed either [6,7,9–15,20–22,27,
28,30,33,34,36,37,41,43,44]. In [33], the finite-time master–slave synchronization
has been discussed for uncertain Lur’e systems based on adaptive control. It is worth
pointing out that time-delay is an inherent feature in physical processes, which may
lead to instability or significantly deteriorate system’s performance. Thus, many
works have dealt with the issue on chaotic synchronization of Lur’e systems [6,7,9–
15,20–22,27,28,30,34,36,37,41,43,44]. In recent years, the design of delay feedback
controllers formaster–slave synchronization has been deeply studied. Based on several
effective techniques, some elegant delay-dependent criteria have been obtained and
formulated in terms of simple LMIs. In [10–12,14,20,21,28,36,41], through using
free-weighting matrix, integral inequality, and Moon’s inequality, many significant
results have been proposed with both constant and invariable delay included. In par-
ticular, the results in [6] were based on Lyapunov functional with quadratic form of
some augmented vectors, in which the nonlinear functions were expressed as convex
combinations and the derivative of state was also used in the controller. In [15], the
synchronization of Lur’e systems was extended to singular case and the output feed-
back controller was used, in which the controller algorithm has been given in terms
of nonlinear matrix inequalities.

In many practical situations, digital controllers are more preferable than continuous
ones since they allow for synchronization only by using the samples of the states in
both the master system and slave one at discrete time instants. Thus, in [27,30,34,43],
the sampled-data controller was designed to discuss the master–slave synchronization
and the controller gains could be obtained by solving the derived LMIs. Moreover, its
application in secure communication was also involved in [30]. It should be noted that
the synchronization schemes in [27,30,34,43] were based on that there had been a
perfect communication channel between the measurement of the system and the input
of the controller. However, in networked environment, sampled signals are usually
quantized before being transmitted. Thus, the quantizer can be regarded as a coder
which converts the continuous signal into piecewise continuous one taking values in
a finite set. Then quantization effect has been added into the master–slave synchro-
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nization problem [37,44]. Presently, since the delay-partitioning idea was verified to
be more effective in reducing the conservatism, it has been utilized to discuss chaotic
synchronization [9,22] and yet, their complicated results cannot be easily checked.
Furthermore, though the synchronization in [13] has considered the presence of para-
meter mismatches, the concerning time-delay was constant.

Now based on the synchronization results in [7,9,13,22,27,30,34,37,43,44], the
issue on time-varying delay has been involved and many elegant techniques have been
put forward, in which the information on bounds of both delay and its derivative has
been deeply involved. Yet there still exists much room waiting for the improvements,
which can be illustrated in what follows. On the one hand, since the restriction that the
upper bound on derivative of time-varying delay was greater than 1 has been adopted,
its negative effect could be somewhat removed by introducing some free-weighting
matrices. However, in [9,12,14,21,22], as for Lyapunov term

∫ t
t−τ(t) εT (s)Q1ε(s)ds

with τ̇ (t) ≥ 1, its derivative could be obtained as

d

dt

(∫ t

t−τ(t)
εT (s)Q1ε(s)ds

)

= εT (t)Q1ε(t) − [1 − τ̇ (t)]εT (t − τ(t))Q1ε(t − τ(t)) ≥ 0.

It can be easily checked that even the free matrices were used, some conservatism still
could be induced when estimating its upper bound and, thus, it is urgent to propose
some new effective techniques. Though the work [35] has given some preliminary
discussions on this point, there still exists some room for the further improvements.
On the other hand, although the works [9,13] divided delay interval into some uni-
form ones, they could not fully represent the inherent feature when time-delay took
the values in each subinterval during choosing the LKF and estimating its derivative.
Meanwhile, in recent years, the issue on time-delay also has been concerned dur-
ing studying the various Lur’e systems [6,7,9–15,20–22,27–30,34,36,37,41,43,44].
Therefore, it still remains important and urgent to put forward some novel techniques
to achieve the much less conservative results on chaotic synchronization for delay
Lur’e systems, which constitutes the main focus of this work.

In this paper, themaster–slave synchronization for Lur’e systemswith time-varying
delay will be further studied. Two augmented Lyapunov–Krasovskii functionals will
be chosen based on the introduction of some adjusting parameters. Through employing
combined convex technique, some novel conditions will be proposed owing to that
the derived criteria can be presented in terms of LMIs and their feasibility can be
easily checked by resorting to recently developed algorithms. Finally, the efficiency
and reduced conservatism of the derived criteria will be demonstrated by utilizing two
numerical examples.

Notation Rn×m is the set of all n × m real matrices. For the symmetric matrices
X,Y, X > Y (respectively, X ≥ Y ) means that X − Y > 0 (X − Y ≥ 0) is a positive-
definite (respectively, positive-semidefinite) matrix; AT stands for the transpose of
matrix A; I represents the identity matrix of an appropriate dimension; and ∗ in a
symmetric matrix denoting the symmetric term Y T .
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2 Model Descriptions and Preliminaries

Consider the master–slave synchronization scheme of Lur’e systems using delay-state
feedback control

M :
{
ẋ(t) = Ax(t) + Bh(Ex(t))
p(t) = Fx(t)

(1)

S :
{
ż(t) = Az(t) + Bh(Ez(t)) + u(t)
q(t) = Fz(t)

(2)

C : u(t) = K [p(t) − q(t)] + L [p(t − τ(t)) − q(t − τ(t))] , (3)

whereM is master system, S is slave system, and C is controller; here x(t), z(t) ∈ Rn

are the state vectors and the output vectors p(t), q(t) ∈ Rk ; A = [ai j ]n×n, B =
[bi j ]n×n1 , E = [ei j ]n1×n = [ET

1 , ET
2 , . . . , ET

n1 ]T , F = [ fi j ]k×n are constant matri-
ces; moreover, h(·) = [h1(·), h2(·), . . . , hn1(·)]T denotes the nonlinear vector-valued
function which satisfies global Lipschitz condition.

The following assumptions will be utilized throughout this paper.

H 1 τ(t) denotes the time-varying delay satisfying

0 ≤ τ(t) ≤ τm, μ0 ≤ τ̇ (t) ≤ μm, (4)

and we set μ̄m = μm − μ0.

H 2 There exist the constants σ+
i , σ−

i (i = 1, . . . , n1) such that the nonlinear function
hi (·) in (1)–(2) satisfies

[
hi (ξ) − σ+

i ξ
] [
hi (ξ) − σ−

i ξ
] ≤ 0, ∀ ξ ∈ R. (5)

Here, we introduce �̄ = diag(σ+
1 , . . . , σ+

n1), � = diag(σ−
1 , . . . , σ−

n1), and

�1 = diag
(
σ+
1 σ−

1 , . . . , σ+
n1σ

−
n1

)
,

�2 = diag

(
σ+
1 + σ−

1

2
, . . . ,

σ+
n1 + σ−

n1

2

)

.

Remark 1 In assumption H1, as for both bounds on the derivative of time-varying
delay τ(t), the value μ0 is always less than 0 and the value μm is always greater than
0, which can help to guarantee τ(t) to be variable and bounded in [0, τm].

Letting the synchronization error state be ε(t) = x(t) − z(t), then the error system
can be obtained as

ε̇(t) = (A − K F)ε(t) + B f (Eε(t)) − LFε(t − τ(t)), (6)

where f (Eε(t)) = h(Ex(t)) − h(Ez(t)) and fi (0) = 0 (i = 1, . . . , n1). For any
ξ ∈ Rn , it follows from H2 that
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[
fi (Eiξ) − σ+

i Eiξ
] [

fi (Eiξ) − σ−
i Eiξ

] ≤ 0. (7)

The purpose of this paper is to study the master–slave synchronization for the
systems (1)–(2) and design the controller (3), i.e., to find the controller gains K , L
such that the error system (6) is absolutely stable.

In order to obtain the less conservative conditions, two lemmas will be presented.

Lemma 1 [22] For any constant matrix X ∈ Rn×n, X = XT ≥ 0, two scalars
h2 ≥ h1 ≥ 0, such that the following integrations are well defined, then

−(h2 − h1)
∫ t−h1

t−h2
xT (s)Xx(s)ds ≤ −

(∫ t−h1

t−h2
x(s)ds

)T

X

(∫ t−h1

t−h2
x(s)ds

)

,

−(h2 − h1)
∫ t−h1

t−h2
ẋ T (s)Xẋ(s)ds ≤ − [x(t − h2) − x(t − h1)]

T X[x(t − h2)

−x(t − h1)].

Lemma 2 [23] For any vectors ζ1, ζ2, constant matrices R, S, and two real scalars

α ≥ 0, β ≥ 0 satisfying

[
R S
∗ R

]

≥ 0 and α + β = 1, the following inequality can be

true,

− 1

α
ζ T R
1 ζ1 − 1

β
ζ T R
2 ζ2 ≤ −

[
ζ1
ζ2

]T [
R S
∗ R

] [
ζ1
ζ2

]

.

3 Master–Slave Synchronization Results

In this section, we firstly propose some denotations, which will be essential in the
following proof and theorems.

As for time-varying delay 0 ≤ τ(t) ≤ τ and two scalars 0 ≤ δ, γ ≤ 1, we denote

ω
.= δτ, ν

.= (1 − δ)τ = τ − ω, ϕ(t)
.= γ τ(t), ϕ

.= γ τ, φ = τ − ϕ; (8)

ei =
⎧
⎨

⎩

[
0n×(i−1)n In 0n×(6−i)n 0n×n1 0n×4n

]
, 1 ≤ i ≤ 6,[

0n1×6n In1 0n1×4n
]
, i = 7,[

0n×6n 0n×n1 0n×(i−1−6n−n1)n In 0n×(10n+n1−i)n
]
, 8 ≤ i ≤ 11.

(9)

Then based on (6)–(8), we will construct the following Lyapunov–Krasovskii func-
tional (LKF):

V (εt ) = V1(εt ) + V2(εt ) + V3(εt ), (10)

where

V1(εt ) = εT (t)Pε(t) + 2
n1∑

i=1

qi

∫ Ei ε(t)

0

[
fi (s) − σ−

i s
]
ds
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+2
n1∑

i=1

ri

∫ Ei ε(t)

0

[
σ+
i s − fi (s)

]
ds

+
[ ∫ t

t−ω
ε(s)ds

∫ t−ω

t−τ
ε(s)ds

]T [
P1 P2
∗ P3

][ ∫ t
t−ω

ε(s)ds
∫ t−ω

t−τ
ε(s)ds

]

,

V2(εt ) =
∫ t

t−ϕ(t)
εT (s)Q1ε(s)ds +

∫ t−ϕ(t)

t−τ

εT (s)Q2ε(s)ds

+
∫ t

t−ω

εT (s)Q3ε(s)ds +
∫ t−ω

t−τ

εT (s)Q4ε(s)ds,

V3(εt ) =
∫ 0

−ω

∫ t

t+θ

ω
[
ε̇T (s)R1ε̇(s) + εT (s)R2ε(s)

]
dsdθ

+
∫ −ω

−τ

∫ t

t+θ

ν
[
ε̇T (s)R3ε̇(s) + εT (s)R4ε(s)

]
dsdθ

+
∫ 0

−ϕ

∫ t

t+θ

ϕε̇T (s)R5ε̇(s)dsdθ +
∫ −ϕ

−τ

∫ t

t+θ

φε̇T (s)R6ε̇(s)dsdθ

with n × n matrices P > 0, Qi > 0 (i = 1, 2, 3, 4), Ri > 0 (i = 1, 2, 3, 4, 5, 6),

2n×2n matrix
[
P1 P2
∗ P3

]

> 0, and n1 ×n1 diagonal matrices Q = diag(q1, . . . , qn1) >

0, R = diag(r1, . . . , rn1) > 0.
In what follows, we will give one novel delay-dependent stability criterion for the

error system (6).

Theorem 1 For any given scalars τ ≥ 0, μ0, μm, 1 ≥ δ, γ ≥ 0, the system (6)
satisfying (4) and (7) has one equilibrium point and is absolutely stable, if there exist
n×n matrices P > 0, P1 > 0, P2, P3 > 0, Qi > 0 (i = 1, 2, 3, 4), R j > 0, Z j (i =
1, 2, 3, 4, 5), R6 > 0, N1, N2 making

[
P1 P2
∗ P3

]

> 0,

[
R j Z j
∗ R j

]

> 0 ( j = 1, 2, 3, 4, 5),

n1 × n1 diagonal matrices Q > 0, R > 0,U > 0 such that for i = 1, 2, the matrix
inequalities in (11)–(12) hold

Ω +
[
eT1 Z1e6 + eT6 Z

T
1 e1

]
+

[
eT1 (R1 − Z1)e2 + eT2 (R1 − ZT

1 )e1
]

+
[
eT2 (R1 − Z1)e6 + eT6 (R1 − ZT

1 )e2
]

+
[
eT3 R3e6 + eT6 R3e3

]
−

[
eT8 Z2e9 + eT9 Z

T
2 e8

]

+ eT2 (ZT
1 + Z1 − 2R1)e2 − eT9 R2e9 +

[
eT9 P1e1 + eT1 P1e9

]

+
[
eT6 (PT

2 − P1)e9 + eT9 (P2 − P1)e6
]

−
[
eT3 P

T
2 e9 + eT9 P2e3

]
+ γ μ̄me

T
4 Qie4 < 0, (11)

Ω +
[
eT1 R1e6 + eT6 R1e1

]
+

[
eT2 (R3 − Z3)e3 + eT3 (R3 − ZT

3 )e2
]
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+
[
eT2 (R3 − ZT

3 )e6 + eT6 (R3 − Z3)e2
]

+
[
eT3 Z

T
3 e6 + eT6 Z3e3

]
−

[
eT9 Z4e10 + eT10Z

T
4 e9

]

+ eT2 (ZT
3 + Z3 − 2R3)e2 − eT9 R4e9 +

[
eT9 P

T
2 e1 + eT1 P2e9

]

+
[
eT6 (P3 − P2)e9 + eT9 (P3 − PT

2 )e6
]

−
[
eT3 P3e9 + eT9 P3e3

]
+ γ μ̄me

T
4 Qie4 < 0, (12)

where ei (i = 1, . . . , 9) are defined in (9) and

Ω =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ω11 −NT
1 LF 0 Ω14 Z5 0 Ω17 P1 0 P2 Ω1,11

∗ 0 0 0 0 0 0 0 0 0 −(LF)T N2

∗ ∗ Ω33 0 0 R6 0 −PT
2 0 −P3 0

∗ ∗ ∗ Ω44 Ω45 0 0 0 0 0 0
∗ ∗ ∗ ∗ −R5 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ω66 0 Ω68 0 Ω6,10 0
∗ ∗ ∗ ∗ ∗ ∗ −U 0 0 0 Ω7,11

∗ ∗ ∗ ∗ ∗ ∗ ∗ −R2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −R4 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω11,11

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with

Ω11 = −R1 + Q1 + Q3 + ω2R2 + ν2R4 − R5 + NT
1 (A − K F) + (A − K F)T N1

−ETU�1E, Ω14 = R5 − Z5,

Ω17 = NT
1 B + ETU�2,Ω1,11 = P + ET (�̄R − �Q)E − NT

1 + (A − K F)T N2,

Ω33 = −Q2 − Q4 − R3 − R6, Ω44 = (1 − γμm)Q1 + (γμ0 − 1)Q2

+ Z5 + ZT
5 − 2R5,

Ω45 = R5 − Z5, Ω66 = Q4 − Q3 − R1 − R3 − R6,

Ω68 = PT
2 − P1, Ω6,10 = P3 − P2,

Ω7,11 = QE + BT N2 − RE, Ω11,11 = ω2R1 + ν2R3 + ϕ2R5

+φ2R6 − NT
2 − N2.

Proof Firstly, for any appropriately dimensional matrices Ni (i = 1, 2) and diagonal
one U ≥ 0, it follows from (6) to (7) and methods in [9,22,32] that

0 = 2
[
εT (t)NT

1 + ε̇T (t)NT
2

]
[−ε̇(t) + (A − K F)ε(t)

+B f (Eε(t)) − LFε(t − τ(t))] , (13)

0 ≤ −
[
εT (t)ETU�1Eε(t) − 2εT (t)ETU�2 f (Eε(t)) + f T (Eε(t))U f (Eε(t))

]
.

(14)
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Now together with the denotations (8) and LKF (10), the derivative of Vi (εt ) (i =
1, 2, 3) along the system (6) can be directly computed out as

V̇1(εt ) = 2εT (t)P ε̇(t) + 2
[
f T (Eε(t)) − εT (t)ET�

]
QE ε̇(t)

+ 2
[
εT (t)ET �̄ − f T (ε(t))

]
RE ε̇(t)

+
[ ∫ t

t−ω
ε(s)ds

∫ t−ω

t−τ
ε(s)ds

]T (

2 ·
[
P1 P2
∗ P3

]) [
ε(t) − ε(t − ω)

ε(t − ω) − ε(t − τ)

]

, (15)

V̇2(εt ) = εT (t)Q1ε(t) − [
1 − γ τ̇ (t)

]
εT (t − ϕ(t))Q1ε(t − ϕ(t))

+ [
1 − γ τ̇ (t)

]
εT (t − ϕ(t))Q2ε(t − ϕ(t))

− εT (t − τ)Q2ε(t − τ) + εT (t)Q3ε(t) − εT (t − ω)Q3ε(t − ω)

+ εT (t − ω)Q4ε(t − ω) − εT (t − τ)Q4ε(t − τ)

= εT (t)Q1ε(t) − εT (t − τ)Q2ε(t − τ)

+ εT (t)Q3ε(t) − εT (t − ω)(Q3 − Q4)ε(t − ω) − εT (t − τ)Q4ε(t − τ)

+ εT (t − ϕ(t))
[
(1 − γμm)Q1 + (γμ0 − 1)Q2

]
ε(t − ϕ(t))

+ ε(t − ϕ(t))γ [μm − τ̇ (t)]Q1ε(t − ϕ(t))

+ εT (t − ϕ(t))γ [τ̇ (t) − μ0]Q2ε(t − ϕ(t)), (16)

V̇3(εt ) =
[
ω2ε̇T (t)R1ε̇(t) + ω2εT (t)R2ε(t)

]

−
∫ t

t−ω

ω
[
ε̇T (s)R1ε̇(s) + εT (s)R2ε(s)

]
ds

+
[
ν2ε̇T (t)R3ε̇(t) + ν2εT (t)R4ε(t)

]

−
∫ t−ω

t−τ

ν
[
ε̇T (s)R3ε̇(s) + εT (s)R4ε(s)

]
ds

+
[
ϕ2ε̇T (t)R5ε̇(t) + φ2ε̇T (t)R6ε̇(t)

]

−
∫ t

t−ϕ

ϕε̇T (s)R5ε̇(s)ds −
∫ t−ϕ

t−τ

φε̇T (s)R6ε̇(s)ds. (17)

In what follows, as for (17), we will deal with two cases for delay subintervals, i.e.,
[0, ω] ∪ [ω, τ ] = [0, τ ]. �	

Case IWhen τ(t) ∈ [0, ω] = [0, δτ ], based on (8) and Lemmas 1–2 we can derive
the following inequalities:

−
∫ t

t−ω

ωε̇T (s)R1ε̇(s)ds = −ω

∫ t

t−τ(t)
ε̇T (s)R1ε̇(s)ds − ω

∫ t−τ(t)

t−ω

ε̇T (s)R1ε̇(s)ds

= − ω

τ(t)
· τ(t)

∫ t

t−τ(t)
ε̇T (s)R1ε̇(s)ds

− ω

ω − τ(t)
· [ω − τ(t)]

∫ t−τ(t)

t−ω

ε̇T (s)R1ε̇(s)ds
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≤ − ω

τ(t)

(∫ t

t−τ(t)
ε̇(s)ds

)T

R1

(∫ t

t−τ(t)
ε̇(s)ds

)

− ω

ω − τ(t)

(∫ t−τ(t)

t−ω

ε̇(s)ds

)T

R1

(∫ t−τ(t)

t−ω

ε̇(s)ds

)

≤ −
[ ∫ t

t−τ(t) ε̇(s)ds
∫ t−τ(t)
t−ω

ε̇(s)ds

]T [
R1 Z1

∗ R1

] [ ∫ t
t−τ(t) ε̇(s)ds

∫ t−τ(t)
t−ω

ε̇(s)ds

]

= − [ε(t) − ε(t − τ(t))]T R1 [ε(t) − ε(t − τ(t))]

− [ε(t) − ε(t − τ(t))]T (2Z1) [ε(t − τ(t)) − ε(t − ω)]T

− [ε(t − τ(t)) − ε(t − ω)]T R1 [ε(t − τ(t)) − ε(t − ω)] ,

(18)

−
∫ t

t−ω

ωεT (s)R2ε(s)ds ≤ −
(∫ t

t−τ(t)
ε(s)ds

)T

R2

(∫ t

t−τ(t)
ε(s)ds

)

−
(∫ t

t−τ(t)
ε(s)ds

)T

(2Z2)

(∫ t−τ(t)

t−ω

ε(s)ds

)

−
(∫ t−τ(t)

t−ω

ε(s)ds

)T

R2

(∫ t−τ(t)

t−ω

ε(s)ds

)

, (19)

−
∫ t−ω

t−τ

νε̇T (s)R3ε̇(s)ds ≤ − [ε(t − ω) − ε(t − τ)]T R3 [ε(t − ω) − ε(t − τ)] , (20)

−
∫ t−ω

t−τ

νεT (s)R4ε(s)ds ≤ −
(∫ t−ω

t−τ

ε(s)ds

)T

R4

(∫ t−ω

t−τ

ε(s)ds

)

, (21)

−
∫ t

t−ϕ

ϕε̇T (s)R5ε̇(s)ds ≤ − [ε(t) − ε(t − ϕ(t))]T R5 [ε(t) − ε(t − ϕ(t))]

− [ε(t) − ε(t − ϕ(t))]T (2Z5) [ε(t − ϕ(t)) − ε(t − ϕ)]T

− [ε(t − ϕ(t)) − ε(t − ϕ)]T R5 [ε(t − ϕ(t)) − ε(t − ϕ)] ,

(22)

−
∫ t−ϕ

t−τ

φε̇T (s)R6ε̇(s)ds ≤ − [ε(t − ϕ) − ε(t − τ)]T R6 [ε(t − ϕ) − ε(t − τ)] . (23)

Now together with the denotations (8)–(9) and combining with the terms (13)–(23),
we can easily derive

V̇ (εt ) ≤ ξ T (t)Ξ1(t)ξ(t), (24)

where

Ξ1(t) = Ω +
[
eT1 Z1e6 + eT6 Z

T
1 e1

]
+

[
eT1 (R1 − Z1)e2 + eT2 (R1 − ZT

1 )e1
]

+
[
eT2 (R1 − Z1) e6 + eT6 (R1 − ZT

1 )e2
]

+
[
eT3 R3e6 + eT6 R3e3

]
−

[
eT8 Z2e9 + eT9 Z

T
2 e8

]



Circuits Syst Signal Process (2016) 35:2992–3014 3001

+eT2

(
ZT
1 + Z1 − 2R1

)
e2 − eT9 R2e9

+
[
eT9 P1e1 + eT1 P1e9

]
−

[
eT3 P

T
2 e9 + eT9 P2e3

]

+
[
eT6 (PT

2 − P1)e9 + eT9 (P2 − P1) e6
]

+γ [μm − τ̇ (t)] eT4 Q1e4 + γ [τ̇ (t) − μ0] e
T
4 Q2e4,

ξ T (t) =
[

εT (t) εT (t − τ(t)) εT (t − τ) εT (t − ϕ(t)) εT (t − ϕ) εT (t − ω) f T (Eε(t))

(∫ t

t−τ(t)
ε(s)ds

)T
(∫ t−τ(t)

t−ω

ε(s)ds

)T (∫ t−ω

t−τ

ε(s)ds

)T

ε̇T (t)

]

with Ω defined in (11)–(12). Then based on convex combination technique, the
inequalities (11) can guarantee Ξ1(t) < 0 to be true since Ξ1(t) |τ̇ (t)=μ0< 0 and
Ξ1(t) |τ̇ (t)=μm< 0 hold simultaneously.

Case II When τ(t) ∈ [ω, τ ] = [δτ, τ ], by using Lemmas 1–2 we also can derive
the following inequalities:

−
∫ t

t−ω

ωε̇T (s)R1ε̇(s)ds ≤ − [ε(t) − ε(t − ω)]T R1 [ε(t) − ε(t − ω)] , (25)

−
∫ t

t−ω

ωεT (s)R2ε(s)ds ≤ −
(∫ t

t−ω

ε(s)ds

)T

R2

(∫ t

t−ω

ε(s)ds

)

, (26)

−
∫ t−ω

t−τ

νε̇T (s)R3ε̇(s)ds = −ν · τ(t) − ω

τ(t) − ω

∫ t−ω

t−τ(t)
ε̇T (s)R3ε̇(s)ds

−ν · τ − τ(t)

τ − τ(t)

∫ t−τ(t)

t−τ

ε̇T (s)R3ε̇(s)ds

≤ − ν

τ(t) − ω

(∫ t−ω

t−τ(t)
ε̇(s)ds

)T

R3

(∫ t−ω

t−τ(t)
ε̇(s)ds

)

− ν

ω − τ(t)

(∫ t−τ(t)

t−τ

ε̇(s)ds

)T

R3

(∫ t−τ(t)

t−τ

ε̇(s)ds

)

≤ −
[ ∫ t−ω

t−τ(t) ε̇(s)ds
∫ t−τ(t)
t−τ

ε̇(s)ds

]T [
R3 Z3
∗ R3

][ ∫ t−ω

t−τ(t) ε̇(s)ds
∫ t−τ(t)
t−τ

ε̇(s)ds

]

= − [ε(t − ω) − ε(t − τ(t))]T R3[ε(t − ω)

−ε(t − τ(t))]
− [ε(t − ω) − ε(t − τ(t))]T (2Z3)[ε(t − τ(t))

−ε(t − τ)]
− [ε(t − τ(t)) − ε(t − τ)]T R3[ε(t − τ(t))

−ε(t − τ)], (27)

−
∫ t−ω

t−τ

νεT (s)R4ε(s)ds ≤ −
(∫ t−ω

t−τ(t)
ε(s)ds

)T

R4

(∫ t−ω

t−τ(t)
ε(s)ds

)
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−
(∫ t−ω

t−τ(t)
ε(s)ds

)T

(2Z4)

(∫ t−τ(t)

t−τ

ε(s)ds

)

−
(∫ t−τ(t)

t−τ

ε(s)ds

)T

R4

(∫ t−τ(t)

t−τ

ε(s)ds

)

. (28)

Combining the terms (13)–(17), (22), (23) with (25)–(28), we can easily obtain

V̇ (εt ) ≤ ζ T (t)Ξ2(t)ζ(t). (29)

where

Ξ2(t) = Ω +
[
eT1 R1e6 + eT6 R1e1

]
+

[
eT2 (R3 − Z3) e3 + eT3 (R3 − ZT

3 )e2
]

+
[
eT2 (R3 − ZT

3 )e6 + eT6 (R3 − Z3) e2
]

+
[
eT3 Z

T
3 e6 + eT6 Z3e3

]
−

[
eT9 Z4e10 + eT10Z

T
4 e9

]

+ eT2

(
ZT
3 + Z3 − 2R3

)
e2 − eT9 R4e9

+
[
eT9 P

T
2 e1 + eT1 P2e9

]
+

[
eT6 (P3 − P2) e9 + eT9 (P3 − PT

2 )e6
]

−
[
eT3 P3e9 + eT9 P3e3

]

+ γ [μm − τ̇ (t)]eT4 Q1e4 + γ [τ̇ (t) − μ0]eT4 Q2e4,

ζ T (t) =
[

εT (t) εT (t − τ(t)) εT (t − τ) εT (t − ϕ(t)) εT (t − ϕ) εT (t − ω)

f T (Eε(t))

(∫ t

t−ω

ε(s)ds

)T (∫ t−ω

t−τ(t)
ε(s)ds

)T

(∫ t−τ(t)

t−τ

ε(s)ds

)T

ε̇T (t)

]

with Ω, ei (i = 1, . . . , 9) defined in (9) and (11)–(12), respectively. Similar to Case
I, through using convex combination technique, the inequalities (12) can guarantee
Ξ2(t) < 0 to be true since Ξ2(t) |τ̇ (t)=μ0< 0 and Ξ2(t) |τ̇ (t)=μm< 0 hold simul-
taneously. Therefore, together with the Cases I–II, it can be concluded that as the
conditions (11)–(12) hold, the dynamics of Lur’e system (6) is absolutely stable.

Now based on Theorem 1, we are ready to address the issue on controller design
(3). In order to show the design of the controller gain matrices K , L , a simple trans-
formation is made to obtain the following theorem.

Theorem 2 For any given scalars τ ≥ 0, μ0, μm, 1 ≥ δ, γ ≥ 0, υ > 0, the sys-
tems described by (1)–(3) achieve the master–slave synchronization, if there exist
n × n matrices P > 0, P1 > 0, P2, P3 > 0, Qi > 0 (i = 1, 2, 3, 4), R j >
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0, Z j ( j = 1, 2, 3, 4, 5), R6 > 0, N1 making

[
P1 P2
∗ P3

]

> 0,

[
R j Z j

∗ R j

]

> 0 ( j =
1, 2, 3, 4, 5), n1 × n1 diagonal matrices Q > 0, R > 0,U > 0, and n × k matrices
Fi (i = 1, 2) such that for i = 1, 2, the LMIs in (30)–(31) hold

Ξ +
[
eT1 Z1e6 + eT6 Z

T
1 e1

]
+

[
eT1 (R1 − Z1) e2 + eT2 (R1 − ZT

1 )e1
]

+
[
eT2 (R1 − Z1) e6 + eT6 (R1 − ZT

1 )e2
]

+
[
eT3 R3e6 + eT6 R3e3

]
−

[
eT8 Z2e9 + eT9 Z

T
2 e8

]

+ eT2

(
ZT
1 + Z1 − 2R1

)
e2 − eT9 R2e9

+
[
eT9 P1e1 + eT1 P1e9

]
−

[
eT3 P

T
2 e9 + eT9 P2e3

]

+
[
eT6 (PT

2 − P1)e9 + eT9 (P2 − P1) e6
]

+ γ μ̄me
T
4 Qie4 < 0, (30)

Ξ +
[
eT1 R1e6 + eT6 R1e1

]
+

[
eT2 (R3 − Z3) e3 + eT3 (R3 − ZT

3 )e2
]

+
[
eT2 (R3 − ZT

3 )e6 + eT6 (R3 − Z3) e2
]

+
[
eT3 Z

T
3 e6 + eT6 Z3e3

]
−

[
eT9 Z4e10 + eT10Z

T
4 e9

]

+ eT2

(
ZT
3 + Z3 − 2R3

)
e2 − eT9 R4e9

−
[
eT9 P

T
2 e1 + eT1 P2e9

]
+

[
eT6 (P3 − P2) e9 + eT9 (P3 − PT

2 )e6
]

−
[
eT3 P3e9 + eT9 P3e3

]
+ γ μ̄me

T
4 Qie4 < 0, (31)

where ei (i = 1, . . . , 9) are defined in (9) and

Ξ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 Ξ12 0 Ξ14 Z5 0 Ξ17 P1 0 P2 Ξ1,11

∗ 0 0 0 0 0 0 0 0 0 −υFT FT
2∗ ∗ Ξ33 0 0 R6 0 −PT

2 0 −P3 0
∗ ∗ ∗ Ξ44 Ξ45 0 0 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 Ξ68 0 Ξ6,10 0
∗ ∗ ∗ ∗ ∗ ∗ −U 0 0 0 Ξ7,11
∗ ∗ ∗ ∗ ∗ ∗ ∗ −R2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −R4 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ11,11

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with

Ξ11 = Q1 + Q3 + ω2R2 + ν2R4 − R5 + NT
1 A − F1F + AT N1 − FT FT

1
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− ETU�1E − R1, Ξ12 = −F2F,

Ξ14 = R5 − Z5, Ξ17 = NT
1B + ETU�2, Ξ1,11 = P + ET (�̄R − �Q)E

− NT
1 + υAT N1 − υFT FT

1 ,

Ξ33 = −Q2 − Q4 − R3 − R6, Ξ44 = −2R5 + (1 − γμm)Q1

+ (γμ0 − 1)Q2 + Z5 + ZT
5 ,

Ξ45 = R5 − Z5, Ξ55 = −R5, Ξ66 = Q4 − Q3 − R1 − R3 − R6,

Ξ68 = PT
2 − P1, Ξ6,10 = P3 − P2, Ξ7,11 = −RE + QE + υBT N1,

Ξ11,11 = −υNT
1 − υN1 + ω2R1 + ν2R3 + ϕ2R5.

Moreover, the estimation gains can be derived as K = N−T
1 F1 and L = N−T

1 F2.

Proof Based on Theorem 1, replacing N2 in (11)–(12) by the term υN1 and setting
F1 = NT

1 K , F2 = NT
1 L , it is obvious to derive the theorem. The detailed proof is

straightforward and omitted here. �	
In many present works, the lower bound μ0 of time-varying delay has not been

involved, i.e., τ̇ (t) ≤ μm , such as [6,10–12,14,15,20,21,27,28,33,34,36,41,43].
Thus, as for this case, we can derive the following corollary.

Corollary 1 For any given scalars τ ≥ 0, μm, 1 ≥ δ, γ ≥ 0, υ > 0, the systems
described by (1)–(3) achieve the master–slave synchronization, if there exist n × n
matrices P > 0, P1 > 0, P2, P3 > 0, Qi > 0 (i = 1, 2, 3, 4), R j > 0, Z j ( j =
1, 2, 3, 4, 5), R6 > 0, N1 making

[
P1 P2
∗ P3

]

> 0,

[
R j Z j

∗ R j

]

> 0 ( j = 1, 2, 3, 4, 5),

n1 × n1 diagonal matrices Q > 0, R > 0,U > 0, and n × k matrices Fi (i = 1, 2)
such that the LMIs in (32)–(33) hold

Ξ +
[
eT1 Z1e6 + eT6 Z

T
1 e1

]
+

[
eT1 (R1 − Z1) e2 + eT2 (R1 − ZT

1 )e1
]

+
[
eT2 (R1 − Z1) e6 + eT6 (R1 − ZT

1 )e2
]

+
[
eT3 R3e6 + eT6 R3e3

]
−

[
eT8 Z2e9 + eT9 Z

T
2 e8

]

+ eT2

(
ZT
1 + Z1 − 2R1

)
e2 − eT9 R2e9

+
[
eT9 P1e1 + eT1 P1e9

]
−

[
eT3 P

T
2 e9 + eT9 P2e3

]

+
[
eT6 (PT

2 − P1)e9 + eT9 (P2 − P1) e6
]

< 0, (32)

Ξ + [eT1 R1e6 + eT6 R1e1] + [eT2 (R3 − Z3)e3 + eT3 (R3 − ZT
3 )e2]

+ [eT2 (R3 − ZT
3 )e6 + eT6 (R3 − Z3)e2]

+ [eT3 ZT
3 e6 + eT6 Z3e3] − [eT9 Z4e10 + eT10Z

T
4 e9]

+ eT2 (ZT
3 + Z3 − 2R3)e2 − eT9 R4e9

+[eT9 PT
2 e1 + eT1 P2e9] + [eT6 (P3 − P2)e9 + eT9 (P3 − PT

2 )e6]
− [eT3 P3e9 + eT9 P3e3] < 0, (33)
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where the matricesΞ, ei (i = 1, . . . , 9) are identical to the relevant ones in Theorem 2
except for two following terms

Ξ44 = −2R5 − (1 − γμm)Q1 + Z5 + ZT
5 , Ξ55 = −Q2 − R5.

Moreover, the estimation gains can be derived as K = N−T
1 F1 and L = N−T

1 F2.

Proof As for the term V2(εt ) in (10), through replacing
∫ t−ϕ(t)
t−τ

εT (s)Q2ε(s)ds by
∫ t−ϕ

t−τ
εT (s)Q2ε(s)ds and using the similar methods to prove Theorem 2, the corollary

can be derived and the detailed proof is omitted. �	
Inwhat follows, wewill consider themaster-slave synchronization formore general

systems as

M :
{
ẋ(t) = Ax(t) + Cx(t − τ(t)) + Bh(Ex(t))
p(t) = Fx(t)

(34)

S :
{
ż(t) = Az(t) + Cz(t − τ(t)) + Bh(Ez(t)) + u(t)
q(t) = Fz(t)

(35)

C : u(t) = K [p(t) − q(t)] + L [p(t − τ(t)) − q(t − τ(t))] . (36)

Then through setting ε(t) = x(t) − z(t), the synchronization error system can be
derived as

ε̇(t) = (A − K F)ε(t) + (C − LF)ε(t − τ(t)) + B f (Eε(t)). (37)

Theorem 3 For any given scalars τ ≥ 0, μ0, μm, 1 ≥ δ, γ ≥ 0, υ > 0, the systems
described by (34)–(36) achieve the master–slave synchronization, if there exist n × n
matrices P > 0, P1 > 0, P2, P3 > 0, Qi > 0 (i = 1, 2, 3, 4), R j > 0, Z j ( j =
1, 2, 3, 4, 5), R6 > 0, N1 making

[
P1 P2
∗ P3

]

> 0,

[
R j Z j

∗ R j

]

> 0 ( j = 1, 2, 3, 4, 5),

n1 × n1 diagonal matrices Q > 0, R > 0,U > 0, and n × k matrices Fi (i = 1, 2)
such that for i = 1, 2, the LMIs in (38)–(39) hold

Ξ +
[
eT1 Z1e6 + eT6 Z

T
1 e1

]
+

[
eT1 (R1 − Z1) e2 + eT2 (R1 − ZT

1 )e1
]

+
[
eT2 (R1 − Z1) e6 + eT6 (R1 − ZT

1 )e2
]

+
[
eT3 R3e6 + eT6 R3e3

]
−

[
eT8 Z2e9 + eT9 Z

T
2 e8

]

+ eT2

(
ZT
1 + Z1 − 2R1

)
e2 − eT9 R2e9

+
[
eT9 P1e1 + eT1 P1e9

]
−

[
eT3 P

T
2 e9 + eT9 P2e3

]

+
[
eT6 (PT

2 − P1)e9 + eT9 (P2 − P1) e6
]

+ γ μ̄me
T
4 Qie4 < 0, (38)

Ξ +
[
eT1 R1e6 + eT6 R1e1

]
+

[
eT2 (R3 − Z3) e3 + eT3 (R3 − ZT

3 )e2
]
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+
[
eT2 (R3 − ZT

3 )e6 + eT6 (R3 − Z3) e2
]

+
[
eT3 Z

T
3 e6 + eT6 Z3e3

]
−

[
eT9 Z4e10 + eT10Z

T
4 e9

]

+ eT2

(
ZT
3 + Z3 − 2R3

)
e2 − eT9 R4e9

−
[
eT9 P

T
2 e1 + eT1 P2e9

]
+

[
eT6 (P3 − P2) e9 + eT9 (P3 − PT

2 )e6
]

−
[
eT3 P3e9 + eT9 P3e3

]
+ γ μ̄me

T
4 Qie4 < 0, (39)

where the matrices Ξ, ei (i = 1, . . . , 9) are identical to the relevant ones in Theorem
2 except for the following terms

Ξ12 = NT
1 C − F2F, Ξ2,11 = υCT N1 − υFT FT

2 .

Moreover, the estimation gains can be derived as K = N−T
1 F1 and L = N−T

1 F2.

Proof Based on the proof of Theorem 2 and replacing the term (13) by the following
equation

0 = 2
[
εT (t)NT

1 + ε̇T (t)NT
2

]
[−ε̇(t) + (A − K F)ε(t)

+(C − LF)ε(t − τ(t)) + B f (Eε(t))] , (40)

this theorem can be straightforwardly derived and its detailed proof is omitted here. �	
Remark 2 Though Theorems 2–3 and Corollary 1 in our work are not presented in
terms of standard LMIs, it is still convenient to check their feasibility without tuning
any parameters by resorting to the LMI in MATLAB Toolbox. Furthermore, through
adjusting two useful parameters γ, δ, we can achieve the maximum allowable delay
upper bound as large as possible.

Remark 3 Many existent works have used the LKF term
∫ t
t−τ(t) εT (s)Q1ε(s)ds to

derive the results. Yet as μm ≥ τ̇ (t) > 1, this term’s derivative can be obtained as

d

dt

(∫ t

t−τ(t)
εT (s)Q1ε(s)ds

)

= εT (t)Q1ε(t) − [1 − τ̇ (t)]εT (t − τ(t))Q1ε(t − τ(t)) ≥ 0,

which unavoidably played a negative role during estimating V̇ (εt ) < 0. Thus, in our
paper, the LKF one

∫ t
t−γ τ(t) εT (s)Q1ε(s)ds has been used to get less conservative

results via adjusting the parameter γ .

Remark 4 In many cases, the lower bound of time-delay may be greater than 0, i.e.,
it belongs to the interval [τ0, τm], which can be expressed as

0 ≤ τ0 ≤ τ(t) ≤ τm, μ0 ≤ τ̇ (t) ≤ μm . (41)
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Now as for two scalars 0 ≤ δ, γ ≤ 1, we can employ the following denotations

τ̄m
.= τm − τ0, ρ

.= δτ̄m, �
.= γ τ̄m, ω

.= τ0 + δτ̄m = τ0 + ρ, (42)

ν
.= (1 − δ)τ̄m = τm − ω, ϕ(t)

.= γ [τ(t) − τ0] + τ0,

ϕ
.= τ0 + γ τ̄m = τ0 + �, φ

.= τ̄m − �, (43)

and choose the following Lyapunov–Krasovskii functional as

V (εt ) = V1(εt ) + V2(εt ) + V3(εt ), (44)

where

V1(εt ) = εT (t)Pε(t) + 2
n1∑

i=1

qi

∫ Ei ε(t)

0

[
fi (s) − σ−

i s
]
ds

+2
n1∑

i=1

ri

∫ Ei ε(t)

0

[
σ+
i s − fi (s)

]
ds +

∫ t

t−τ0

εT (s)Q1ε(s)ds

+
⎡

⎢
⎣

∫ t
t−τ0

ε(s)ds
∫ t−τ0
t−ω

ε(s)ds
∫ t−ω

t−τm
ε(s)ds

⎤

⎥
⎦

T ⎡

⎣
P1 P2 P3
∗ P4 P5
∗ ∗ P6

⎤

⎦

⎡

⎢
⎣

∫ t
t−τ0

ε(s)ds
∫ t−τ0
t−ω

ε(s)ds
∫ t−ω

t−τm
ε(s)ds

⎤

⎥
⎦ ,

V2(εt ) =
∫ t−τ0

t−ϕ(t)
εT (s)Q2ε(s)ds +

∫ t−ϕ(t)

t−τm

εT (s)Q3ε(s)ds

+
∫ t−τ0

t−ω

εT (s)Q4ε(s)ds +
∫ t−ω

t−τm

εT (s)Q5ε(s)ds,

V3(εt ) =
∫ 0

−τ0

∫ t

t+θ

τ0

[
ε̇T (s)R1ε̇(s) + εT (s)R2ε(s)

]
dsdθ

+
∫ −τ0

−ω

∫ t

t+θ

ρ
[
ε̇T (s)R3ε̇(s) + εT (s)R4ε(s)

]
dsdθ

+
∫ −ω

−τm

∫ t

t+θ

ν
[
ε̇T (s)R5ε̇(s) + εT (s)R6ε(s)

]
dsdθ

+
∫ −τ0

−ϕ

∫ t

t+θ

�ε̇T (s)R7ε̇(s)dsdθ +
∫ −ϕ

−τ

∫ t

t+θ

φε̇T (s)R8ε̇(s)dsdθ

with n × n matrices P > 0, Qi > 0 (i = 1, 2, 3, 4, 5), Ri > 0 (i = 1, . . . , 8),

3n × 3n matrices

⎡

⎣
P1 P2 P3
∗ P4 P5
∗ ∗ P6

⎤

⎦ > 0, and n1 × n1 diagonal matrices Q =

diag(q1, . . . , qn1) > 0, R = diag(r1, . . . , rn1) > 0.

Remark 5 Though some novel techniques have been utilized in this work, the con-
ditions of Theorems 1–3 are still rigorous and limited. Presently, delay-partitioning
idea has been used to further reduce the conservatism [9,22], which also can help to



3008 Circuits Syst Signal Process (2016) 35:2992–3014

achieve less conservative conditions for the synchronization. Thus, in further research
we will use and improve this approach to carry out the discussion. However, these
techniques will add significantly to the complexities of proof procedure and theorems.

4 Numerical Examples

In order to show the effectiveness and less conservatism of the proposed criteria,
we will consider two numerical examples and give the comparing results with some
reported methods.

Example 1 As for u(t) = L [Fx(t − τ) − Fy(t − τ)], the following Chua’s circuit
is considered to illustrate the master–slave synchronization criteria, which has been
studied in [7,9,11,12,21,22,34]

⎧
⎨

⎩

ẋ1 = α [x2 − m1x1 + h(x1)]
ẋ2 = x1 − x2 + x3
ẋ3 = −βx2

with h(x1) = 1
2 (m1 − m0)(|x1 + c| − |x1 − c|) and parameters

m0 = −1

7
, m1 = 2

7
, α = 9, β = 14.286, c = 1.

Then the system can be represented in the form of Lur’e model (1) with

A =
⎡

⎣
− 18

7 9 0
1 −1 1
0 −14.286 0

⎤

⎦ , B =
⎡

⎣
27
7 0 0
0 0 0
0 0 0

⎤

⎦ , E = [
1 0 0

]
,

and f (ξ) = 1
2 (|ξ + 1| − |ξ − 1|) belonging to the sector [0, k] with k = 1. Moreover,

F = [
1 0 0

]
.

Since time-delay in u(t) is constant, one can check μ0 = μm = 0. Then by
resorting to LMI in the MATLAB Toolbox, we can obtain the feasible solutions to
the LMIs in Theorem 2 based on setting ν = 0.3 and different δ, γ . Therefore, the
corresponding gain matrix L can stabilize the error system (6) with different delay
maximum allowable upper bounds (MAUB) τmax, and the comparisons with some
existent ones are shown in Table 1. Based on this table, one can clearly check that our
criteria produce much less conservatism.

Example 2 Consider the master system (34) of delayed Lur’e model as follows:

ẋ(t) = Ax(t) + Cx(t − τ(t)) + Bh(Ex(t)),
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Table 1 The corresponding allowable bound τmax for various methods with μ0 = μm = 0 and ν = 0.3

Utilized methods τmax Control gain L

Theorem 1 [7] 0.3914
[
3.4852 0.6906 −3.2849

]T

Corollary 2 [9] 0.1835
[
4.0779 0.9087 −4.3430

]T

Proposition 1 [11] 0.1622
[
6.0222 1.3367 −2.1264

]T

Theorem 2 [12] 0.1800
[
3.9125 0.9545 −3.8273

]T

Theorem 2 [21] 0.1830
[
4.1455 0.9250 −4.2596

]T

Theorem 2 [22] 0.1833
[
4.0781 0.9292 −4.1857

]T

Corollary 1 [34] 0.3981
[
2.5691 0.7731 −1.7428

]T

Theorem 2 (δ, γ ) = (1, 1) 0.3125
[
0.2425 −0.0486 −0.3049

]T

Theorem 2 (δ, γ ) = (0.5, 0.5) 0.6120
[
0.0320 −0.0054 −0.0452

]T

Theorem 2 (δ, γ ) = (0.1, 0.1) 0.9736
[
0.2439 −0.0452 −0.1696

]T

where

A =
[ −1 −0.4

−0.6 −1

]

, C =
[
0.8 0.6
0.7 0.8

]

, B =
[
2.1 −0.2
−5 3

]

,

E =
[

1 0.8
0.8 1

]

, F =
[
1 1
0 1

]

.

The nonlinear functions can be presented as hi (s) = tanh(s) (i = 1, 2). The corre-
sponding slave system (35) can be given as

ż(t) = Az(t) + Cz(t − τ(t)) + Bh(Ez(t)) + u(t).

Firstly, as a special case, through choosing time-delay as a constant, i.e., τ(t) = τ

with τ̇ (t) = 0, we will give some comparisons with two present works [13,44] to
illustrate the reduced conservatism. Through checking the LMIs in Theorem 3, our
derived delay MAUBs τmax can be compared with the ones in [13,44], which is listed
in Table 2.

Furthermore, we consider the issue on time-varying delay. If (δ, γ, ν) = (1, 1, 0.3)
is set, we choose τ(t) = 1.5 + 0.3 sin2(10t) + 0.2 cos2(20t) and it is easy to check
τm = 2, μ0 = −7, μm = 7. Then we can verify the feasible solution to the LMIs in
(30)–(31) and obtain the estimation gains K , L as

K = L−T
1 F1 =

[
2.1803 −8.2367

−3.9835 16.5365

]

, L = L−T
1 F2 =

[
0.8194 −0.2111
0.7047 0.1004

]

.

Through choosing the initial conditions [x1(0), x2(0)]T = [−2, − 1]T and
[z1(0), z2(0)]T = [1, 2]T , the phase trajectories of master system and slave one
are expressed in Fig. 1 and their state trajectories are, respectively, shown in Fig. 2,
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Table 2 The corresponding allowable bound τmax for various methods with μ0 = μm = 0 and ν = 0.3

Utilized methods τmax Control gains K , L

Theorem 3 [13] 47.8425 K =
[

2.4465 −7.2452
−3.2243 17.0222

]

, L =
[
0.6765 −0.2334
0.7455 0.1032

]

Theorem 2 [44] 45.3544 K =
[

2.2285 −7.6754
−3.7756 16.3655

]

, L =
[
0.7796 −0.2202
0.7243 0.1052

]

Theorem 3 (δ, γ ) = (0.5, 0.5) 52.4475 K =
[

2.5462 −7.8776
−3.3425 17.0212

]

, L =
[
0.7466 −0.2012
0.7435 0.1087

]

Theorem 3 (δ, γ ) = (0.1, 0.1) 66.6490 K =
[

2.2302 −7.4665
−3.3552 16.6574

]

, L =
[
0.8002 −0.2437
0.7005 0.1108

]
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Fig. 2 State trajectories of the master system and slave system

which helps illustrate the desired synchronization. In particular, in Fig. 3, the state
trajectories of the error system also support the above results.

In what follows, we choose time-varying delay as τ(t) = α + 0.3 sin2(20t) +
0.2 cos2(70t), in which α is an alterable scalar and μ0 = −20, μm = 20 can be easily
checked. Now together with the LMIs in Theorem 3, we set ν = 0.3 and change the
scalars δ, γ to obtain the corresponding MAUBs τmax, which can obtain the control
gains K , L and guarantee the addressed synchronization.

In particular, as for (δ, γ, ν) = (0.1, 0.1, 0.3), when time-delay is chosen as τ(t) =
30+0.3 sin2(20t)+0.2 cos2(70t), it is easy to check that τm = 30.5, μ0 = −20, μm =
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Table 3 The maximum allowable bound τmax for various δ, γ , and μ0 = −20, μm = 20

(δ, γ ) (1, 1) (0.5, 0.5) (0.3, 0.3) (0.2, 0.2) (0.1, 0.1)

Maximum allowable τmax 11.50 16.50 20.55 24.70 30.50
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Fig. 4 Phase trajectories of the master system and slave system

20, which means that the delay satisfies Table 3. Then we can solve the LMIs in (30)–
(31) and obtain the estimation gains K , L as

K = L−T
1 F1 =

[
1.4563 −8.0323

−0.5763 15.7886

]

, L = L−T
1 F2 =

[
0.7999 −0.2000
0.6998 0.1001

]

.

Furthermore, if we choose the similar initial conditions in Figs. 1, 2 and 3, the phase
trajectories of master system and slave one and their state trajectories are, respectively,
shown in Figs. 4 and 5. In particular, based on the state trajectories of error system in
Fig. 6, the desired synchronization can be achieved.

5 Conclusions

In the paper, the problem on designing delay feedback controllers of master–slave
synchronization has been considered for Lur’e systems and some novel criteria have
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been obtained. In order to reduce the conservatism, we have chosen two augmented
LKFs and introducing some adjusting parameters, which were used to derive delay-
dependent results. Together with stability criteria for synchronization error system, we
have obtained several sufficient conditions on the existence of feedback controller and
the controller gains can be computed out by solving a set of LMIs. Finally, two numeri-
cal examples have demonstrated that our results produced much less conservative than
some reported ones.

Acknowledgments This work is supported by the National Natural Science Foundation of China
(Nos. 61374116, 61473079, 61473047), Jiangsu Natural Science Foundation (Nos. SBK201240801,
BKs2012384) and the Open Founds of Key Laboratory of Measurement and Control of Complex Sys-
tems of Engineering, Ministry of Education (No. MCCSE2013A04).

References

1. D. Banjerdpongchai, H. Kimura, Robust analysis of discrete-time Lur’e systems with slope restrictions
using convex optimization. Asian J. Control 4(2), 119–126 (2002)

2. T.S. Banerjee, P. Balasubramaniam, Synchronization of chaotic systems under sampled-data control.
Nonlinear Dyn. 70(3), 1977–1987 (2012)

3. P. Balasubramaniam, R. Chandran, S. Theesar, Synchronization of chaotic nonlinear continuous neural
networks with time-varying delay. Cogn. Neurodyn. 5(4), 361–371 (2011)

4. P. Balasubramaniam, Vembarasan, synchronization of recurrent neural networks with mixed time-
delays via output coupling with delayed feedback. Nonlinear Dyn. 70(1), 677–691 (2012)

5. T. Carroll, L. Pecora, Synchronization chaotic circuits. IEEE Trans. Circ. Syst. 38(4), 453–456 (1991)



Circuits Syst Signal Process (2016) 35:2992–3014 3013

6. Y. Chun, S.M. Zhong, W.F. Chen, Design PD controller for master-slave synchronization of chaotic
Lur’e systems with sector and slope restricted nonlinearities. Commun. Nonlinear Sci. Numer. Simul.
16(3), 1632–1639 (2011)

7. W.H. Chen, Z.P. Wang, X.M. Lu, On sampled-data control for master–slave synchronization of chaotic
Lur’e systems. IEEE Trans. Circ. Syst. 59(8), 515–519 (2012)

8. A.L. Fradkov, B. Andrievsky, R.J. Evans, Synchronization of nonlinear systems via under information
constraints. Chaos 18(1), 037109 (2008)

9. C. Ge, C.C. Hua, X.P. Guan, Master–slave synchronization criteria of Lur’e systems with time-delay
feedback control. Appl. Math. Comput. 244(1), 895–902 (2014)

10. H. Huang, J.D. Cao, Master–slave synchronization of Lur’e systems based on time-varying delay
feedback control. Int. J. Bifurc. Chaos 17(11), 4159–4166 (2007)

11. Q.L. Han, On designing time-varying delay feedback controllers for master–slave synchronization of
Lur’e systems. IEEE Trans. Circ. Syst. I 54(7), 1573–1583 (2007)

12. Y. He, G.L. Wen, Q.G. Wang, Delay-dependent synchronization criterion for Lur’e systems with delay
feedback control. Int. J. Bifurc. Chaos 16(2), 3087–3091 (2006)

13. W.L. He, F. Qian, Q.L. Han, Synchronization error estimation and controller design for delayed Lur’e
systems with parameter mismatches. IEEE Trans. Neural Netw. Learn. Syst. 33(1), 1551–1563 (2012)

14. X.F. Ji, W.N. Zhou, H.Y. Su, On Designing time-delay feedback controller for master–slave synchro-
nization of Lur’e systems. Asian J. Control 16(1), 308–312 (2014)

15. X.F. Ji, C. Zu, H.Y. Su, Delay-dependent synchronisation for singular Lur’e systems using time delay
feedback control. Int. J. Model. Identif. Control 19(2), 125–133 (2013)

16. H.R.Karimi,A slidingmode approach toH-infinity synchronizationofmaster-slave time-delay systems
with Markovian jumping parameters and nonlinear uncertainties. J. Frankl. Instit. 349(4), 1480–1496
(2012)

17. H.H. Kuo, T.L. Liao, J.J. Yan, Design and synchronization of master–slave electronic horizontal plat-
form system. Disc. Dyn. Nat. Soc. 1–11, 948126 (2012)

18. H.R. Karimi, M. Zapateiro, N.S. Luo, Adaptive synchronization of master–slave systems with mixed
neutral and discrete time-delays and nonlinear perturbations. Asian J. Control 14(1), 251–257 (2012)

19. S.M. Lee, Ju H. Park, O.M. Kwon, Improved asymptotic stability analysis for Lur’e systems with
sector and slope restricted nonlinearities. Phys. Lett. A 362(5–6), 348–351 (2007)

20. S.M. Lee, S.J. Choi, D.H. Ji, J.H. Park, S.C. Won, Synchronization for chaotic Lur’e systems with
sector-restricted nonlinearities via delayed feedback control. Nonlinear Dyn. 59(11), 277–288 (2010)

21. T. Li, J.J. Yu, Z. Wang, Delay-range-dependent synchronization criterion for Lur’e systems with delay
feedback control. Commun. Nonlinear Sci. Numer. Simul. 14(2), 1796–1803 (2009)

22. T. Li, A.G. Song, S.M. Fei, Master–slave synchronization for delayed Lur’e systems using time-delay
feedback control. Asian J. Control 13(6), 879–892 (2011)

23. J. Liu, J. Zhang, Note on stability of discrete-time time-varying delay systems. IET Control Theor.
Appl. 6(2), 335–339 (2012)

24. H.Mkaouar,O.Boubaker,Chaos synchronization formaster slave piecewise linear systems: application
to Chua’s circuit. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1292–1302 (2012)

25. V.F. Montagner, R.C. Oliveira, T.R. Calliero, Robust absolute stability and nonlinear state feedback
stabilization based on polynomial Lur’e functions. NonlinearAnal. TheoryMethodsAppl 70(5), 1803–
1812 (2009)

26. L. Pecora, T. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)
27. R. Rakkiyappan, R. Sivasamy, S. Lakshmanan, Exponential synchronization of chaotic Lur’e systems

with time-varying delay via sampled-data control. Chin. Phys. B 23(6), 060504 (2014)
28. F.O. Souza, R.M. Palhares, E.M.A.M. Mendes, Further results on master–slave synchronization of

general Lur’e systems with time-varying delay. Int. J. Bifurc. Chaos 18(1), 187–202 (2008)
29. S. Theesar, R. Chandran, P. Balasubramaniam, Delay-dependent exponential synchronization criteria

for chaotic neural networks with time-varying delays. Brazil. J. Phys. 42(3–4), 207–218 (2012)
30. S.J. Theesar, P. Balasubramaniam, Secure communication via synchronization of Lur’e systems using

sampled-data controller. Circuits Syst. Signal Proc. 33(1), 37–52 (2014)
31. T.B.Wang,W.N. Zhou, S.W. Zhao, Robust master-slave synchronization for general uncertain delayed

dynamical model based on adaptive control scheme. ISA Trans. 53(2), 335–340 (2014)
32. Z.G.Wu, P. Shi, H.Y. Su, Exponential synchronization of neural networks with discrete and distributed

delays under time-varying sampling. IEEE Trans. Neural Netw. Learn. Syst. 23(9), 1368–1376 (2012)



3014 Circuits Syst Signal Process (2016) 35:2992–3014

33. T.B. Wang, S.W. Zhao, W.N. Zhou, Finite-time master–slave synchronization and parameter identifi-
cation for uncertain Lurie systems. ISA Trans. 53(4), 1184–1190 (2014)

34. Z.G. Wu, P. Shi, H.Y. Su, Sampled-data synchronization of chaotic Lur’e systems with time delays.
IEEE Trans. Neural Netw. Learn. Syst. 24(3), 410–421 (2013)

35. W.Q. Wang, S.K. Nhguang, S.M. Zhong, F. Liu, Novel delay-dependent stability criterion for time-
varying delay systems with parameter uncertainties and nonlinear perturbations. Inform. Sci. 281(10),
321–333 (2014)

36. J. Xiang, Y.J. Li, W. Wei, An improved condition for master–slave synchronization of Lur’e systems
with time delay. Phys. Lett. A. 362(2–3), 154–158 (2007)

37. X.Q.Xiao, L. Zhou, Z.J. Zhang, Synchronization of chaotic Lur’e systemswith quantized sampled-data
controller. Commun. Nonlinear Sci. Numer. Simul. 19(6), 2039–2047 (2014)

38. J.Q. Yang, Y.T. Chen, F.L. Zhu, Singular reduced-order observer-based synchronization for uncertain
chaotic systems subject to channel disturbance and chaos-based secure communication. Appl. Math.
Comput. 229(25), 227–238 (2014)

39. J.Q. Yang, F.L. Zhu, Synchronization for chaotic systems and chaos-based secure communications
via both reduced-order and step-by-step sliding mode observers. Communic. Nonlinear Sci. Numer.
Simul. 18(4), 926–937 (2013)

40. D.S. Yang, Z.W. Liu, Y. Zhao, Exponential networked synchronization of master-slave chaotic systems
with time-varying communication topologies. Chin. Phys. B 21(4), 040503 (2012)

41. M.E. Yalein, J.A.K. Suykens, J. Vandewalle, Master–slave synchronization of Lur’e systems with
time-delay. Int. J. Bifurc. Chaos. 11(6), 1707–1722 (2001)

42. J. Zhong, L.Q. Lu, T.W. Huang, Synchronization of master-slave Boolean networks with impulsive
effects: necessary and sufficient criteria. Neurocomputing 143(5), 269–274 (2014)

43. C.K. Zhang, L. Jiang, Y. He, Q.H. Wu, Asymptotical synchronization for chaotic Lur’e systems using
sampled-data control. Communic. Nonlinear Sci. Numer. Simul. 18(10), 2743–2751 (2013)

44. X.M. Zhang, G.P. Lu, Y.F. Zhang, Synchronization for time-delay Lur’e systems with sector and slope
restricted nonlinearities under communication constraints. Circuits Syst. Signal Proc. 30(6), 1573–
1593 (2011)


	Further Criteria on Master--Slave Synchronization   in Chaotic Lur'e Systems Using Delay Feedback Control
	Abstract
	1 Introduction
	2 Model Descriptions and Preliminaries
	3 Master--Slave Synchronization Results
	4 Numerical Examples
	5 Conclusions
	Acknowledgments
	References




