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Abstract The H∞ control design problem is solved for the class of 2D discrete
singular systems with delays. More precisely, the problem addressed is the design of
state-feedback controllers such that the acceptability, internal stability and causality of
the resulting closed-loop system are guaranteed, while a prescribed H∞ performance
level is simultaneously fulfilled. By establishing a novel version of the bounded real
lemma, a linear matrix inequality condition is derived for the existence of these H∞
controllers. They can then be designed by solving an iterative algorithm based on
LMI optimizations. An illustrative example shows the applicability of the algorithm
proposed.

Keywords Two-dimensional systems · Systems with delays · H∞ control · Singular
systems

1 Introduction

Two-dimensional (2D) systems appear frequently in practical problems, so they
have been extensively studied over the last fewdecades, with many important results
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reported in the literature [5,21]. Of these previous results, the H∞ filtering problem
for 2D linear systems has been studied in [2,7,8,10–12,15,27,28,30–34,41]; for 2D
linear parameter-varying systems, the related work can be found in [9,32]; for 2D
systems with delays, this filtering problem has been investigated in [27,31]; the sta-
bility and stabilization of 2D systems have been solved in [1,17–19,26], while the
H∞ control for 2D nonlinear systems with delays and the nonfragile H∞ and l2 − l1
problems were studied in [36]. Nonetheless, as no systematic and general approach to
analyze 2D SRM systems exists, there are still many unsolved problems.

This paper focuses on 2D singular systems, which have not been fully studied
in the literature, even though they have extensive applications [6,20]. Some funda-
mental results in 1D singular systems have already been extended to 2D singular
systems. For example, the minimum energy control problem for 2D singular models
with shift-invariant and shift-varying coefficients was solved in [35,38]; [23] extended
the geometric method to the 2D singular case; the input admissibility of 2D singular
systemswas investigated in [22], whereas [42] proposed an asymptotic stability theory
based on the concept of jump modes. It should be emphasized that the admissibility
and jump modes play an important role when analyzing the robust stability of 2D
singular systems [42]. In fact, the presence of jump modes means that the system is
noncausal, and its structural stability will be violated. Hence, in most synthesis studies
(such as the robust H∞ control [37]), the closed-loop system is required to be free of
jump modes. The class of 2D singular systems studied here is 2D singular Roesser
models, as they are the simplest and most popular 2D singular system models. In
appearance, they resemble 1D singular systems, but there is no equivalent to the 1D
Kronecker canonical form (which is the basis of many developments of 1D singular
systems). This makes 2D singular systems more difficult to study. For example, the
problems of robust H∞ control, model reduction and duality have already been shown
to be significantly difficult to solve [37,39,43].

Thus, this paper provides new techniques for analyzing and designing H∞ con-
trollers for uncertain 2D singular systems with state delays. Given a 2D system
described by a Roesser-like model, the focus is on analyzing and designing state-
feedback controllers such that the closed-loop 2D system is acceptable, asymptotically
stable, causal and has a prescribed H∞ disturbance attenuation performance. A new
version of the bounded real lemma (BRL) is provided for this class of systems, based
on slack variablesmatrices, to providemore flexibility for H∞ controller design. In the
literature, [40] used a particular choice of state-feedback control and imposed the same
delays in the horizontal and vertical states, which reduces the achievable H∞ perfor-
mance. It must be pointed out that the BRL leads to bilinear matrix inequality (BMI)
conditions for state-feedback design, so an iterative algorithm is provided to char-
acterize the existence of admissible state-feedback controllers. Based on this result,
the state-feedback design problem is converted into a convex optimization problem,
which can be readily solved via standard numerical software.
Notations: For real symmetric matrices X and Y , the notation X ≥ Y (respectively,
X > Y ) means that the matrix X − Y is positive semi-definite (respectively, positive
definite). ∗ stands for the symmetric terms of a square symmetric matrix. I denotes the
identity matrix with appropriate dimension. The superscript T represents the transpose
of a matrix. diag(...) stands for a block-diagonal matrix. For a given matrix B ∈
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R
m×n (respectively, B ∈ R

n×m) such that rank(B) = r , we define B⊥ ∈ R
n×(n−r)

(respectively, B⊥ ∈ R
(n−r)×n) as the right (respectively, left) orthogonal complement

of B by BB⊥ = 0 (respectively, B⊥B = 0) and B⊥T B⊥ > 0 (respectively, B⊥B⊥T >

0). The Euclidean vector norm is denoted by ‖ . ‖. The l2 norm of a 2D signal w(i, j)
is given by

‖ w(i, j) ‖2=
√
√
√
√

∞
∑

i=0

∞
∑

j=0

wT (i, j)w(i, j)

where w(i, j) is said to be in the space l2{[0,∞), [0,∞)} or l2, for simplicity, if
‖ w(i, j) ‖2< ∞.

2 Preliminaries

Consider first a 2D singular Roesser model (2D SRM) of the following form:

E

[

xh(i + 1, j)
xv(i, j + 1)

]

= A

[

xh(i, j)
xv(i, j)

]

+ Ad

[

xh(i − d1, j)
xv(i, j − d2)

]

+ Bu(i, j) + Lw(i, j)

z(i, j) = H

[

xh(i, j)
xv(i, j)

]

+ Gw(i, j) (2.1)

with the boundary conditions

{xh(φ, j) = 0},∀ j ≥ 0, φ = −d1,−d1 + 1, . . . , 0;
{xv(i, ϕ) = 0},∀i ≥ 0, φ = −d2,−d2 + 1, . . . , 0; (2.2)

where xh(i, j) ∈ R
nh and xv(i, j) ∈ R

nv are the horizontal and vertical states;
w(i, j) ∈ R

q is the disturbance (or noise) vector, which belongs to l2{[0,∞), [0,∞)};
u(i, j) ∈ R

m is the input vector; z(i, j) ∈ R
p is the controlled output vector; d1,

d2 > 0 are constant delays; A, Ad , B, L , H and G are known constant real matrices
with appropriate dimensions; E is singular, satisfying the 2D regular pencil condition:
For some finite pairs (z, w), the following holds:

det[EI(zd1+1, wd2+1) − AI(zd1, wd2) − Ad ] =
n̄1∑

k=0

n̄2∑

l=0

aklz
kwl

where I (z, w) = diag{zInh ,wInv }, where an̄1,0 	= 0 and a0,n̄2 	= 0.
When an̄1,n̄2 	= 0, system (2.1) is called acceptable [21,42]: It has been shown in

[42] that nonacceptable systems are ill-posed.
The jump modes of the 2D SRM (2.1) and (2.2) can be defined equivalently by the

nonzero positive power items (aijziw j , i > 0 or j > 0) in the Laurent expansion of
the matrices [EI(z, w)− A− Ad I (zd1 , wd2)]−1, 1 ≤| z |< ∞, 1 ≤| w |< ∞ [4]. The
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lack of jump modes has been shown equivalent to causality. In fact , [42] suggested
that if the 2D acceptable SRM (2.1)–(2.2) is causal, then it can be transformed into
a standard form via linear transformations, with E = diag(Eh, Ev), where Eh ∈
R
nh×nh , Ev ∈ R

nv×nv . Therefore, for simplicity and convenience,we use the following
assumption:

Assumption 2.1 E = diag(Eh, Ev), where Eh ∈ R
nh×nh , Ev ∈ R

nv×nv , and nh +
nv = n.

Lemma 2.2 The 2D SRM system (2.1) is acceptable and internally stable if and only
if

p(z, w) 	= 0, for 0 <| z |≤ 1, 0 <| w |≤ 1, (2.3)

or

c(z, w) 	= 0, for (z, w) ∈ D2, D2 = {(z, w), 1 ≤| z |< ∞, 1 ≤| w |< ∞}, (2.4)

where p(z, w) = det[E−AI(z, w)− Ad I (zd1+1, wd2+1)] and c(z, w) = det[EI(z, w)

− A − Ad I (z−d1, w−d2)].
Proof 2.3 Similar to that of Lemma 5 in [40], so it is omitted.

Lemma 2.4 The acceptable 2D SRM system (2.1) is causal if and only if

deg(s(nhd1+nvd2) det[sE − A − s−(d1+d2)Ad ]) = (nhd1 + nvd2) + rankE (2.5)

rankE = rankEh + rankEv (2.6)

Proof 2.5 The proof is similar to that of Lemma 6 in [40], so it is omitted. ��
A state-feedback controller of the following form is used:

u(i, j) = K

[

xh(i + 1, j)
xv(i, j + 1)

]

. (2.7)

If A + BK is denoted as Ac, this controller gives the following closed-loop system:

E

[

xh(i + 1, j)
xv(i, j + 1)

]

= Ac

[

xh(i, j)
xv(i, j)

]

+ Ad

[

xh(i − d1, j)
xv(i, j − d2)

]

+ Lw(i, j)

z(i, j) = H

[

xh(i, j)
xv(i, j)

]

+ Gw(i, j). (2.8)

When (2.8) is regular, its transfer function is given by

G(z, w) = H [EI(z, w) − Ac − Ad I (z
−d1, w−d2)]−1L + G,

so its H∞ norm is, by definition

‖G(z, w)‖∞ = sup
z,w∈[0,2π ]

σmax[G(e jz, e jw)]



Circuits Syst Signal Process (2016) 35:1579–1592 1583

where σmax denotes the maximum singular value of a matrix.

Remark 2.6 By using the 2D Parseval’s theorem [24], it is not difficult to show that,
under zero boundary conditions and with the internal stability of (2.8), the condition
‖G(z, w)‖∞ < γ is equivalent to

sup
0 	=w(i, j)∈�2

‖z(i, j)‖2
‖w(i, j)‖2 < γ.

Then, the H∞ state-feedback control problem addressed in this paper can be
expressed as follows: Given the 2DSRMsystem (2.1), design a suitable state-feedback
controller (2.7) such that the following two requirements are satisfied:

1. The closed-loop system (2.8) with w(i, j) ≡ 0 is acceptable, internally stable and
jump-mode free [42].

2. Under zero boundary conditions, the H∞ performance ‖G(z, w)‖∞ < γ is guar-
anteed for all nonzero w(i, j) ∈ l2.

We conclude this section by introducing several lemmas, which will be used in the
proof of our main results.

Lemma 2.7 The 2D SRM delayed system (2.8) with w(i, j) ≡ 0 is acceptable,
internally stable and causal if there exist a symmetric matrix P = diag(Ph, Pv) ∈
R

(nh+nv) × (nh+nv) and a matrix Q = diag(Qh, Qv) > 0 ∈ R
(nh+nv) × (nh+nv) such

that

ET PE ≥ 0 (2.9)
[

AT
c PAc − ETPE + Q AT

c PAd

∗ AT
d PAd − Q

]

< 0. (2.10)

Proof 2.8 We prove Lemma 2.7 by contradiction: Suppose that the conditions 2.9–
2.10 are satisfied, but the system 2.8 is unstable. Then, there exists (z, w) ∈ D2 such
that

det[EI(z, w) − Ac − Ad I (z
−d1 , w−d2)] = 0. (2.11)

Hence, there exists a vector υ 	= 0 such that

EI(z, w)υ = [Ac + Ad I (z
−d1, w−d2)]υ (2.12)

It is easy to see that

υ∗[I (z∗, w∗)ETPEI(z, w) − ETPE]υ
= υ∗[AT

c PAc − ETPE

+AT
c P Ad I (z

−d1, w−d2) (2.13)

+I (z∗−d1 , w∗−d2)AT
d PAc

+I (z∗−d1 , w∗−d2)AT
d PAd I (z

−d1 , w−d2)]υ



1584 Circuits Syst Signal Process (2016) 35:1579–1592

By applying the Schur complement formula to (2.10), we obtain

AT
c PAc − ETPE + Q + AT

c PAd(Q − AT
d PAd)

−1AT
d PAc < 0. (2.14)

It follows from Q > 0 and (z, w) ∈ D2 that

(I (z∗−d1, w∗−d2)(Q − AT
d PAd)I (z

−d1, w−d2) − AT
c PAd I (z

−d1, w−d2))

×(I (z∗−d1 , w∗−d2)(Q − AT
d PAd)I (z

−d1, w−d2))−1 (2.15)

×(I (z∗−d1 , w∗−d2)(Q − AT
d PAd)I (z

−d1, w−d2) − I (z∗−d1 , w∗−d2)AT
d PAc) ≥ 0

which then implies

AT
c PAd I (z

−d1, w−d2) + I (z∗−d1 , w∗−d2)AT
d PAc

+I (z∗−d1 , w∗−d2)AT
d PAd I (z

−d1 , w−d2) (2.16)

≤ Q + AT
c PAd(Q − AT

d PAd)
−1AT

d PAc.

This, together with (2.14) and υ 	= 0, means that the right-hand side of (2.13)
is negative. On the other hand, (z, w) ∈ D2 and ET PE ≥ 0 implies that
diag(ET

h PhEh, ET
v PvEv) ≥ 0: Therefore, the left-hand side of (2.13) is nonnega-

tive, leading to a contradiction, which completes the proof. ��
We now introduce the following Lyapunov–Krasovskii functional:

V (i, j) � V1(i, j) + V2(i, j) (2.17)

V1(i, j) � xhT(i, j)ET
h PhEhx

h(i, j) +
i

∑

i−d1

xhT(i, j)Qhx
h(i, j) (2.18)

V2(i, j) � xvT (i, j)ET
v PvEvx

v(i, j) +
j

∑

j−d2

xvT (i, j)Qvx
v(i, j) (2.19)

with the associated unidirectional variation of V (i, j) in (2.8) defined as in [14]:

	V (i, j) � 	V1(i, j) + 	V2(i, j) (2.20)

where 	V1(i, j) � V1(i + 1, j) − V1(i, j), 	V2(i, j) � V2(i, j + 1) − V2(i, j),
ET
h PhEh ≥ 0, ET

v PvEv ≥ 0, Qh > 0 and Qv > 0. Then, we have the following
result:

Lemma 2.9 The 2D SRM delayed system (2.8) is acceptable, internally stable and
causal if

	V (i, j) < 0 (2.21)
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Proof 2.10 By calculation,

	V (i, j) = ξ(i, j)

[

AT
c PAc − ETPE + Q AT

c PAd

∗ AT
d PAd − Q

]

ξ(i, j) (2.22)

where ξ(i, j) = [xhT(i, j) xvT(i, j) xhT(i − d1, j) xvT(i, j − d2)]T .
Now, for any ξ(i, j) 	= 0, 	V (i, j) < 0 requires that
[
ATc P Ac − ET P E + Q ATc PAd

∗ ATd PAd − Q

]

< 0, so the proof is completed, by using Lemma

2.7. ��

Lemma 2.11 Given a scalar γ > 0, the 2D SRM with delay (2.8) is acceptable,
internally stable, causal and satisfies ‖G(z, w)‖∞ < γ if there exist a symmetric
matrix P = diag(Ph, Pv) ∈ R

nh × nv and a matrix Q = diag(Qh, Qv) > 0 ∈
R

(nh+nv) × (nh+nv) such that the following LMI holds:

ET PE ≥ 0 (2.23)
⎡

⎢
⎢
⎣

AT
c P Ac − ETP E + Q AT

c P Ad AT
c PL HT

∗ AT
d PAd − Q AT

d PL 0
∗ ∗ −γ 2 I + LT PL GT

∗ ∗ ∗ −I

⎤

⎥
⎥
⎦

< 0 (2.24)

Proof 2.12 We shall show that ‖e(i, j)‖2 < γ ‖w(i, j)‖2 under zero boundary con-
ditions for any nonzero w(i, j) ∈ l2. For this, consider the following associated
performance index:

ג =
∞
∑

i=0

∞
∑

j=0

zT (i, j)z(i, j) − γ 2wT (i, j)w(i, j)

Inspired by [2,29] and [12], we have that

∞
∑

i=0

∞
∑

j=0

	V (i, j) �
∞
∑

i=0

	V1(i, j) +
∞
∑

j=0

	V2(i, j)

= V1(∞, j) − V1(0, j) + V2(i,∞) − V2(i, 0). (2.25)

Under zero boundary conditions, V1(0, j) = V2(i, 0) = 0, V1(∞, j) ≥ 0 and
V2(i,∞) ≥ 0. Thus, from (2.25), we can deduce that

∞
∑

i=0

∞
∑

j=0

	V (i, j) = V1(∞, j) + V2(i,∞) ≥ 0.
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Then,

ג ≤
∞
∑

i=0

∞
∑

j=0

zT (i, j)z(i, j) − γ 2wT (i, j)w(i, j) + 	V (i, j)

≤
∞
∑

i=0

∞
∑

j=0

ψT (i, j)Ξψ(i, j)

where

ψ(i, j) = [xhT (i, j) xvT (i, j) xhT (i − d1, j) xvT (i, j − d2) wT (i, j)]T

and

Ξ =
⎡

⎣

AT
c PAc − ETPE + Q + HT H AT

c PAd AT
c PL + HTG

∗ AT
d PAd − Q AT

d P B
∗ ∗ −γ 2 I + BTPB + GTG

⎤

⎦

(2.26)
If Ξ < 0, then the LMI (2.24) is negative, so by the Schur complement (2.8), it is
acceptable, internally stable, causal and satisfies ‖G(z, w)‖∞ < γ , which completes
the proof. ��
Lemma 2.13 Let ξ ∈ R

n, Q ∈ R
n×n and B ∈ R

m×n with rank(B) < n and B⊥ such
that BB⊥ = 0. Then, the following conditions are equivalent:

(i) ξ T Qξ < 0,∀ξ 	= 0 : Bξ = 0
(ii) B⊥T

QB⊥ < 0
(iii) ∃μ ∈ � : Q − μBT B < 0
(iv) ∃χ ∈ �n×m : Q + χB + BTχT < 0

3 Analysis of H∞ Performance

We present now a novel bounded real lemma for 2D SRM with delays:

Theorem 3.1 The 2D SRM with delay (2.1) with u(i, j) ≡ 0 is acceptable, inter-
nally stable, causal and satisfies ‖G(z, w)‖∞ < γ if there exist a symmetric
matrix P = diag(Ph, Pv) ∈ R

(nh+nv)×(nh+nv), a matrix Q = diag(Qh, Qv) >

0 ∈ R
(nh+nv)×(nh+nv) and matrices S ∈ R

(nh+nv)×(nh+nv), R ∈ R
(nh+nv)×(nh+nv),

M ∈ R
(nh+nv)×(nh+nv), N ∈ R

q×(nh+nv) and F ∈ R
p×((nh+nv)) such that the follow-

ing LMIs hold:

ET PE ≥ 0 (3.1)
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Θ11 SAd + AT RT SL + AT NT −S + AT MT HT + AT FT

∗ Θ22 RL + AT
d N

T −R + AT
d M

T AT
d F

T

∗ ∗ Θ33 −N + LT MT GT + LT FT

∗ ∗ ∗ −M − MT + P −FT

∗ ∗ ∗ ∗ −Ip

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (3.2)
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where

Θ11 = −ETP E + SA + AT ST + Q
Θ22 = −Q + AT

d R
T + RAd

Θ33 = NL + LT NT − γ 2 Iq

Proof 3.2 The LMI condition (4.2) is obtained by considering χ = [

S R N M F
]T ,

B = [

A Ad L −I 0
]

, and

Q =

⎡

⎢
⎢
⎢
⎢
⎣

−ET PE + Q 0 0 0 HT

∗ −Q 0 0 0
∗ ∗ −γ 2 I 0 GT

∗ ∗ ∗ P 0
∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎦

in condition (iv) of Lemma 2.11, with

B⊥ =

⎡

⎢
⎢
⎢
⎢
⎣

I 0 0 0
0 I 0 0
0 0 I 0
A Ad B 0
0 0 0 I

⎤

⎥
⎥
⎥
⎥
⎦

and then, by calculation and using the Schur complement and condition (i i) of Lemma
2.11, we can obtain the equivalence between B⊥T QB⊥ < 0 and LMIs (2.24), so
(2.24) is equivalent to (4.2). Thus, Theorem 3.1 is equivalent to Lemma 2.9, com-
pleting the proof. ��
Remark 3.3 By means of Finsler’s lemma, in the proof of Theorem 3.1, the slack
variables S, R, N , M and F are introduced to decouple the products AT

c PAc in Lemma
2.11. This feature facilitates the design of the state-feedback controller.

Remark 3.4 The introduction of the slack variables S, R, N , M and F in Theorem 3.1
makes it possible to reduce the conservatism, as the system matrices are decoupled
from the matrix variable P . Thus, our results provide additional flexibility for the
analysis anddesignof state-feedback controllers, at the cost of increased computational
complexity.

Remark 3.5 The proposed design method is general in the sense that nonsingular 2D
Roesser models can also be treated using Theorem 3.1, fixing E = I .

4 State-Feedback H∞ Controller Design

In the previous section, the H∞ control analysis problem was studied for 2D SRM
with delays. In this section, the design of controllers is solved using the following
result:
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Theorem 4.1 The closed-loop 2D SRM with delayrm (2.8) is acceptable, internally
stable and causal with prescribed H∞ performance level γ > 0 if there exist a sym-
metric matrix P = diag(Ph, Pv) ∈ R

(nh+nv)×(nh+nv), a matrix Q = diag(Qh, Qv) >

0 ∈ R
(nh+nv)×(nh+nv) and matrices K ∈ R

m×(nh+nv), S ∈ R
(nh+nv)×(nh+nv), R ∈

R
(nh+nv)×(nh+nv), M ∈ R

(nh+nv)×(nh+nv), N ∈ R
q×(nh+nv) and F ∈ R

p×((nh+nv))

such that the following inequalities hold:

ET PE ≥ 0 (4.1)
⎡

⎢
⎢
⎢
⎢
⎣

Λ11 Λ12 Λ13 Λ14 Λ15
∗ Λ22 Λ23 Λ24 Λ24
∗ ∗ Λ33 Λ34 Λ35

∗ ∗ ∗ Λ44 −FT

∗ ∗ ∗ ∗ −Ip

⎤

⎥
⎥
⎥
⎥
⎦

< 0 (4.2)

where

Λ11 = −ET PE + S(A + BK) + (A + BK)T ST + Q
Λ12 = SAd + (A + BK)T RT , Λ13 = SL + (A + BK)T NT

Λ14 = −S + (A + BK)T MT , Λ15 = HT + (A + BK)T FT

Λ22 = −Q + AT
d R

T + RAd, Λ23 = RL + (A + BK)Td N
T

Λ24 = −R + (A + BK)Td M
T , Λ25 = (A + BK)Td F

T

Λ33 = NL + LT NT − γ 2 Iq , Λ34 = −N + BT MT

Λ35 = GT + LT FT , Λ44 = −M − MT + P

Corollary 1 The minimum γ that fulfills the conditions of Theorem 4.1 can be
obtained using the following optimization problem:

min γ s.t. (4.1) and (4.2) (4.3)

Theorem 4.1 is presented in terms of bilinear matrix inequalities (BMI) thanks to the
slack variables S, R, N , M and F . The advantages of this approach come from the fact
that such variables can be used as variables when searching for the best performance
of the closed-loop system. Thus, a lower H∞ guaranteed cost could be obtained by
searching using the variables S, R, N ,M and F . Nevertheless, by fixing S, R, N ,M and
F , the conditions of Theorem 4.1 reduce to LMIs: In this case, Corollary 1 becomes
a convex optimization problem that can be handled by semi-definite programming
(SDP) algorithms. In order to solve Corollary 1 within the BMI framework, many
methods in the literature can be applied, such as the path-following method [16],
which is based on linearizing the BMIs, and the alternating SDP method [3,13,25],
which is based on fixing some variables and searching for others in such a way that,
at each step, a convex optimization problem is solved. Although in both cases there
is no guarantee of convergence, these methods are easy to implement and provide
good results. In this paper, we use the methodology proposed in [25], as presented in
Table 1.

Remark 4.2 Although other methods could be applied in the solution of the BMI
problem (4.2), the algorithm in Table 1 is proposed. It is based on minimizing γ by
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Table 1 Algorithm [25]

Initialize matrices S, R, N , M , F and scalars γT and γK

While
∣
∣
∣
(
√

γT −√
γK )√

γT

∣
∣
∣ > ε AND (Maximum number of iterations not reached) do

Solve conditions of Theorem 4.1 with S, R, N , M and F , minimizing
√

γ ,
√

γT ← √
γ ;

then calculate matrix K

Solve Theorem 4.1 with K obtained in the previous step, minimizing
√

γ ,
√

γK ← √
γ ;

then calculate matrices S, R, N , M and F

End While

alternatively using K as variable (fixing S, R, N , M and F) and using S, R, N , M and
F as variables (fixing K ): At each step, a convex optimization problem in terms of LMI
conditions is solved. This idea has been called alternating semi-definite programming
or the Gauss–Seidel method [13].

5 Illustrative Example

An example is now studied to show the effectiveness of the proposed method to design
controllers for 2D SRM systems with delays.

Consider a thermal processes in chemical reactors, heat exchangers and pipe fur-
naces, which can be described by the partial differential equation [40]:

∂T (x, t)

∂x
= −∂T (x, t)

∂t
− T (x, t) − T (x, t − d2) + u(t) (5.1)

where T (x, t) is the temperature at x(space) ∈ [0, x f ] and t (t ime) ∈ [0,∞].
Assuming that the disturbance input is given by w(i, j), then the partial differential
equation above can be transformed into the following 2D SRM: (see [40] for more
details)

[

1 0
1 0

] [

xh(i + 1, j)
xv(i, j + 1)

]

=
[

a1 0
0 1

] [

xh(i, j)
xv(i, j)

]

+
[

0 a2
0 0

] [

xh(i − d1, j)
xv(i, j − d2)

]

+
[

b
0

]

u(i, j) +
[

l
0

]

w(i, j). (5.2)

It is easy to check that the given system can be converted to

[

1 0
0 0

] [

xh(i + 1, j)
xv(i, j + 1)

]

=
[

a1 0
−a1 1

] [

xh(i, j)
xv(i, j)

]

+
[

0 a2
0 −a2

] [

xh(i − d1, j)
xv(i, j − d2)

]

+
[

b
−b

]

u(i, j) +
[

l
−l

]

w(i, j) (5.3)

where a1 = 	t
	x+	t+	x	t , a2 = 	x−	x	t

	x+	t+	x	t , b = 	x	t
	x+	t+	x	t , and the measured

output is given by
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Table 2 Minimum γ obtained
Corollary 1 [40]

γmin 0.1505 0.5
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Fig. 1 Frequency response of the closed-loop system with the desired controller

z(i, j) = C

[

xh(i, j)
xv(i, j)

]

. (5.4)

Let 	x = 0.1, 	t = 0.1, l = 0.1, d1 = 1, d2 = 2, C =
[
0.1 0
0 0.1

]

. We now compare

Corollary 1 with the results proposed in [40]: The minimum γ obtained with each
algorithm is presented in Table 2, from which it can be seen that our results have less
conservatism than those in [40], thanks to the degrees of freedom given by the slack
variables.

The obtained state-feedback H∞ control is given as follows:

K = [−10.0000 −15.0961
]

With this controller, the closed-loop frequency response is presented in Fig. 1: It can
be seen that the maximum value of ‖G(z, w)‖∞ is effectively below the specified
level of attenuation γ = 0.1505.

6 Conclusions

The analysis and design of H∞ controllers for 2D singular systems with delays have
been addressed in this paper, providing a design condition that is clearly less conserva-
tive than previous results in the literature. For this, extra-variables were used to derive
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BMI conditions that may be explored in the search for a better H∞ performance. The
state-feedback design is accomplished bymeans of an optimization problem, solved in
terms of LMIs by using an iterative algorithm. An example illustrated the applicability
and advantages of the proposed method.

The main results in this paper may be further extended to related problems such as
H∞ output-feedback for these systems or time-varying delays.
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